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Preface

r-‘[‘his book is intended for a two-quarter or one or two-semester
course in advanced calculus and introductory real analysis. The book is
classical in the sense that it deals with calculus and Fourier series in Euclidean
space. Only a few brief references are made to “modern” topics such as
Lebesgue integration, distributions, and quantum mechanics. We resisted
the temptation to include vector analysis (the Stokes theorem and so forth).
In most curricula, this topic comes earlier in the second year at a more
informal level (see, for example, J. Marsden and A. Tromba, Vector Calculus,
W. H. Freeman and Company, 1975) and possibly later in the context of
manifold theory for students who are so inclined.

In presenting the material, we have been deliberately concrete—aiming at
a solid understanding of the Euclidean case and introducing abstraction
only through examples. For instance, if Euclidean spaces-are properly
understood, it is a small jump to other spaces such as the space of continuous
functions and abstract metric spaces. In the context of the space of continuous
functions, we can see the power of abstract metric space methods. When
the general theory is presented too soon, the student is confused about its
relevance; consequently, much teaching time can be wasted.

The book assumes that the reader has had some calculus; that is, that he
or she knows how to differentiate and integrate standard functions. Strictly
speaking, the theory is developed logically and requires few prerequisites,
although a knowledge of calculus is needed for an understanding of examples
and exercises. Also, some brief contact with partial derivatives and multiple
integrals is desirable but not essential. Chapter 6, on differentiation, requires
the rudiments of linéar algebra; specifically, the student should know what
a linear transformation and its representing matrix is.

Each chapter is organized as follows. There are numerous sections con-
taining the definitions, statements of the theorems, examples, and fairly
easy problems. Once the student masters the theorems and is able to handle
the easy problems, he can move on to the end of the chapter to master the
technical proofs. Here, numerous further examples and exercises are given.
The easier exercises following each section enable the student to master the
material as he goes along. The exercises at the end of the chapter then often
require an integrated knowledge of the whole chapter or previous chapters

Xi
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including theorem proofs. This plan has worked out well in lectures, When
the lectures are devoted to explaining the theorems with only selected proofs
given, it is much easier for the student to see what is going on. We found that
using this approach one or two sections can be covered in each lecture.

The introductory chapter contains essential terminological material.
Thestudent interested in the intricacies of set theory can consult the Appendix,
which has been kindly supplied by Professor I. Fary.

Chapter 1 contains material on the basic structure of the real line needed
for later developments. We spend a minimum amount of time on the algebraic
axioms and concentrate on the completeness property. The algebraic
axioms are usually covered in basic algebra courses, and since the student is
used to working with real numbers, it seems logical to accept the basic
algebraic skills as valid.

Chapters 2 and 3 treat the topology of R” in such a way as to just use the
basic metric structure of R". This is done to make the transition to other
metric spaces, such as the space of continuous functions treated later, almost
automatic.

A complete and early introduction of abstract metric spacesis avoided here.
Experience has shown that at this level almost two extra weeks are required
to achieve this abstraction because, for one thing, one has to go through
the usual “bizarre” metric spaces, which students find confusing. The
time saved can be used later for more useful topics like the Ascoli theorem,
the Stone-Weierstrass theorem, fixed-point theorems, and differential or
integral equations.

Chapter 4 continues the development, treating the basic facts about
continuity., Chapter 5 gives the more detailed properties of continuous
functions related to uniform convergence. A number of more specialized
topics are presented in Sections 5.5-5.9, from which a selection can be made.

Chapter 6 deals with differentiation, making some use of linear algebra.
All of the usual topics of differential calculus for functions of several variables
are treated. A fairly thorough treatment of maxima and minima is given,
including an optional discussion of the Morse lemma in Chapter 7. Chapter 7
has as its main topic a complete discussion of the inverse and implicit function
theorems. Existence theorems for ordinary differential equations and
Lagrange multipliers'(constrained extrema) are also given.

Chapter 8 treats the basics of integration. Some may wish to teach this’

material before Chapter 7. In this chapter, we deal with the Riemann
integral but do include Lebesgue’s theorem and sets of measure zero. An
optional section gives a quick look at distributions, illustrated by the 6-
function.

The next chapter proves the two fundamental theorems concerning
multiple integrals: the reduction to iterated integrals and the change of
variables formula. Numerous applications are given.

PREFACE xiii

The last chapter, Chapter 10, gives a fairly thorough treatment of Fourier
series from the point of view of inner product spaces. Some topics such as
this are useful to students in introductory analysis courses, since it goes
well beyond just “rigorizing” many topics they already knew. One unusual
feature of our presentation is the inclusion of some applications to differential
equations and quantum mechanics.

Of course, teachers have different tastes concerning rigor, the role of
intuition, the choice of subject matter, and so forth. Perhaps a few remarks

on variations in the manner of presentation of the material in this book

will aid those who wish to adapt it to their own personal style.

First of all, in Chapters 2 through 4, it is possible to lay more emphasis
on abstract metric spaces without materially changing the text. It is, in fact,
a good exercise to have students do this adaptation themselves, because
once they see the “correct” proof in R, it becomes rather enjoyable, and
rewarding, to make the generalizations. In this regard, there is a table,
supplied by R. Gulliver, at the end of Chapter 5; the table indicates which
theorems hold for general metric spaces.

Some material in Chapter 5 is a bit more advanced and can be deferred.
Also, if a complete logical development is desired, differentiation and integra-
tion of functions of one variable should precede Chapter 5; this depends on
the background of the students. This material, in its most basic aspects,
is used in Sections 5.3, 5.6, and 7.5. In practice, we have found that it offends
only the best students to have to use some calculus before it is “correctly”
presented in the course. We find this healthy, but some may wish to switch
the order of presentation.

At the beginning of Chapter 6, it is good to review a little linear algebra;
specifically, the definition of the matrix of a linear transformation. This
is also a good time to look over Example 4 at the end of Chapter 4.

For a semester course, some topics have to be cut in order to reach
Chapter 10 (such as Sections 5.5-5.9 and 7.3-7.7). In a two-quarter course,
there is time to complete the entire text (perhaps omitting Sections 5.8, 5.9,
7.3,7.4,7.6,7.7,10.7, and 10.8).

The symbols used in this text are standard except possibly for the followmg:
R denotes the real number line, C denotes the complex numbers, R" denotes
Euclidean n-space, “iff” stands for “if and only if,” and § denotes the end ofa
proof. The notation Ja,b[ is used to indicate the open interval consisting of
all real numbers x satisfying a < x < b. This European convention avoids
confusion with the ordered pair (a,b). The notation x — f(x) indicates that x
is mapped to f(x) by f. The notation f: A =« R" — R"™ means that f maps
the domain A4 into R™. Occasionally = is used to denote “implies.” The
symbol 4\B denotes the members of the set 4 that are not members of B,
and x € 4 means that x is a member of 4.

Sections, theorems, and definitions are numbered consecutively within
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each chapter. A reference such as “Theorem 24" or “Exercise 3” applies to
material within the present chapter or section; otherwise, the chapter or
section number is cited.

We thank M. Buchner and W. Wilson who helped with the first draft
of the book, and I. Fary and R. Gulliver for the appendices. We also thank the
students of Math 104A-B at Berkeley, especially E. Wong, J. Lim, J. Wing,
and J. Seitz, for catching numerous small errors and stylistic points. We
thank our colleagues from whose old examinations many of the problems
are derived. Several colleagues deserve special mention, especially P.
Chernoff, I. Fary, R. Gulliver, and M. Mayer for reading portions of the
manuscript and suggesting several improvements. Sections 5.9 and 10.4
and a number of problems were adapted from class notes of P. Chernoff.
The remaining assistants, A. Frickson, A. Hausknecht, D. Heifetz, and
J. Macrae helped with portions of the manuscript, eliminated mnany errors,
and checked and prepared answers for most of the problems. Help was also
received from M. McCracken, W. A. J. Luxenburg, and R. Graff. We thank
I. Workman for a fine job of typing the manuscript and N. Lee for her
moral support.

Finally, thanks are extended to R. Abraham, K. McAloon, A. Tromba,
and M. O’Nan, officers of Eagle Mathematics Incorporated (an organization
of mathematics authors), for their suggestion that this book be written and
for their subsequent encouragement.
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Introduction

Prerequisites;
Sets and Functions

-The student who wishes to use this book successfully should
have a sound background in elementary calculus, as well as some knowledge
of linear algebra (mostly for use in Chapters 6, 7, and 10) and a little multi-
variable calculus. Adequate preparation is normally obtained from two
years of undergraduate mathematics. Also required is a basic knowledge
of sets and functions, for which the necessary concepts are summarized below.
This material should be read briefly and then consulted as needed.

Set theory is the starting point of much of mathematics and is in itself a
vast and complicated subject. For brevity and better understanding, we
begin our study somewhat intuitively. The reader interested in the subtleties
of the subject can consult Appendix A at the end of the book for further
information.

A set is a collection of “objects” or “things” called members of the set.
For example, the integers 1,2, 3, . . . form a set. Likewise the set of all rational
numbers (fractions) p/q form a set. If S is a set, and x is a member of S,
we write x € S. A subset of the set S is a set A such that every element of 4
is also a member of §; using symbols, (x € 4) = (x € S). The symbol =
denotes “implies.” When A is a subset of S, we write 4 < 5. Sometimes the
symbol A4 < S is used for what we denote as A < S. We can also define
equality of sets by stating that 4 = B means that A < B and B c 4;
that is, 4 and B have the same elements. The empty set, denoted ¢, is a
set with no members. For example, the set of integers n such that n2 = —1
is empty. The empty set F often mystifies students and it is indeed a strange
concept—don’t overplay its importance at this stage.

When specifying a set we often list the members in braces. Thus we write

1
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2 PREREQUISITES: SETS AND FUNCTIONS

N = {1,2,3,...} todenote the set of positive integers andZ = {...,—3,—2,
-1,0,1,2,3,. . .} for the set of all integers. An example of a subset of N is
the set of even numbers and is written as

A= {246, ..}= {xeN|xiseven} = N.
We read {x & N|x is even} as “the set of all members x of N such that x

is even.”

At this point, there is a notational distinction of which we should be aware.
Let S be a set. For a € S, {a} denotes the subset of S whose members consist
of the single element a. Thus {a} = Swhileaes.

For a general set S and for Ac S and B = S, we define AuB=
{xe8 [ xe Aorxe B}, which is read “the set of all x € S which are members
of A or B (or both).” The set A U Bis called the union of A and B. Similarly,
one can form the union of families of sets. For example, let A;, 4,, ... be
subsets of S. Then we define Ug, 4= {xeS|xe 4, for some i}. This
union is also written |J {41,42,43- - J. Note that 4 U B is the special
case with 4, = 4,4, = B, and 4; = & fori > 2.

Similarly, one can form the intersections A N B = {xeS|xeA and
xeB},and (N2, 4= {xeS|xe A4, for all i}. Figure 0-1 presents these
operations diagrammatically.

For A, B = § we form the complement of A relative to B by defining

) B\A = {xeB|x¢ A},
where x ¢ A means x is not contained in A. See Figure 0-2.

The reader can prove (as is done in Example 1 below) that B\(4, U 4,) =
(B\4,) n.(B\4,) and that B\(4, N 4,) = (B\4) Y (B\A,) for any sets
A, A, B S, This is an example of a “set identity.” Other examples are

given in the problems.
For sets A, B define the Cartesian product of A and B by A x B=

{(a)|acAand be B}. It consists of the set of all ordered pairs (a,b). with
a e A and b e B. See Figure 0-3.

S  4nB

'O

@ (b) (c)
EIGURE 0-1 {a) Subset. (b) Union. (c) Intersection.

PREREQUISITES: SETS AND FUNCTIONS 3

A function f: A — B is a “rule” which assigns to each ae A a specific
element of B, denoted f(a). One often writes a — f{a) to denote that a is
mapped to tl'le element f(a). For example (Figure 0-4), the function f(x) = x*
may be specified by saying x — x?. Here 4 = B is the set of all real numbers

Note: In this book the terms ‘“mapping,” “map,” ‘“‘function,” d
“transformation” are all synonymous. ’ i

FIGURE 0-2 Complement.

¥

R X
A a

FIGURE 0-3 Cartesian product.

FIGURE 0-4 Function.




4 PREREQUISITES: SETS AND FUNCTIONS

x.f(x))
M \ Graph of f
@) =7
B = AXB
s }
£ L
A x

FIGURE 0-5 Graph of a function.

For a function f: A — B, the set A is called the domain of f and B is called
the target of f. The range of f is the set f(4) = {f(x) e B| x € A} which is
a subset of B. The graph of f is the set {(x,f(x))e 4 x B | xe A}, as in
Figure 0-5. _

Someone paying careful attention to Jogical foundations may object
to using colloquial language such as “rule” and would be happier to define
a function from A to B as a subset of 4 x B with the property that any
two members of the set with the same first element are identical; that is,
the first element x determines the second, f(x). See Figure 0-5.

A function f: A — B is called one-to-one (also called an injection) if*
whenever a, # a, then f(a,) # f(a,). Thus a function is one-to-one when
no two distinct elements are mapped to the same element.

An extreme example of a function which is not one-to-one is a constant
funetion, a function f: A — B such that fla,) = flay) for all ay, a, € 4.
See Figure 0-6.

We say f: A — B is onto or is a surjection when, for every b € B, there
is an a € A such that f(a) = b, in other words when the range equals the
target. It should be noted that the choice of A and B is part of the definition
of f, and whether or not f is one-to-oné or onto depends on this choice.
For example, f(x) = x* is one-to-one and onto when A = B and consists
of all real numbers x such that x > 0, is one-to-one but not onto when 4
is all those x such that x > 0and Bisall x, and is neither when both 4 and B
are all real numbers' x. :

Forf: A - BandD < A,welet f(D) = {fd) e B|deD},andforC = B,
define f~1(C) to be the set {ae A| f(a) e C}. We call f(D) the image of
D and f ~!(C) the inverse image or pre-image of C. ‘

" If f+ A — B is one-to-one and onto, then from the definition it is not hard
to see that there is a unique function, denoted f ~1. B — A (not to be con-
fused with f~1(C) above or 1/f) such that f(f~Y(b)) = bfor all be B and
f~Y(f(a)) = aforallae A. Wecall f ~1 the inverse function of f. A one-to-one

* It is a convention that in definitions, “if” stands for “if and only if.” The latter is often written
“iff,” or <. Of course in theorems it is absolutely necessary to distinguish between A, “only

if,” and “iff.”

PREREQUISITES: SETS AND FUNCTIONS 5

FIGURE 0-6 Constant function.

a;x;l f)l:lto map is also called a bijection or a one-to-one correspondence
E arning: We can form f~Y(C) .for a set C < B even though f might not'
e Tc‘)lile-to-onef or onto. For practice with these operations, see Exercise 3]
- e map fi A~ Asuch thflt f (x).= x for all x € 4 is called the identity

pping on A. One should distinguish the identity mappings for different
sets. I.*“or example, one sometimes uses notation like I, for the identi
mapping on A Clearly, I, is one-to-one and onto. * o
Nc?w consu}er two functions f: 4 — B and g: B — C. The composition
lgfoffx :1_)—-»2C is defined by g o f(a) = g(f(a)). See Figure 0-7. For example, -
: x*andg:x+—x + 3, thengo f: x— x + 3and fog: x s 3;
(here A4, {3, and C consist of all real numbers x). g ' *+3)
Spmetxmes we wish to restrict our attention to just some elements o
;‘thh a fv:mctlon is defined. This is called restriction of a function. Morlt:
formz}lly, if we have a mapping f: 4 - B and D < A, we consider a new
‘;r;ctl?;l denoted f | D.: D — B defined by (f | D)(x) = f(x) for all x e D.
orfci‘aD j:r L eD.the restriction of f to Q, and also say that f is an extension
discussi;ms_ importance of these notions will become obvious in our later
{ai\aset A ;s }ce;(l)lrec: cf;ét?nitf we canAdisplay all its elements as follows: 4 =
N PP eger n. A set which i ite i infini
For examp.IeB the set of all positive integers N l=s ?f,tZﬁmt}e ilss :: lilr?gx:i’;j:’:tte '
. In examining examples it may be difficult to decidé if one infinite set If ,
more elements than another infinite set. For instance it is not clear at fi ai
if there are more rational or irrational numbers. To make this notion precizz

)

FIGURE 0-7 Composition of mappings.
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6 PREREQUISITES: SETS AND FUNCTIONS

we say that two sets 4 and B have the same number of elements (or have the
same cardinality) if there exists a mapping f: 4 — B which is one-to-one
and onto.

If 4n infinite set has the same number of elements as the set of integers
{1,2,. . .}, it is called denumerable. A set that is either finite or denumerable
is called countable. Otherwise, a set is called uncountably infinite, or just
uncountable. An example of an uncountable set is the set of all numbers
between 0 and 1. (We shall prove this in Chapter 1).

Let S be a set. A sequence in S may be viewed as a mapping f: N =5,
where N = {1,2,. . .}. Thus we have associated to each integer n an element
of S, namely f(n). One often suppresses the fact that we have a function by
simply considering a sequence as the image elements, say, X, X, X3, . . . OF
alternatively, just writes “the sequence x,” or {x.} ;. By a subsequence
of x;, X,, . . . We Inean a Sequence yy, ¥z, « « - such that each y, occurs in the
set {x,X,,. ..} and if i <j then y; = xp, y; = X where | < m. In other
words, a subsequence is obtained by “throwing out” elements of the original
sequence and ordering naturally the elements which remain.

Worked Examples for Introductory Chapter

1. Forsets 4, B, C < S, show that

- An{BuC)=AnBudn().

{Distributive law.)

Solution: The method is to show that each side is a subset of the other. So first
take.x € A A (B U C). This means x is a member of both 4 and B u C. Therefore,
xisin A and x is in either B or C.If.xe B, then xe 4 N B, while if x € C, then
xeAn C Hence xisineither AnBor AnC; thatisxe(dn Bju(dn C), so
An(BUC)c(4dn B)u(dnC). Now let xe(dnB)udnC)thus x is in
either A~ BorisinAn C.Hxe A B, then x is in 4 and B, and in particular,
xisindand Bu C,s0xe A n (B v C). Similarly, if xe 4 n C, we conclude that
xedn(BuUCG).Hence AnB)u(AnC)c 4 ~ (B v C), and so we now have
equality. This can also be verified diagrammatically as in Figure 0-8.

2. Show thatfor 4,B < §,
Ac B <« S\A>S\B.
Solution: First we prove that 4 = B implies S\B = S\4. Assume A < B and

x & S\B. Then x ¢ B and therefore x ¢ 4 (for x € 4 = x € B), hence x & S\A4, proving

that S\B = S\4. To prove the converse, suppose S\B « S\4 and xe€ A. Then

x ¢ B implies x € S\B which in turn implies x & S\A and hence x ¢ 4, contradicting

the hypothesis; therefore x € B, and 4 «— B.

3. Let f(x) = x?(defined on the set of all real numbers) and B = {y|y > 1}. Compute

J=HB).

EXERCISES FOR INTRODUCTORY CHAPTER 7

ANBUCI=ANBUMNC)

FIGURE 0-8 Distributive law.

Sohltlon. By deﬁnltloﬂ f (B) consists Of all X Such that f(.x € that 1s, ai
" ) B, h 18, I x
SuCh that X 2 1. Ihls happens lﬂ X > 1 orx € — 1. IhuS B) = X

»; 4. Let A be a set and let 2(4) denote the set of all subsets of 4. Prove that 4 and P(A)
do not have the same cardinality.

Solution: _ The reasoning here is a little tricky and is similar to various “paradoxes”
one finds in set theory (sec Appendix A for further details). The result here is due
to the w?rk of G. Cantor. Suppose that we have a bijection f: A — P(A); we shall
then derive a contradiction. Let B = {x & 4| x ¢ f(x)}. There exists a y’e A such
that f(y.) = B since f is onto. If y € B, then by definition of B we conclude that
» ¢ B. Similarly if y ¢ B, then we conclude that y € B. In either case we get a con-

tradiction. Actually the argument shows that i
there does not exist a functi
J: A — P(A) which is onto. v

Exercises for Introductory Chapter

¥.1. The following mappings are defined by stating f(x), the domain A, ind the range B.
For 4y < A4 and B, < B, as given, compute f(4,) and f~(B,).

@) flx) = x2, = {-1,0,1}, B =all real numbers,
” Ay = {"1,1}7 By = {0,1}
_[x ifxz0
f(x)'_{——xz, ifx<0
A = all real numbers = B, ,
Ay =allx > 0, B, = {0}
(c) 1, ifx>0
fix) =40, ifx=0
-1, ifx<0

A = B = all real numbers,
Ay = By = all x with -2 < x < 1.

;’-‘ s 2. For the functions listed in Exercise 1, determine if they are one-to-one or onto
(or both).
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23 Letf:4— Bbea function, C,, C; = B,and Dy, D3 = A. Prove
@ f~UC; v Cy) = ["HCY U STHED

(b) f(Dy U Dy) = J(Dy) ¥ f(D3)

© SJHC nCy) = fHC) N (o)

(d) f(D, A Dy) = (D) 0 [(D2):

4. Verily the relations in Exercise 3 for the functions in Exercise 1 and the following
sets: .
(a) C, =allx >0, D, = {~L1},
C,=allx <0, D, = {0,1};
(b) C,=alx>0, D1=a11x>0,
C,=alx<2, p,=allx> —1; ‘
¢ C, = allx =20, D, = all x, :
C, =alx> -1, D, =allx > 0; ,

Prove a function f: A — B is one-to-one iff for all ye B, f~*({y}) contains at
most one point iff f(D; n Dy) = f(D,) n f(D;) for all subsets D,, D, = 4. |©
Develop similar criteria for “ontoness.”

5.

Show that the open interval* J0,1[ = {x |0 < x < 1} has as many elements as
there are real numbers, by setting up a one-to-one correspondence between JLAY
and the real numbers R. i

1 6.

#7. Let A be a finite set with N elements, and let #(4) denote the collection of all v

subsets of 4, including the empty set. Prove that 2(4) has 2V elements.
8. ..} is countable.

3 9.

@010.

Prove that the set {...,—2,— 1,0,1,2.3,.
Show that if 4, 45, .. . are countable sets, sois 4, U A3 U

Let < be a family of subsets of a set S. Write | J o for the union of all members of |
o7 and similarly, define () #. Suppose B > . Then show | J & = |J % and

ﬂ.@.cﬂﬂ. .

»11. Let f: A— B, g: B> C, and h: C—D be mappings. Prove that ho(feg) =
(hof)ogl(thatis, composition is associative). i

{ 12. Prove that amap f: 4 — B is a bijection iff there is a map g: B — A such that
[ og = identity and go f = identity. Show also that g = f -1 and is uniquely
determined.

s13. Letf: A - Bandg: B — C be bijections. Then (g o f)is a bijection and (gof)?
f~1og~*. [Hint: Use Exercise 12.] ‘

# 14. Let of be a collection of subsets of a set § and & the collection of complementary
sets; thatis, Be Ziff S\Be . Prove de Morgan’s laws:
(@ S\U & = N %
b S\ = U=

Here {J & denotes the union of all sets in o/ (see Exercise 10 and page 2). For

* In this text, open intervals are denoted as Ja,b[ rather than (a,b). This European convention
avoids confusion with ordered pairs.

EXERCISES FOR INTRODUCTORY CHAPTER 9

example, if & = {4,,4,}, th
B eonde S, iy g A0 A= B0 Bag) and

¢15. Let 4, B = §. Show that

A X B = —
*16. Show Ged=g or B=g.

@) (4 x Byu (4 x B)

=(Aud
(b)(AXB)n(A’xB’)_—_( VA x B

(4N 4) x (Bn B).

217. Letf: 4 — B,g: B be gi .
” ,g: B — C be given ma . ’ s
11~ 1(C). ppings. Show that for C' = C,{g o f)~YC)



Chapter1

The Real Line and
Euclidean n-Space

A thorough Iznowledge of the real line and n-space is indispensable
for a precise treatment of the calculus of functions of several variables as
well as for a clear understanding of it. Much of this chapter may appear to
be review, the material perhaps having been covered in previous mathematics
courses. However, our discussion will be more rigorous and will give some
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follows:

(I) Addition axioms. There is an addition operation *“+ such that for
all numbers x, y, z, we have
(@) x + y = y + x (commutativity)
(i) x + (y + 2) = (x + y) + z (associativity)
(iii) there is a number O such that x + 0 = x (existence of zero)
(iv) for each x there is a number w denoted —x such that x + w = 0
(existence of additive inverses). ‘

Multiplication axioms. There is a multiplication operation ‘-’ such that
(i) x-y = y- x (commutativity)

@) x-(y-2) = (x*y) z (associativity)

(iii) there is a number 1 s O such that 1 - x = x (existence of unity)

(iv) for each x s 0 there exists a number v such that x-v =1

(existence of reciprocals), one writes v = x~! and yx~! = y/x
V) x-(y + 2) = x-y + x - z (distributive law).
Any set or ‘‘number system” with operations + and - obeying these rules

is called a field. For example, the rationals are a field but the integers are not.
* From now on, we will just write xy for x - y.

(IXI) Order axioms. There is an ordering <’ (more precisely, a relation)
such that
) if x € yand y < z, then x < z (transitivity)

(i) (x < yand y < x) <> (x = y) (reflexivity)

(iii) for any two elements x, y, either x < y or y < x (trichotomy)
v)ifx< y,thenx +2<y+z

(v) 0 < xand 0 < y implies 0 < xy.

- Asystem obeying characteristics (I), (1), and (I1I) is called an ordered field.
By definition, x < y shall mean x < y and x s y. Other familiar symbols
' may also be introduced. For example, the magnitude of a number x is |x|,
“defined to be x if x > 0 and —x if x < 0. The distance between x and y
_is |x — y|. The magnitude obeys the triangle inequality: |x + y| < |x| + [y|
_ as verified in Example 1 at the end of the chapter.
' From these axioms follow all the usual manipulative rules that we have
 lived with since high school. For example one can use the axioms to prove
“'that 0 < 1 (see Example 4 at the end of the chapter). The full details of the
- above axioms are not important for us to work out at this time and we shall
- just accept as valid without proof the usual rules of algebra with which we are
- -familiar.
. Now, it should be obvious that these axioms cannot be enough to uniquely
characterize the reals because the rationals also obey these axioms. Thus we
require another condition to ensure that limits of rationals are included in
he system.

further properties in preparation for later work.

1.1  The Real Line R

Let us begin with the main properties of real numbers. The reader‘sho.uld be
familiar with the heuristic (that is, intuitive) arguments which justify the
real numbers. Begin with the positive integers 0, 1,2,3,..., and thep
adjoin negativé integers and non-integral rationals. The S){stgm of regls is
obtained by adjoining to the rationals all the non-rational limits of rational
numbers. For example, the irrational number /2 is obtained as the limit
. of an increasing (or monotone) sequence X, with x? < 2 and x, ratlox.lal.
One might use a decimal sequence such as 1, 1.4, 1.41, 1.414, ....Itisa
well-known fact first proven by Euclid that ﬁ is not rational (see Exercise 2
at the end of this chapter). _ .
Now the question becomes, how do we carry out the above program in a
formal manner? Actually, the process is a little long but not difficult, so
we shall just provide an outline here. The first thing to do is to isolate the
important characteristics which we want the reals to possess. These are as

10
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-use it as our starting point. The proof is not difficult but is slightly laborious.
‘Existence of R can be done by verifying that the usual decimal expansions
“have the required properties.
As mentioned above, we do not wish to take too much time to work out
- all the detailed consequences of the axioms. However one of the “obvious™
‘consequences deserves special mention. Namely, the Archimedian property:
given any real number x there is an integer N such that N > x. (Here the
integers may be defined by 2=1+1,3=2+4+1,4=3+1, ...)
‘Tt is curious to note that this result depends on the completeness axiom and
cannot be deduced from the other axioms alone. The reader is asked to
prove the Archimedian property in Exercise 30 at the end of the chapter.
The completeness axiom can be put into several other very important
“equivalent forms. In order to state these, we shall need some further basic
terminology.

In order to state this condition, a few additional definitions concerning
sequerices are needed. Let x, be a given sequence of numbers. We say x,
converges to x if for any number & > 0 there is an integer N such that
1%, —'x| < & for all integers n > N. This is written-as limit x, = x or
X, —» X asn— 0. e

The student has probably encountered convergence of sequences before;
intuitively it means that x, becomes arbitrarily close to x as n gets sufficiently
large. Later in Chapter 2 we shall study convergence systematically. For
now, it is just used to study the following completeness axiom.

The sequence X, is increasing (or non-decreasing) if x, < %, for all n,
A sequence x, is bounded if there is a number M such that |x,] < M for all
n=1,2,3....

1t is not hard to see that a sequence x, can converge to, at most, one point.
Indeed suppose x, converges to both x and y. Then |x — yh=lx - x, +
x, — y| < |x — X, + |x, — y| by the triangle inequality. If |x — y| >0
thenusing|x — y|/2asourg,wecanchoose N solargethatjx — x| <|x — yI/2
and |x, — y| < |x — y|/2 if n > N. Thus we would conclude [x — y| <
|x — y| which cannot be. Hence |x — y| = 0 and so x = y.

We now state the completeness axiom.

Definition 1. Let S < R be a subset of R. Thus § is just some
collection of real numbers (for example, all the rationals between 0
and 1). A number b is called an upper bound for § if for all xe S,
we have x < b.

A number b is called a least upper bound of S if first, b is an upper
bound of S and second, b is less than or equal to every other upper
bound of S. See Figure 1-1.

(IV) Completeness axiom. If x, is an increasing sequence which is bounded
above, then x, converges to some number x.

The plausibility of condition (IV) is seen by considering the increasing
sequence of decimal approximations: 1, 1.4, 1.41,1.414,. .., which converge
to /2.

A number system satisfying axioms (I) through (IV) is called a complete
ordered field. Condition (IV) is equivalent to the condition that a decreasing
sequence-bounded below converges. We see this by noting that (x, — x) <
(—x, — —x) (see Exercise 18 at the end of the chapter). We are now ready
for the statement which coordinates the previous discussion.

an upper bound

the least upper bound

FIGURE 1-1 Least upper bound.

| The set Jab[ = (a,b) = {xeR |a < x < b} is called an open interval
- and [a,b] = {xe R|a < x < b} is called a closed interval. :
 For example, the closed interval [0,1], the open interval ]0,1[, and
 all the rationals less than 1 all have a least upper bound of 1.
|~ Note: The least upper bound of S (also called the supremum of S) is
. denoted sup(S) or lub(S). ’
There can be at most one least upper bound for S. Indeed, if b and b’
| are both least upper bounds and since b is less than or equal to every
 other upper bound, b < b’ and similarly b’ < b, so we conclude that b = b'.
' Thus, we may speak of the least upper bound. _
A set need not have any upper bound. For example, the whole real number
ystem has no upper bound, and the positive integers have no upper bound.
/In the “degenerate” case of the empty set &, we regard any number as an
" upper bound. '

Theorem 1+ There is a “unique” number system called the real
number system which is a complete ordered field.

The real number system is denoted R. For the moment, + oo are nol
included in R. In Theorem 1, ‘“uniqueness’” means that any two systems
satisfying (I)-(IV) can be put into a one-to-one correspondence which is
compatible with +, +, and <. By compatibility with +, for example, we
mean that the number in the second system corresponding to the sum of the
two numbers from the first system is the sum of the corresponding two
numbers in the second system. We omit the proof of Theorem 1,* and rather

* The interested reader can find a proof outlined in, for example, L. J. Goldstein, Abstract
Algebra, Prentice-Hall (1973), Chapter IV.
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Observe that if b is an upper bound for the set S and b e S, then b is the
least upper bound. The proof of this is very simple. It must be shown that
if d is any upper bound for S, then b < 4. But b € S and d is an upper bound,
so b < d as required.

A useful alternative to the definition of least upper bound is stated in
Theorem 2 and is sometimes easier to apply.

Theorem 2. Let S = R. Then be R is the least upper bound of S
iff b is an upper bound and for every ¢ > 0 there is an x € S such
that x > b — &.

The proof is found at the end of this chapter. But the theorem should
be pretty obvious because b sits just at the “top” (that is, to the “right”) of
the set S and there are no “gaps” between it and the set S, so for any £ > 0
we can take x just below b within a distance ¢. [ Warning : This sort of argument
is a plausibility argument intended to give you a feel for the statement—do
not confuse it with a rigorous proof.]

If § is not bounded above (has no upper bound), we shall say that sup(S)
is infinite and write sup(S) = + co. Similarly, a lower bound for a set S
is a number b such that b < x for all x € S. Also, b is called a greatest lower
bound iff it is a lower bound and for any lower bound ¢ of S, ¢ < b. As with
least upper bounds, greatest lower bounds are unique if they exist. The
greatest, lower bound is sometimes called the infimum and is denoted inf(S
or glb(S). As in Theorem 2, a number c is the greatest lower bound for a set S
iffcisalower bound and forevery e > Othereisanx e Ssuchthatx < ¢ + ¢

Also, if S is not bounded below, we write inf(S) = — oo. , e

Another notion we need is that of a Cauchy sequence.

Definition 2. A sequence x, in R is called a Cauchy sequence
if for every number ¢ > 0 there is an integer N (depending on ¢),
such that |x, — x,| < ¢ whenevern = Nandm > N.

¥

This condition means intuitively that the sequence “bunches up”; that

"is, all the elements of the sequence are arbitrarily close to one another

sufficiently far out in the sequence.
Ifit is true that x, converges to x, then x,, is a Cauchy sequence. Indeed, given

& > Ochoose N sothat |x, — x] < g/2ifn > N.Then,forn,m > N, wehave

%, — %l =%, — x + x — x,) < |x, — %] + |x — x| < &2+ &2 =g,
which proves our assertion. The converse of this statement appears in
Theorem 3. Here we have used the triangle inequality |y + z| < |y] + |2
The special case ja — b| < |a — ¢| + ¢ — b] is very useful, as in the above
instance. The next theoremagives some basic properties of real numbers.
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Theorem 3.
(i) Let S be a non-empty set in R which has an upper bound.

Then S has a least upper bound in R.

(i) Let P be a non-empty set in R which has a lower bound. Then
P has a greatest lower bound in R.

(iii) Every Cauchy sequence x,, in R converges to a number x in R.

This result should also be fairly apparent. Indeed, if a bounded subset of R
had no least upper bound, there would be a *“hole” at the top of thesetand a
sequence of members of S increasing toward that hole would ?_ot.converge

" to an element in R. Similarly, we must have (ii). Condition (iii) is seen as
follows: If we ignore the first N terms of a Cauchy sequence, we know that
the remaining terms will be bunched together. As we disregard more and
more terms, the remainder of the sequence becomes more tightly grouped
and squeezes down to some limiting number, the limit of the sequence. To see
more precisely how this is done requires more care and so the actual proof
is our only recourse. . .

Using the methods of the proof we give, it is not too difficult to'show that
conditions (i), (ii), (iii) are each equivalent to the completeness axiom for an
‘ordered field. . ‘

This concludes our brief discussion and review of the real line. Further
properties and practice are found in the worked examples which follow and

at the end of the chapter.

ExampL 1. LetS = {xeR|x? + x < 3}. Find sup(S), inf(S).

Solutivx:; Consider the graph of y = x? + x (Figpr‘e 1-2). From
elemen .ry calculus we see that for x = —1/2, y is a minimum. Thus S
may be pictured as shown in Figure 1-2. The sup and inf clearly occur when

3>

Py T

1, 1
-4 -D

FIGURE 1-2
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x% + x = 3, or from the quadratic formula when

-1 /TH12 (-1%./13)
= 2 =T 2
Thus
sup(S) = M_I_.B.i:_i), inf(S) = :(_\./_§+_1.).

=\/§,x2=«/2+xl,...,x,,=«/2+x,,_1,....

Solution: 'We shall show that x, is increasing and bounded above and
this will prove the assertion. Note that each x, is non-negative. First, then,
we must show r, = x,,, — X, = 0. Let us do this by induction. Clearly, it
holds for n = 0. Suppose it is true for n — 1; then

-—x,,=ﬁ+x,,—\/2+x,,_1=

ExampLE2. Letx, =0,x,;
Show that x, converges.

Xy =

‘\/2+xn+'\/2+xn—1

Xy

ry = X+ 1

— Tyt
—(\/§‘+xrx+\/i+xn~l),

$o r,_; = 0 implies r, > 0 and therefore x, is increasing. Now we want to
show that x, is bounded above. For example, one can prove by induction
that x,, < 5. Clearly, x,, x; < 5. Suppose x,_; < 5. Then

Xe =2 F X S2F5</T<5,

and therefore x,, is increasing and bounded above, so it converges.

ExaMPLE 3. Let x, be a sequence of real numbers such that |x, — x,,,| <
1/2". Show that x, converges.

Solution: 'We shall show that x, is a Cauchy sequence and the result then
will follow from Theorem 3 (iii). We can write by the triangle inequality,

1y = Xl S 1%0 = Xugg] + [Xpag — Kol 0 Xgrmt = Xnrid
1 1
Sumt Tt o
2

(sincea + ar + ar? + - =qa/(l —N)if0<r < 1).
Thus |x, — X} < 1/2" Lif m > n, and given & > 0, just choose N so
that 1/2¥~! < ¢. Hence we get a Cauchy sequence.

Wi
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Example 4 is inserted to back up our claim that the usual rules of algebra
all follow from the axioms. In the exercises, conclusions like these may be
taken for granted.

ExampPLE 4. Use the axioms for an ordered field to prove
{(a) Negatives are unique;
(b) Ox = O for all x;

©) (=x)(—y) = xy;

d 0 < 1.

Solution: For(a), wenotethatifx + w = Oandx -+ y = 0, then (adding
ytox+w=0),y+(x+w=y+ 0=y By condition I(ii) the left
side is (y + x) + w=0 4+ w =w, so y = w. Thus the symbol —x is
unambiguous. .

For (b), we have 0 + 0 = 0 and so by II(i) and II(v) we obtain 0 x =
(0 + 0)x =0-x + 0-x. Adding —(0 - x) to each side gives 0 x = 0.

For (c) we first claim (—x)y = —(xy). Indeed, by using II(i) and II(v},
(=x)y + xy = (~x + x)y =0-y =0 by (b). Next, (—=1)(—1) =1 for
(1 —=1)(=1)=0-(—1) =0 and the left side is (1)(—1) + (—I)-1) = -

~1 4+ (—=1)(=1), and by adding 1 to each side we get (—1)(—1) = 1.
*Then since we have proved (—1)(x) = —(1x) = —x, we get
(=x)(=y) = (= Dx(=Dy = (=)= Dxy = 1xy = xy .

~ Finally, for (d), by III(iii) the only other possibility for 0 < 1is 1 < 0.
Adding —1 gives 0 < —1 (using ITI(iv)). Then using x = —1,y = —1in
1II(v) gives 0 < 1 since (—1}—1) = 1. Hence we must have 0 < 1, since
0 1.

ExampLE 5. Prove that I/n — Qas#n — c0.

Solution: According to the definition, given any number ¢ > 0, we

" must prove that there is an integer N such thatif n > N then [1/n — 0] <_s.

It will be so provided that 1/N < ¢, so it is only necessary to choose N > 1/,
which is possible by the Archimedian property.

N ;

ExampLE 6. Show that " —0asn — .

241
Solution: We must show that @: gets small as n gets large.

N

nl

\/nz'—%-l f— \/_n

n!

is as.follows:

NN,

T -1 n—l

We can estimate how big
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2 ‘
Thus given & > 0 choose N such that N > \/Tﬂ + 1. Then n > N implies x= (%, % %)

i ) 2 2
0< s < \/_ < \/_ < g. This proves the assertion.

n! Sh—1 N-1

xty=(x +y,% % +3)

Exercises for Section 1.1 }
1. Let S = {x|x* < 1}. Find sup(S). Is S bounded below? 0
¢ 2. In Example 2, let 4 = limit x,. Argue that 4 = . /2 + A, that is, that A is a root of v ,

A% — 1 — 2 = 0. Find limit x,,. ! .

n=*oc

/
1 Y= (0Y,0)

%

2 3. Show that 3"/n! converges to 0. it —

. 4. Consider an increasing sequence x, bounded above and converging to x. Let
S = {x,|n =123, ..}. Argue that x = sup(S). i

¢ 5. Let x, = ./n* + 1 — n. Compute limit x,,.
n-+co

#6. Let x, be a sequence such that |x, — X,.4| < 1/n. Do you think x, has to converge?

FIGURE 1-3 Addition and scalar multiplication.

, and
+7. If P = Q = Rand P and Q are bounded above, show that sup(P) < sup(Q). | . R foreeR .
The geometric meaning of these operations are reviewed in Figure 1-3

in the case of three-space, n = 3.
! For the next theorem the reader should recall the definition of a vector
space.

1.2 Euclidean n-Space R”

Theorem 4. Euclidean n-space with the operations of addition and

Throughout this book we shall be working with one-, two-, or three-
dimensional Euclidean space. However, in many important applications, scalar multiplication previously defined is a vector space of dimension n.
higher dimensional spaces arise as well. Therefore, it is important to treat i Th ) . ]
the general case, but we usually fall back on the case of one-, two-, or three- ‘ Hhe proof is a straightforward <.:heck of the axioms for a vector space,
space for visualization and intuition. : } which we sl}all leave for the student in Exercise 16, p. 30. This theorem should,
Let us begin with a formal definition. ~’ beno surprise. Aftc_:r all, a vector space is an abstraction of the basic properties
| ; : of \{ec:‘tf)rs in eucfhdean space. We can show that R* has dimension n by
Definition 3. Euclidean n-space consists of all ordered n-tuples of ' e{d(])lbltmg a basis with n vectors, for example, the standard basis {e; =
real numbers and is denoted R". Symbolically, s (1,0, . .,0), e, = (0’1{0’- o) e, = (0,0, 0,1}
} ! In the standard basis, the components of x = (x,,. . .,x,)arejustx;,...,x,.

‘ 1 ¥n another basis for R*, the components would be different. This means that

if e, ..., e, denotes the standard basis, x = Y"__ xe, but if f, i

. . n . . i=1 T LoxeeoJn

is anothern basis, x = Zi= | Yififor possibly different numbess y, ..., y,.
Following are some fundamental operations in R".

R" = {(X1- - %) | X15r - Xn € R}

Thus R" is the cartesian product of R by itself n times, and can be
written " = R x -+ x R,
Elements of R" are generally denoted by single letters which stand
for n-tuples x = (xy,. . -,X,), and we speak of x as a point in R".
Addition and scalar multiplication are defined in the usual way:

Definition 4. The length or norm of a vector x in R" is defined by

" 1/2
lxll = (Z X?> ,

(Kpoe v %) F Dpoe o o¥a) = Kp & Proeoe %n + V) =
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where x = (X;,. . -»X,). The distance between two vectors x and y
is the real number defined by

. n 1/2
d(x,y) = llx =yl = {;(xi - y;)z} .

The inner product of x and y is defined by
ooy = D
=1

Thus we have [x|* = {x,»). In R®, the reader is familiar with another
expression for {(x,y), namely, e,y = x| |yl cos @, where cos 8 is the

cosine of the angle formed by x and y. See _Figure 1-4. ‘
Now let us summarize the basic properties of these operations:

Theorem 5. For vectors in R*, we have
(I Properties of the inner product
() {xp1 + ¥2» = oy + {X,y2?
(i) {xoy) = alx,y) fora real
iii) (x,y) = {y:X)
((iu; éx,x) > 0and (x,x) =0iff x =0 .
() 1<x,901 < Nl iyl (Cauchy-Schwarz inequality).
. Note: (v) follows from (i)—(iv).

(II) Properties of the norm

@) x| =0
(i) x|l =0if x =0
(iii) [laxl| = lod lIx]| for real o« -

@) lx + yl < x| + 1y}l (triangle inequality).

FIGURE 1-4 Length and inner product.
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FIGURE 1-56 Triangle inequality.

(I1I) Properties of the distance
(i) d(x,y) = d(y.x)
(i) d(x,y) = 0
(i) d(x,y) = 0iff x = y
(iv) d(x,y) < d(x,2) + d(z,y) (also called the triangle in-
equality).

Each of these properties should be pretty obvious geometrically. For
example, (iv) in (IT) and (I1J) just expresses the fact that the length of one
side of a triangle is less than or equal to the sum of the lengths of the other
sides (Figure 1-5).

A set with a function d obeying rules (III) is called a metric space. A vector
space with a norm obeying rules (II) is called a normed space, and a vector
space with an inner product obeying rules (I) is an inner product space. As
we shall see in the proof, each of these sets (II) and (III) of properties follows
from the set of properties above it.*

The reader will recall from linear algebra the notion of a linear subspace.
In particular, an (n — 1)-dimensional linear subspace of R" is called a
hyperplane. An affine hyperplane is a set x + H, where H is a hyperplane
and x € R*; x + H means the set of all x + y as y ranges through H; thus
x + H = {x + y|y e H}. See Figure 1-6.

Finally, generalizing the concepts from R*, we call x,y € R* orthogonal
iff {x,y> = 0. Two subspaces § and T are orthogonal iff {x,y) = 0 for all
xeS and y e T. Furthermore, if in addition, S and T span R", they are
* The famous inequality of I(v) should, for historical reasons, be called the Cauchy-Bunyakowski-

Schwarz inequality, although it is not uncommon to omit the Russian name in English writings
and to omit Schwarz's name in Russian works.
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%3 *3

m3

FIGURE 1-6 Hyperplane and affine hyperplane.

called orthogonal complements. This will occur iff S and T are orthogonal
and the sum of their dimensions equals n (Exercise 20). We define S* =
{yeR"|<x,y> = Oforallxe S}. Then it is not difficult to see that S ar§d S
are orthogonal complements. We shall not require too much of this linear
algebra of R" in our work in addition to these basic concepts, so further
discussjon is not necessary here.

ExampLE 1. Find the length of the line segment joining (1,1,1) to (3,2,0).

Solution: This length is the length of the vector (3,2,0) — 11,10 =

(2,1, 1) which represents the vector from (1,1,1) to (3,2,0). The length is
1@, =D = /22 + 12 + (-1 = /6.

ExampLE2. In R3, find the orthogonal complement of the linex =y = z/2
(or x; = x; = x,/2 in different notation).

Solution: This line, call it I, is the one-dimensional subspace s;.)anned by
the vector (1,1,2) (see Figure 1-7). The orthogonal complcn}ent is a plane
(through the origin since itis a subspace) and so has an equation of the form

Ax + By +Cz =0
that is,
<(A’B,C)1(x:}’az)> = 0 k]
that is, (4,B,C) is normal to the plane; but (1,1,2) is a vector perpendicular to
the plane so the orthogonal complement sought is the plane

x+y+22=0.
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X+y+22=0

y
x 1
FIGURE 1-7
Exercises for Section 1.2
el If |x + y] = x|l + lyll, argue geometrically that x and y should lie on some

line through the origin.
+ 2. What is the angle between (3,2,2) and (0,1,0)?

» 3. Find the orthogonal complement of the plane spanned by (3,2,2) and (0,1,0) in R*.
©4, Describe thesets B = {xe R*| x| < 3}and @ = {xe R*| x| < 3}.
¢ 5. Find the equation of the line through (1,1,1) and (2,3,4). Is it a linear subspace?

Theorem Proofs for Chapter 1

Theorem 2. Let S < R. Then b e R is the least upper bound of S iff b is an upper bound
and for every ¢ > 0 there is an x € S such that x > b — &.

Proof: First, suppose b = lub(S) = sup(S) and ¢ > 0. We must produce an xS,
such that b < x + &. If there were no such x, we would have b > x + ¢ for every
xeS, that is, b — ¢ = x. Thus b — ¢ is an upper bound strictly less than b and
therefore b.is not the least upper bound, which contradicts our hypothesis. )

Conversely, suppose b satisfies the given condition. Let d be an upper bound of S.
According to the definition of sup(S), we must show that b < 4. Suppose in fact, b > d.
Lete = b — d. Thend = b — eandd > xforallx e Simpliesb — ¢ = xord = x + g,
and so our condition fails. Thus the supposition that b > 4 is wrong, and we may then
conclude that b < d as required. This completes the argument.

Note: In this proof, we found it convenient to use the following basic principle of
logic: showing that a statement P implies a statement @ (in symbols P = Q}is equivalent
to showing ~Q = ~P where ~( is the negation of Q. We call ~Q = ~P the
contrapositive of P = Q, whereas Q = P is the converse.
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Theorem 3.
(i) Let S be a non-empty set in R which has an upper bound. Then S has a least upper
bound in R.
(ii) Let Pbea noh-empty set in R which has a lower bound. Then P has a greatest lower
bound in R.
(iit) Every Cauchy sequence x, in R converges to a number x in R.

Proof* (i) Since S # & wecan choose some x, € S. Letus writey = § if y is an upper
bound of S. Now pick the smallest integer N such that N> 1 and x4 + N = S.
Such an integer exists because S is bounded above. Let x, = xq + N — 1. Thus
x; 2 Xo and there are elements of S greater than x, but none greater than x, + 1.
Similarly choose the smallest integer N, > 1 such that x; + N,/2 > § and let x; =
x, + (Ny — 1)/2. If the reader will draw a picture of x, and x, everything should
become clear. Note from your picture that N, is either 1 or 2. Inductively define
X, = Xpy + (Nyoy — 1)/2n where N,., is the smallest integer such that x,., +
N,_/n = S;jthusN,_,is1,2,...0r . Thus there areelements of S > x,and noelements
of § are > x, + 1/n. Furthermore xp < X; < X, < - - so that x, is an increasing
sequence bounded above.

Now we can apply the completeness property of R to deduce that x, — y for some
y € R. We shall show. that y is the least upper bound for S. First, let us demonstrate
thatitisan upper bound. Suppose thatx € Sandx > y.Selectnsothat0 < Im<x—y
which is possible, since i/n—+0asn— . Thus, x is an element of S greater than
x, + 1/n, which cannot happen by the way we chose x, above. So x < y, and y is an
upper bound. By Theorem 2, it remains to prove that for any given ¢ > 0 there is an
x €S sothat y < x + e. Choose n such that y < x, + & which is possible as x, — y.
By constriction, there is an x € S, with x 2 x,. Thus y < x, + & € x + & and the
proof of (i} is complete. ’ .

(i) Consider the set —P = {—x | xeP}. By (i), —Phasa Jeast upper bound ce R
(— P is bounded above because P is bounded below). Also, one easily sees from the
definition that —c is the greatest lower bound required. (See Exercise 17 for another
proof.) . .

(i) Since the completeness axiom implies (i) and (i), as we just demonstrated, we
can make use of them to prove (iii). Thus let x, be a Cauchy sequence in R. For any
integer M > 1, consider the set

{XpaXpg e 1 X0 4250 - 3
(the “tail” of the sequence).

First, we show that this set is bounded above and below. Choose ¢ = 1. Thereisan N

so that n, m > N implies lx, — X, < 1. Thus all members x,, are a distance <1 from
xy for ni > N. Since this omits only a finite number of terms (%y,X2,- - -Xy), We obtain
our result (drawing a picture may help here).

Now, from what we showed in (i), Sup{Xy,Xpr 150 - -} EXISLS; call it A,,. This sequence
{ApoApraerr -} 5 2 decreasing sequence bounded below; Apy < Ay since Apr+g

is the sup of the set {Xpr4 1 Xar+20 - J © {XarXparse - )5 S0€ Exercise 7, p. 18. Thus
Ay converges to a point, say a € R. We shall prove that x, — a as well.

* This proof is a little difficult on first reading, and requires some time and experience to master.

1f it is not clear now, come back to it after completing Chapter 2.
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Given & > 0, we can choose N, so that 0 < 4, — a < g/3forn > N, since 4, — a

Because x, is a Cauchy sequence, there is N, such thatm,n > N,implies|x,, — x,) "< &/3

— 1 b ' )

Because A4, = sup{x,,%, 4, . -}, there is, by Theorem 2, an N, so that 0 < Ay, —
3

Xy, < &3, where N is the maximum of Ny and N, . If N i
; ; P : 5. If N is the largest of N5, N, and

fx, —al < |x, — xy )+ 1Ay, = xp| + Ay, ~d < &3+ 3 +63=2¢,

which proves the assertion.

We remarked earlier that (i), (ii), and (iii) are each equi

\ , (i), quivalent to the completeness
axiom for an ordere.d ﬁeI.d. We have shown one-half of the implication, nampely that
the ?ompleteness axiom 11Pplies (i), (ii), and (iii) for an ordered field. Exercise li will
outline the proof that (i), (ii), and (iii) each imply the completeness axiom.

Theorem 5. For vectors in R*, we have
(I) Properties of the inner product
() ayr + y2) = 0y + (6D
(ii) <x,apd = alx,y) forareal
(i) <x,p) = {y.x>
(iv) {xx) 2 0and{xx) =0iffx=10
) [<x, 2| < |Ix]| |yl (Cauchy-Schwarz inequality).

‘(II) Properties of the norm

@ lx| =0
(@) |x =0iffx =0
(iii) [ox]| = {o lx|| for real «

(iv) Ix + pIl < lIx| + |yl (triangle inequality).

(III) Properties of the distance
(0) dlx,y) = d(y,x)
(i) dx,y) =2 0
(i) dx,p) = 0iff x = y
(iv) dix,y) < d(x,2) + d(z,y) (also called the triangle inequality).

Proof: (I) Properties (i) through (iv) are easily verified from the definition of <, >.
We shall deduce propzerty (v) from (i)-(iv). Now, for any 1e R, 0 £ |Ax + y|? =
{x + yl,/lx + .y) = A {x,x) + 224x,p> + {p,y). Considered as a polynomial in 4,
we may locate its minimum at 1 = — {(x,p)/|lx||% (if x = O, the assertion (v) reduces to
0 < 0, so we can assume x # 0). Thus, in particular, )

Y :
< <_ 1[x[]2> {xx) + 2(—?;;—{3)(«\3)’) +

2
< (-—ﬁ’c’;i ) + Iy,

and (x,p>? < [|x||? | »|%. Taking the square roots gives the desired inequality since

JaF = lal.

that is
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(1) (i) and (i) follow directly from I(iv}, and (iii) from 1(3i). For (iv) we have, using Iv),
I + P2 = Cx + px + ¥y = (xxd + 2xp) + D
< Ix)? + 21K + 12
< Ixl? + 2 el Il + Il

= (Ixl + Iy
iving the required result. ' i .
& For 111, (i) holds, since lx — pfl = Iy — x| using IIii). Also, (i) follows from Ii(i).
For (iii) we use I1(ii). Finally for {iv) we use III(jii) as follows

dx,y) = Ix — yl = ltx — 2) + & =
< Jx =zl + Iz =yl
= d(x,2) + d(z,y) .

Notice how each succeeding set of properties is deduced from the previous set. @

Worked Examples for Chapter 1

1. For real numbers, prove that
(i) x <, —lxf < x
(i) x| Sa<e—a<x< a,wherea 2 0
i) |x =y < Ixl + [yl

Solution: '

() If x = 0, then {x| = x, while if x < 0, |x| = x, since x| > 0. In any case,
x < |x}. The other assertion is similar. o '

(i) I x > 0, then we must showthat0 K x K aw —as<x<a which is obvious.
Similarly, if x < 0, the assertion becomes (0 < —-x La)=(—a<x<a),
which is again obvious. Here the fact is used that f ¢ <0, 0 < x <y} =
0 =cx2zcp) - . )

(iii) By @), —Ixl < x < x| and —|y| € y < |yl Adding, we obta§n. — (|l .+ ) <
x +y < |6 + |3 Then, by (i), Jx + < xf + 1yl In ac}dltxon, this can be
proven by cases as we did (ii). Note that this is also a special case of Theorem
5, 1I(iv).

2. Le.t S be a set in R and x = sup(S). Show that there is a SEQUENCE X, , Xy, . . - such

that x, — x, and x, € S.

Solution: For each k, use Theorem 2 to find an x, such that x, < x < x, + 1/k.

Then x, — x, since for a given & > 0, we choose N = l/g; then k> N implies .

x<x<x+eor|x—xl<e

JVwmand zg, ..oy 2y, show that

s 3. For numbers Xy, .« ., X Vi + + +

(Sore) <(EAENED
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Solution: ‘The CBS inequality (Theorem 5, I(v)) says that

(Z wp)? < (Z W?)(Z)’tz) .

Applying this to the numbers w, = x;z; and y, gives

(Z xpz) < (Z(x,z,)z)(Zy,z )

Applying this again to x7, 27 gives :
Ot < (Y )
(T ety < (T
(3 ki < (Y 2y 223 B)

Squaring both sid¢s, the result is obtained. (We have used the fact that if a, b > 0,
thena < biff a® < %)

or

and so

¢ 4. Suppose x € Rand x > 0; show that there is an irrational number between 0 and x.

Solution: 1If x is rational, then since ﬁ is irrational, so is x/ﬁ (why?) and is
between 0 and x. On the other hand, if x is irrational, then x/2 is irrational (why?) -
and lies between 0 and x.

o 5. Recall that one may define e* by e* = 1 -+ x + x%/2! + x*/3! + ---. (By the
ratio test, this series converges for all x & R. Hence this definition of ¢* makes sense.)
Show that e = e* is an irrational number.

Solution: Suppose that e = a/b for integers a and b. Let k be an integer, k > b,

andleto = k!(e — 1 —1/21—1/31 — - -+ 1/k!) so that « is a non-zero integer as well.
However, sincee = 1 + 1/2! + 1/31 + -+, we have

LI ! +

TrT1 Tk Dk +2

< 1 + 1 + e

Shk+ 1 (k+ 1)?

1

Tk
(The last equality follows using the geometric series y + y* + -+ = y/(1 — ),

0 < y < 1) But o < 1/k is impossible if o is an integer # 0. Thus e = a/b is also
impossible, and so e is irrational.

Surprisingly, to prove that e" is irrational for r rational is not at all simple, and the
proof that 7 is irrational is even harder.*

* See for example G. H. Hardy and E. M. Wright, A4n Introduction to the Theory of Numbers,
New York, Oxford University Press, Fourth edition, 1960. In fact, e and = are transcendental
numbers, which means they are not the roots of any polynomial with rational coefficients. This
was discovered by Hermite and Lindemann in 1873 and 1882. For an clementary account, see
M. Spivak, Calculus, W. A. Benjamin Co.
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6. Let A and B be sets in R bounded from above. Let a = sup(4), b = sup(B) and let
the set C be defined by C = {xy |xed,ye B}. Show that, in general, ab # sup(C).
If a < 0 and b < 0, then prove that ab = inf(C). f a >0 and b > 0,and 4, B
have only positive elements, then also prove that ab = sup(C).
Solution: As a specific instance, let 4 = {(xeR|-10<x< — 1} = 1-10,—1[

" and B = ]0,1/2[, so thata = —1, b=1/2,and ab = —1/2.But C = 1-5,0[ and

sup(C) = 0.

Now we prove that if a <0 and b < 0, then ab = inf(C). For this, we use the

analogue of Theorem 2 for greatest lower bounds. First, let xe 4 and ye B. We
want to show xy 2 ab.But,x < a,y<bor—x= —a>0and ~y = —-b20
so (using Axiom II(v) for R), (—x)(—y) = (—a)—b) or xy = ab. Given & > 0,
we want to find xe 4 and y € B so that ab > xy — &,or |ab — x| < &. Choose
x and y so that a <x + g2l + 1), b<y+ g/2la, and b <y + 1. Then,
since|uv] = ju| v/ and )] < 18] + 1,we get (using the triangle inequality) |ab — xy <
lab — ay| + lay — syl = lal1b = ¥ +la — Xy < lal (&/21al) + (&/206] + 1)(6l + 1) =&
The last assertion can be proven in an analogous way.

Exercises for Chapter 1

¢ 1. For each of the following sets S, find sup(S) and inf(S):
(@) {xeR]|x* <5}
() {xeR|x*>T}
() {1f1|n an integer,n > 0}
(d) {—1/n|n an integer, n > 0}
(e) {.3,.33,.333,.. B
(f) the intervals [a.b], [a,b[, Ja,b], or Jab[.

7 is irrational, [Hint: If there were a rational number m/n,

Review the proof that f
where m and n have no common factor, such that (m/n)* = 2, would m be even

or odd?] Generalize this to \/lz for k a positive integer which is not a perfect square.
(a) Letx > Obea real number such that for any ¢ > 0, x < &. Show thatx = 0.
(b) Let S = 70,1[. Show that for any ¢ > O there exists x € S, such that x <&,
x#0. '
Show that d = inf(S) iff d is a lower bound for S and for any & > 0 there is an
x &8, such thatd = x — & :
s 5. Let x, bea monotone increasing sequence bounded above and consider the set
S = {Xy Xz« }- Using Theorem 2, show that x, converges (o sup(S). Make a
similar statement for decreasing sequences.
Let 4 and B be two non-empty sets of real numbers with the property that x <y
for all xe A, y e B. Show that there exists a number ¢ € R such that x < c <y
forallx e A,y € B.Givean example of this statement being false for rational numbers
(it is, in fact, equivalent to the completeness axiom and is at the basis for another
way of formulating the completeness axiom known as Dekekind cuts).

e 2.

03,

s 4.

0 6.
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# 7. Forsets 4,B = R,let4d + B = {x +
, , = »|xe4and ye B}. Show that sup(4 =
sup(4) + sup(B). Make a similar statement for inf’s. ) P+ 5

N 81 For sets 4, B — R, determine which of the following statements are true. Prov
the true statements and give a counter-example for those which are false: e

- (a) sup(4 N B) < in{{sup(A),sup(B)} .

, ) (b) sup(4 n B) = inf{sup(4),sup(B)}

- (c) sup(4 u B) = sup{sup(A)sup(B)}

(d) sup(4 U B) = sup{sup(4),sup(B)}.

? i y
9. Dhemonstrate that if a subsequence of a Cauchy sequence converges to a point
t en the whole sequence converges to that point. -Give a counter-example if thé
original sequence is not a Cauchy sequence. ’

210. For a given sequence a,, we define the numbers

lims =1
. up(a,) = inf{sup{a,.@,s - -} |1 =12,.. .}
lim inf(a,) = sup{inf{a,@,4,, .-} {7 = 12,..}

Show that
3 (a) lim inf(a,) < lim sup(a,)
{(b) lim sup(a,) = biff for all ¢ > 0, there is an N s
n y o that b +
andb — ¢ < a,forsomen = N #> aforalln > N
(¢) a, — biff lim sup(a,) = lim inf(a,) = &
+(d) let @, = (—1)". Compute lim inf(a,), lim sup(a,).

| Note: .lim sup(a,) and lim inf(a,) always are defined (but could be =+ co)
? th?ugll. hm(.a,,) need not exist. Also, lim sup is short for /imit superior and lim inf
or limit inferior, and these are sometimes written as lim and lim, respectively

11. Show that (i), (ii), and (iii) of Theorem 3 each implies the completeness axiom for
a_n.ordeted field. [Hint: (i) = completeness axiom is almost immediate‘ (ii) im li(;s
(i) in much t‘he same way as we showed in the proof of Theorem 3 that (i)'im lief (it)
:I‘herefo;e (ii) = completeness axiom. To show (iii) == completeness asiom ié
is sufficient to show (iii) = (i). To do this, define the sequence x, as in the r;of
lc?f c.ct)r'npleteness axiom => (i) and argue that x, is a Cauchy sequen::e. Show thit its
;;Iil(l) n:s ;h(f;)'s]up of the set in question, following the proof that the completene)zss

s 12. In R" show that
@ 2 x| + 2 1% = Ix + »I* + l|lx — p|? (parallelogram law)
®) Ix + ¥l lx = pb < lx)* + Iyl?
(c) . 4¢x,p> = llx + p|? — lx — y||? (polarization identity).
Interpret these results geometrically in terms of the parallelogram formed by xand y

#13. What is the orthogonal compl in R*
o Il omplement in R* of the space spanned by (1,0,1,1) and




30

s 14,

015.
s 16.
8 17.

2 18.

+21.
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s 23.

224,
¢ 25.

2 26.
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(a) Prove Lagrange’s identity
n 2 n "
. (Z xz)’x) = (2 V?)(ZJ’?) - Z (xyy — xy)
T \i=1 i=t i=1 1<Si<j<n

using algebra techniques and use this to give another proof of the Schwarz

inequality.
n i/2 n 112 i 112
{Z (x + J’i)z} < (ZX?> + (ZY%) .
{=1

(b) Show that
i=1 i=1

Let x, be a sequence in R such that d(x,Xpe 1) < dX,-15%,)/2. Then show that x,
is a Cauchy sequence.

Prove Theorem 4. In fact, for vector spaces ¥y, ..., ¥, showthat V=V x - x V¥,
is a vector space.

LetS < Rbebounded below and non-empty. Then show thatinf(S) = sup{xe R]x
is a lower bound for S}.

Show that in R, x, — x iff —x, - —x. Hence prove that the completeness axiom
is equivalent to the statement that every decreasing sequence x; = X; 2 X3’
bounded below converges. Prove that the limit of the sequence is inf{xy,%5,. . .}

. Let x = (1,1,1)e R® be written x = Z?ﬂy,f,, where f; = (1,0,1), fz = O,L.1),

and f; = (1,1,0). Compute the components y;.

. Let § apd T be non-zero orthogonal subspaces of R". Prove that if $ and T are

orthogonal complements (that is, S and T span all of R then S n T = {0} and
dim(S) + dim(T) = n, where dim(S) denotes dimension of S. Give examples
in R3, where the condition dim(S) + dim(T) = n holds, and examples where it
fails. Can it fail in R*?

Show that the sequence in Example 2 can be chosen to be increasing.

(a) Prove:ifin R, x, — X, then sz,( — ax for any number a.
{b) If x, — x and y, — y, then prove 5, = X, + Ji converges to x + ).

Let P = R be a set such that x > Ofor all xe P and for any integer k there is an
x, € P such that kx, < 1. Then prove that 0 = inf(P).

If sup(P) = sup(Q) and inf(P) = inf(Q), does P = Q?

We say that P < Q if for each x € P, thereisayeQ withx < p. WP < 0, then
prove sup(P) < sup(Q). Is it true that inf(P) < inf(@)?If P < Qand @ < P, does
P =207 :
Prove that the real numbers form an uncountable set, but the rationals form a
countable set. [Hint: First recall how any number x,0 £ x < 1 can be written as
a decimal and that any decimal represents a real number. Ifthenumbersx,0 < x <1
were countable, we could arrange themas s, = 0.8, 14,2 " Letx = 0.bbyby s
where b, = 1ifa,, # 1and b, = 2ila,, = 1. Show that x # s, for all n. For the
rationals, employ Exercise 9 in Introductory chapter.]

EXERCISES FOR CHAPTER 1 31

# 27. Suppose a, = 0 and a, » 0 as n — co. Given any ¢ > 0, show that there is a
subsequence b, of a, such that ' b, < &.

2 28. !det x, be a Cauchy sequence in R and let 4, = sup{x, %4, -.} and B, =
inf{x,,%,4 1, - .}. Prove 4, converges to the same limit as B, which in turn is the
same as the limit of x,.

029, onr any x € R, x > 0 use the axioms for R to deduce the existence of y € R such that
ry==x '

#30. Use the axioms for R to prove the Archimedian property: for evéry x € R there
exists an integer N such that N > x. [Hint: Ifn < xforalln = 1,2,3, ... use the
completeness axiom to prove that x, = r converges.]

w31, Let 4, B c Randlet f: 4 x B — R.Isit true that
sup{/(x,y) | (x.y) € 4 x B} = sup{sup{/(x,y)| x € 4}|y e B}

or, the same thing in different notation,

M)
sup f(x,y) =§‘§B(§‘§B Fx)?  Yes .

(x,y)eAxB

# 32. (a) Give a reasonable definition for when limit x, = co.
n=son

(b) Let x, = 1 and define inductively x,., = (x; + - + Xx,)/2. Prove that

X, = B

e 33. (a) Show that (log x)/x — 0 as x — o0. (You may consult your calculus text and use
for example ’'Hopital’s rule).
(b) Show that n' — 1 asn — .
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Chap’ger 2

Topology of R’

In this chapter we begin our study of those basif: properti'es of R*
which are important for the notion of a continuous function. We will stt{dy
open sets, which generalize open intervals on R, ‘and closed set.s, which
generalize closed intervals. The study of open ar.xd clos'.ed sets constitutes the
beginnings of topology. This study will be continued in Chapte.r 3. -

Most of the material in this chapter depends only on the basic properties
of the distance function given in Theorem 5, Chapter 1. Recall that the
distance function d is given by

! n 12
d(x.y) = {Z(‘xi - }’i)z}' >
i=1
and that the basic properties of d are
() dixy) > 0 L
(ii) dx,y) = 0iff x =y’
(iii) d(x,y) = d:x) , ‘
(iv) ‘d(x,y) < d(x.z) + d(z,) (triangle inequality).

21 Open Sets

In order to define open ‘sets, we first shall introduce the notion of an g-disc.
Definition 1. For each fixed x € R’ and ¢ > 0, the set
D(x,e) = {y e R"| d(x,y) < &}
32
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FIGURE 2-1 Theg¢-disc.

is called the e-disc about x (also called the g-neighborhood or g-ball
about x). See Figure 2-1. A set 4 = R"issaid to be open if for each
x € A, there exists an ¢ > 0 such that D(x,c) < 4.

It is important to realize that the ¢ required may depend on x. For example,

‘the unit square in R? not including the “boundary” is open, but the &’s

needed get smaller as we approach the boundary. However, notice that the
g cannot be zero for any x. See Figure 2-2.

Consider an open interval in R = R!, say, ]0,1[. Indeed, this is an open
set (see Figure 2-3). However, if we look upon the set as being in R? (as a
subset of the x axis), it is no longer open. Thus for a set to be open it is /
essential to specify which R" we are using.

There are numerous examples of sets which are not open. The closed unit
disc in R?, {xe IR2| x| < 1}, is such an example. This set is not open
because for a point on the “boundary” (that is, points x with |[x] = 1),
every e-disc contains points which do not lie in the set. See Figure 2-4.

FIGURE 2-2 An open set.
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g-discinR & - disc inR?

FIGURE 2-3

Theorem 1. In R", for every ¢ > 0 and xe R”, the set D(x.g) is
open.

The main idea for the proof is contained in Figure 2-5. Notice in this

figure that the size of the disc about the point y € D(x,s) gets smaller as y
gets closer to the boundary. The theorem should be “intuitively clear” from

this picture.
Some basic laws which open sets obey are the following.

Theorem 2.

(i) "The intersection of a finite number of open subsets of R" is an open
subset of R".

(ii): The union of an arbitrary collection of open subsets of R is an
open subset of R".

This result is perhaps not entirely clear intuitively. Some idea about the
difference between assertions (i) and (ii) may be obtained if we realize that
it is not true that the intersection of an arbitrary family of open sets is open.
For example, in R*, a single point (which is not an open set) is the inter-
section of all' open intervals containing it (why?). The remainder of this
chapter will rely heavily on the basic properties of open sets which werg
given in Theorem 2.

|R2

FIGURE 2-4 A non-open set.
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FIGURE 2-5 ¢-discs are open.

Note: A set with a specified collection of subsets (called, by definition,
open sets) obeying the rules in Theorem 2 and containing the empty set &
and the whole space is called a topological space. We shall not deal with

general topological spaces in this book, but rather with the case of R".
However, much of what is said below does apply to the more general setting.

ExampLE 1. LetS = {(x,y)e R*|0 < x < 1}. Show that S is open.

Solution: In Figure 2-6 we see that about each point (x,y) € S we can ‘
_draw the disc of radius r = min{x,1 — x} and it is entirely contained in S.

Hence, by definition, S is open.
Exampie 2. LetS = {(x,)e R*|0 < x < 1}.Is S open?

Solution: No, because any disc about (1,0) € S contains points (x,0) with
x> 1.

ExampLE 3. Let 4 « R"be open and B < R". Define
A+ B={x+yeR'|xedand ye B}.
Prove 4 + B is open.

FIGURE 2-6
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Solution: Let xe€ A, ye Bsothatx + y€ A + B. By definition, there
is an ¢ > 0 so D(x,) = 4. We claim D(x + y£) = 4 + B. Indeed, let
ze D(x + y.e) so that d(x + y,2) < & But, dx + y,2) = dix,z — y) (why?)
soz — ye A, and thenz = (z—y +yed+ B.Thus D(x + y,8) = 4 +
B,so A4 + Bis open.

E)(e.rcises for Section 2.1
as1. Show that R?\{(0,0)} is open in R
2. Let S = {(x.))e R? | xy > 1}. Show that S is open.
o 3 Let Ac Rbeopenand B « [R? be defined by
B = {(x,y)eR* | xe 4} .
Show that B is open.
: 4. Let B « R be any set. Define
C = {xeR"|d(x,y) < 1forsomeye B} .
Show that C is open [Hint: Show that C = Uyen D(y,1).]

. 5 Let A = R be open and B = R. Define 4B = {xyeR|xeA and yeB}). Is AB
necessarily open?

2.2 Tnterior of a Set

Definition 2. For any set 4 < R", a point x€ 4 is called an
interior point of A if there is an open set U such that xe U < 4.
(It should be clear that this is equivalent to the following: there is
an & > 0 such that D(x,8) = 4.) The interior of A is the collection
of all interior points of 4 and is denoted int(4). This set might be

empty.

For example, the interior of a single point is empty. The interior of the
unit disc, including its boundary, is the unit disc without its boundary.

We can"describe the interior of a set in a somewhat different manner.
The interior of 4 is in fact the union of all open subsets of A (the reader is
asked to show this in Exercisé 22, p. 58). Thus by Theorem 2, or directly,
int(4) is open. Hence int(4) is the largest open subset of A. Therefore if there

are no open subsets of 4, int(4) = . Also, it is evident that 4 is open iff
int(4) = A (again, so¢ Exercise 22).

Exampie 1. Let S = {(x.y) € R*|0 < x < 1}. Find int(S).

Solution: To determine the interior points, we just need to locate points
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a})ouF whic‘:h it is possible to draw an &-disc entirely contained in S. By con-
51dem.1g Figure 2-6, we see that these are points (x,y) where 0 < x.< 1.
Thus int(S) = {(x,») |0 < x < 1}.

ExampLE 2. Is it true that int(4) U int(B) = int(4 v B)?

Solution: No. Consider in the real line, 4 = [0,1], B = [1,2]. The

. ’ ERal &) - ol n
int(4) = J0,1[ (why?) and int(B) = ]1,2[, so int(4) v int(B) = Jo,1[ v
11,20 = J0,2[\{1}, while int(4 U B) = int[0,2] = J0,2[.

Exercises for Section 2.2
+1. Let S = {(x,y) € R*| xy = 1}. Find int(S).
r2,Let§ = fxyA)e R3]0 < x < 1,y2 + 22 < 1}. Find int(5).
+3.If 4 < B, isint(4) = int(B)?

/
’ 4/./Do you think it is true that int(4) n int(B) = int(4 n B)? Try some examples.

/£

2.3 Closed Sets

Peﬁnition 3. A set Bin R"is said to be closed if its complement
in R" (that is, the set [R"\B) is open.

. For example, a single point is a closed set. The set consisting of the unit
clrcle.with boundary is closed. Roughly speaking, a set is closed when it
qopt?.;gs its “boundary points” (this intuition will be made precise in
Section 2.6). See Figure 2-7. ‘

It is entirely possible to have a set which is neither open nor closed.
For example, in R!, a half-open interval ]0,1] is neither open nor closed.
Thus even if we know A is not open, we cannot conclude that it is closed or
not closed. The next theorem is analogous to Theorem 2.

1

FIGURE 2-7 Closed sets.
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y

FIGURE 2-8

Theorem 3. N
(i) The union of a finite number of closed subsets of R" is closed.

(ii) The intersection of an arbitrary family of closed subsets of R"
is closed.

This theorem follows directly from Theorem 2 by noting that union's and
intersections are interchanged when we take complements (see Exergxse 14
of the Introductory chapter). The proof is left to the reader (E)'(ermse 23)
who should also show that (i) cannot be replaced by arbitrary unions.

”

ExampLEl. LetS = {(x))eR*|0<x <10y < 1}.Is S closed?

Solution: See Figure 2-8. Intuitively, § is not closed because f:he portion
of its boundary on the y-axis is not in S. Also, the complemen.t is not open
because any &-disc about a point on the y-axis, say (0,1/2), will intersect S

(and hence not be in R™S).

FIGURE 2-9

4 Let'4 < R be arbitrary. Show R"\(int A4) is closed.
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ExampLE 2. Let S = {(x,y)€ R?|x* 4+ y? < 1}.Is S closed?

Solution: Yes. S is just the unit disc, including its boundary. The com-
plement is clearly an open set, because for (x,y) € RS, the disc of radius

¢ = /x* + y* — 1 will be entirely contained in R?\S (Figure 2-9).

ExAMPLE 3. Show that any finite set in R" is closed.

Solution: Single points are closed, and so we may apply Theorem 3(i).

_ Exercises for Section 2.3
a1, Let § = {(x,y)) e R*| x, y > 1}.Is S closed?

o
.az.;r\Let §={(x,»)eR*|x=0,0 <y < 1}.1s § closed? q@

?43. Rédo Example 3 Elirectly, this time showing that the complement is open. = N*:)

o5/ Let§ = {x & R|x is irrational}. Is S closed?

' 2.4 Accumulation Points

There is another very useful way to determine whether or not a set is closed
which depends upon the important concept of an accumulation point.

Definition 4. A point x € R" is called an_accumulation_point of a
set 4 if every open set U containing x contains some point of 4
other than x. . G .

That is to say, an accumulation point of a set 4 is a point such that there
are other points of A arbitrarily close by. Accumulation points are also
referred to as cluster points.
equivalent to the statement that for every & > 0, D(x,£) contains some point
yof Awithy # x. ’

For example, in R, a set consisting of a single point has no accumulation
points and the open interval ]0,1[ has all points of [0,1] as accumulation
points. Note that an_accumulation point of a set need pot lie in that set.
The definitions of accumulation points and closed sets are closely related
as shown by the next theorem.

Theovem 4. A set A = R"is closed iff all the accumulation points
of A belong to A.
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Notice that a set need not have any accumulation points (a single point
or the set of integers in R! are examples), in which case Theorem 4 still
applies and we can conclude that the set is closed. Another useful way to
prove thata set is closed is given in Theorem 9 which follows later.

Theorem 4 is intuitively clear because a set being closed means, roughly
speaking, that it contains all points on its “poundary,” and such points are
accumulation points. This sort of rough argument has a pitfall and one has
to, in fact, be more careful as some sets are sufficiently complicated that our
intuition may fail us. For example, consider 4 = {1/neR |n =123, . Ju
{0}. This is a closed set (verify!) and its ‘only accumulation point is {0}
which lies in 4. But our intuition about “poundary” mentioned above is
not very clear for this set, hence the need for more careful arguments.

ExampLe 1. Let S = {xeR|xe [0,1] and x is rational}. Find the

accumulation points of S.

Solution: The set of accumulation points consists of all points in [0,1].
Indeed, let y € [0,1] and D(y;8) = p—&y+elbea neighborhood of y.
Now we know we can find rational points in [0,1] arbitrarily close to y
(other than y) and in particular in D( .£). Hence y is an accumulation point.
Any point y ¢ [0,1] is not an accumulation point because y has an g-disc
containing it which does not meet [0,1] and therefore S.

ExampLE 2. Verify Theorem 4 for the set A = {y)eR*|0<x < Lor
x =2}

Solution: A is shown in Figure 2-10. Clearly, 4 is closed. The accumula-
tion points of 4 consist exactly of 4 itself which lie in 4. Note that on R,
[0,1] v {2} has as accumulation points [0,1] without the point {2}.

(2,0)

FIGURE 2-10
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! FIGURE 2-11

ExampPLE 3. Let § = 2 i :
s {(x,y)e R?| y < x* + 1}. Find the accumulation

Solution: S is sketched in Fi i
. gure 2-11. The accumulation points con- -
stitute the set {(x,y) | » < x* + 1} as is evident from the figure. ’ o

Exercises for Section 2.4
ila’F}nd the accumulation points of 4 = {(x,y)e R*|y = dand 0<x<1}
c},"’[f A < Band x is an accumulation point of 4, is x an accumulation point of B as well?

v %,,,Find the accumulation points of the following sets in R?
<" (@) {(m,n)| m,n integers} '
(b) {(p,q) | p.g rational}
(c) {{m/n,1/n)| m,n integers, n 0}
,(d) {(t/n + 1/m0)| n,m integers, n 5 0, m #0}.

¢4, Let A < Rand x = sup(4). Must x be an accumulation point of A7

s 5, Verify Theorem 4 for the set 4 = {(x,y)e R* |[x? + y + 2x = 3}

2.5 Closure of a Set ’

The interior of a set A is the largest open subset of 4. Similarly, we can form

the smallest closed set containin, i i
mall g a set A. This set is cal "
and is denoted cl(4) or sometimes A. called the closure of 4

Definition 5. Let 4 = R". The set cl(4) is defined to be the inter-

section of all closed sets containing 4 d i
e s, g A, (and so cl(4) is closed by



42 TOPOLOGY OF R”

For example, on R*, cl(]0,1]) = [0,1]. Also, note that 4 is closed iff
cl(4) = A4 (why?). The connection between closure and accumulation points
is the following theorem.

Theorem 5. Let A = R". Then cl(A) consists of A plus all the
accumulation points of A.

In other words, to find the closure of a set 4, we add to A all the accumula-
tion points not already in 4. Theorem 5 should be intuitively clear from the
examples presented earlier.

ExampLE 1. Find the closure of 4 = [0,1] v {2} in R.

Solution: The accumulation points are [0,1], so the closure is [0,1] v
{2}. This is clearly also the smallest closed set we could find containing 4.

ExampLE 2. For any 4 < R, show that R"\cl(4) is open.

Solution: cl(4) is a closed set and, by definition of a closed set, its
complement is open.

ExampLE 3. Is it true that cl(4 n B) = cli(4) n ci(B)?

Solution: No. Take, for example, 4 = [0,1], B = 71,2].Then, 4 N B =
@ and cl(4) N cl(B) = {1}.

Exercises for Section 2.5
s /l"Z/find the closu're of S = {(x,y)e R*|x > ¥}
+2. Find the closure of {1/n|n = 1,2,3,.. .} in R.
»3. ‘Let A = {(x,) € R* | x is rational}. Find cl(4).

¢4, (a) For A < R, show cl(A)\4 consists of accumulation points of 4.
{b) Is it all of them?

+5. Let A = Rand x = sup(A4). Show x & cl(A).

2.6 Boundary of a Set

If we consider the unit disc in R?, we know what we would like to call the
boundary—the obvious choice is the unit circle. But, for more complicated
sets, such as the rationals, it is not as intuitively clear what the boundary
should be. Therefore a precise definition is needed.
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__ bd(4)

FIGURE 2-12 Boundary of a set.

I;eﬁnition 6. For a given set 4 in R", the bdundary is defined to be
the set T

bd(4) = cl(4) n cl(R\A).
Sometimes the notation 04 = bd(4) is used.

Th:xs by Theorem 3(ii), bd(4) is a closed set. Also, note that bd(4) =
bd(R"\4). From Theorem 5, we can deduce that the boundary is also de--

scribed as follows.

Theorem 6.. Let A = R". Then xe bd(A) iff for every & > 0,
D(x.¢) contains points of A and of R™\A (these points might be x itself ).
See Figure 2-12. '

”The or@gi"nal definition states that bd(4) is the border between 4 and
RN\A. ThlS. is also what Theorem 6 is asserting and therefore Theorem 6
should be intuitively clear.

ExampLEl. Let 4 = {xe R|xe[0,1] and x is rational}. Find bd(4).

Solution: bd(4) = [0,1] since, for any ¢ > 0 and x € [0,1], D(x5) =
Ix — ex + € ‘contains both rational and irrational points. The reader
shquld also verify that bd(4) = [0,1] using the original definition of bd(4).
This example shows that if 4 < Bit does not necessarily follow that bd(4) =
bd(B) (let 4 be as above and B = [0,1] in R). :

ExampLE 2. If x € bd(4), must x be an accumulation point?

Solution: No, Let A = {0} = R. Then 4 has ) )
but bd(4) = {0}. } no accumulation points,

ExampLE 3. Let S = {(x,y) e R* | x* — y* > 1}. Find bd(S).

Solution: S is sketched in Figure 2-13. Clearly, bd(S) consists of the
hyperbola x2 — y? = 1.
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FIGURE 2-13

Exercises for Section 2.6
.1 Find bd(4) where 4 = {{/neR|n = 123,...}.
/02.""I‘f x & cl(4)\4, then show x € bd(A). Is the converse true?
«'3.Find bd(d) where 4 = {(x,)) € R* | x < y}.
¢4, 1s bd() = bd(int A)7
o i/fet A R be bounded and x = sup(4). Isx € bd(4)?

2.7 Sequehces

Let us now consider some aspects of sequences. The definition of convergence
in R" is very similar to that for real numbers.

Definition 7. Let x, be a sequence of points in R". We say that x,
converges to a limit x in R" if for every open set U containing x
(also called a neighborhood of x), there is an N (depending on U)
such that x, € U whenever k > N. See Figure 2-14.

This definition coincides with the usual ¢ definition as the next theorem
shows.

Theorem 7. A sequence x, in R" converges to x € R" iff for every
¢ > O there is an N such that k > N implies |x — Xl < e

SEQUENCES 45

FIGURE 2-14 Convergence of a sequence.

This theorem is entirely analogous to what we know about convergent
sequences of real numbers. See Section 1.1. There is another result which is
closely allied to the one above. We can show that:

Theorem 8. x, — x iff the components of x, converge to the
components of x as sequences of real numbers.

As the proof on page 50 shows, this follows easily from Theorem 7 and
the explicit formula for ||x, — x|.

We can use sequences to determine whether or not a set is closed. The
method is as follows:

Theorem 9.

(i) A set A = R"is closed iff for every sequence X, € A which con-
verges. the limit lies in A. '

(i) For a set B = R", x € cl(B) iff there is a sequence x, € B with
X, = X.

The intuition behind this theorem is the same as that for Theorems 4 and 5.
One should note that these sequences in (i) and (i) could be trivial, that is
x, = x for all k. ,

As in the case of R!, we can define a Cauchy sequence in R". (The concepts
of monotone sequence and least upper bound also make sense if interpreted
coordinate-wise, but these are not very useful in R" for n # 1.)

De{inition 8. A sequence x, € R" is called a Cauchy sequence if for
every ¢ > O thereis an N such that [, k > N implies ||x, — x| <e.

Theorem 10. A sequence x, in R" converges to a point in R" iff it
is a Cauchy sequence.
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This is a straightforward generalization of, and follows from, the corre-
sponding theorem for R (see Theorem 3 of Chapter 1).

As with R, this theorem provides an important test for convergence since
the Cauchy condition does not involve the limit point explicitly. Thus we
can often tell if a sequence converges even though we do not know the limit.

Note: In a general metric space (a set S and a real-valued distance
function d satisfying the rules of Theorem 5, III, Chapter 1) a Cauchy
sequence is a sequence x; € S such that for all ¢ > 0, there is an N such that
k,! > N implies d(x,,x;) < e. The space is called complete iff every. Cauchy

PO MY SR e

. s .
sequence converges to a. point-in-the-space. An example of an incomplete

space is the rational numbers with d(x,y) = |x — y|. Theorem 10 asserts then
that R" is a complete metric space.

ExampLE 1. Show that the sequence (1/n,1/n%) converges to (0,0) as n — co.

Solution: Each component sequence 1/», and 1/n?* converges to 0, so by
Theorem 8, x, = (1/n,1/n%) converges to 0,0).

ExaMPLE 2. Let x, € R™ be a convergent sequence with |x,|| < 1 for all n.
Then show that the limit x also satisfies ||x|| < 1.Is this true if < is replaced
with <?

Solution: The unit ball B = {yeR"| |y < 1} is closed. Hence, by
Theorem 9(i), x, € B implies x € B. This is not true if < is replaced by <,
For example, on R consider x, = 1 — 1/n.

ExampLE 3. Find the closure of 4 = {I/neR|n =12, . .}.

Solution: We can use, for example, Theorem 9(ii). The sequence i/n—-0
so 0 € cl(4). Taking other sequences from 4 will not yield any new points, so

c(d) = 4 v {0} .

Exercises for Secﬁon 2.7
¢ 1. Find the limit of the sequence [(sin n)"/n,1/n*] in R?.
v 2. Let x, = x in R". Show that A = {x, |n = 1,2,...} U {x}is closed.
0 3 Let A = R", x, € 4, and x, — x. Show that x € cl(A).
¢ 4. Verify Theorem 9 (i) for the set B = {(x,)) & R*|x < y}.
45, Let S = {x e R| x is rational and x* < 2}. Compute cl(S).

SERIES IN R AND R” a7

2.8 Series in Rand R’

Just as in R, we can consider series in R".

Definition 9. A series Zl‘f: o Xio where x, € R", is said to converge to
x € R" if the sequence of partial sums s, = )_, X; converges to x,
and if so we write ) ° X, = X.
As in Theorem 8, Z;; o Xk =X is equivalent to the corresponding com-
ponent series converging to the components of x.
Applying Theorem 10 to s, yields Theorem 11.-

Theorem 11. A series Y x, in R converges iff for every & > 0,
thereisan N such thatk > Nimplies |x, + Xp4q + =7 4 Xpeapl <
¢ for all integersp = 0,1,2, ... .

In particular, taking p = 0 we see that if Yy, x, convergeé then x, — 0 as
k — oo (Exercise 2).
A series | x, is said to be absolutely convergent iff the real series P EA

" converges.

Theorem 12. If . x, converges absolutely, then Y. x, converges.

This theorem is useful because it allows us to apply the usual tests for
real series (such as the ratio test) to the series Y. llxl to test for convergence
of ). x,. Of course, it could happen that a particular test fails even though
Z x, is convergent, in which case some other method is needed.

Now we shall review the most important tests for the convergence. of a
real series. Some of the main facts are presented in the following theorem.
Some other tests for convergence will occur in the exercises and later in
Chapter 5.

Theorem 13. ,
@ If Il <1, then Z;’; o I converges to 1/1 — r) and diverges

(does not converge) if [r} = 1.

(it) Comparison test: If ZZ’: , @ converges, a = 0, and 0 <
by < ay, then ). by converges; if Y, ¢ diverges, ¢, 2 0,
and 0 < ¢, < d, then y>_ d, diverges.

(iii)_p-series test: Z:°= 17 converges if p > 1 and diverges to o
that is, the partial sums increase without bound) if p < 1.

(iv) Ratio test: Suppose that l}gnit a,+/a.) exists and is strictly

less than 1. Then z:‘; , @ converges absolutely. If the limit is
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strictly greater than 1, the series diverges. If the limit equals 1,
the test is inconclusive.

(v) Root test: Suppose that Lt_{ﬂ;t(la,, .
than 1. Then Y, Gn converges.absolutgly. If. ti‘ze Ili’m[t ;s
strictly greater than 1, the series diverges; if the limit equais 1,

the test is inconclusive. ' )
(vi) The integral test: If f is continuous, non-negattve, and monotone

decreasing on [1,+ [, then Yo, [ and [ f(x) dx converge
or diverge together.

Un exists and is strictly less

ExampLE 1. Let x, = (1/n%1/n). Does Y. x, converge?

Solution: No, because the harmonic series Y, 1/n diverges by (ii).

‘ ©xl <2
ExampLE 2. Let [x,] < 1/2%; prove Y, x, converges and |32 x,|

Solution: Verify the conditions of Theorem 11. Now

1
“+—2T+—1_7

flxp + 0 4 Xeapll € lxel + -+ e pll < 5
j=k

- o = - f a geometric series). Thus,
ula $° ar* = af(1 — r)for the sum o
(gl:\}/,;: z f:fgl cho%ge Nsothat 1/28~* < ¢.Hence Y x, converges. Moreover,

the partial sums satisfy

+-
11
2 2t

n n 1
HEIN AR AL
k=0 k=0

< 2 by Example 2 of Section 2.7. We

limit s also satisfies |isll ; ' /
Zoht;llii g;seo 1show Y. llx,ll converges by direct comparison with the geometric

series 3, 1/2". ,

n
ExampLE 3. Test for convergence: P ER

Solution: The ratio test is applicable;

so the series converges.

2
ExaMmpLE 4. Determine whether or not 3. n/(n* + 1) converges.
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Solution: Observe that for x > 1, f(x) = x/(x* + 1)is positive and con-
tinuous. Since f'(x) = (—x? 4+ 1)/(x? + 1)* < 0, f is monotone decreasing.

® xdx — lim b x dx
1x2+1—b"w 1_)(,‘2-*‘1

= lim [3 log(x* + 1)}

lim} log((b* + 1)/2)

But, as b — oo, 4 log((b® + 1)/2) -» o, and so the series diverges by the
integral test. One can also proceed as follows: nf(n* + 1) > n/(n* + n?) =
1/2n,s0 by comparison with the divergent series (1/2) ) 1/n we get divergence.

Exercises for Section 2.8
»1. Determine if }.*_ ((sin n)/n?,1/n?) converges.
¢ 2. Show that the series in Example 2 converges absolutely.
3. Let Y, x, converge in R". Show that x, - 0 = (0,.. .0 e R".
+4. Test for convergence ). (2" + n)/(3" — n).

* 5. Test for convergence 3. n!/3".

Theorem Proofs for Chapter 2

Theorem 1. InR", for every e > 0 and x € R, the set D(x, &) is open.

Progf: Choose ye D(x,6). We must produce an & such that D(y.g) < D(x.g).
Figure 2-5 suggests that we try ¢’ = ¢ — d(x,y), which is strictly positive as.d(x,y) < e.
With this choice (which depends on y), we shall show D(y,&') < D(x,e). Let z € D(y,&),
so d(z,y) < &'. We need to prove that d(z,x) < ¢. But, by the triangle inequality,
dz,x) < d(z,y) + d(y,x) < & + d(y,x), and by the choice of ¢, & + d(y,x) = &. The
result follows. §

Theorem 2.

(i) The intersection of a finite number of open subsets of R" is an open subset of R".
(ii) The union of an arbitrary collection of open subsets of R" is an open subset of R".

Progf: (i) It suffices to prove that the intersection of two open sets is open, since
we can then use induction to get the general result by writing 4, NN 4, =
(Al NN An~1) n An'

Let A, Bbe open and C = 4 n B; if C = J, C is open by a degenerate case of the
definition. Therefore, suppose x € C. Since A4, B are open, there are g, &' > 0, such that

D(x,e) = A and D(x¢) = B.
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Let & be the smaller of ¢ and &'. Then D(x,¢") = D(x,g) and so D(x,e") = A and, similarly,
D(x,e") = B,so D(x,g") = Cas required.

(ii) The proof for unions is easier. Let U, V,... be the open sets with union A.
For x € A, x € U for some U in the collection. Hence, as Uis open, D(x,e) c Uc 4
for some ¢ > 0, proving that 4 is open. B

Theorem 4. Aset A = R is closed iff all the accumulation points af A belong to A.

Proof: First, suppose 4 is closed. Let x e R* be an accumulation point and suppose
x ¢ A. Set U = R"\A4, the complement of A. Now, by definition, U is open, contains x,
and is hence a neighborhood of x; but Un 4 = &, contradicting the fact that x is
an accumulation point. Therefore x € A. Conversely, suppose A contains all its accumu-
lation points. Let U = R"\4 be the complement of A. We must show U is open. Let
xeU. Since x is not an accumulation point of 4, there is an & > 0 such that
D(x,6) n A = . Hence D(x,e) = U and, by definition, U is open. [}

Theorem 5. Let A < R". Then cl(A) consists of A plus all the accumulation points of A.

Proof: Let B be the union of 4 and the accumulation points of 4. Any closed set
containing  ¢ontains B by Theorem 4. Therefore, it suffices to prove that B is closed,
for B will then be the smallest closed set containing 4. Let x be an accumulation point
of B. We want to show that x & B. Suppose that x ¢ 4 (or else x € B trivially). Now it
will be shown that x is an accumulation point of 4, which will complete the proof (B
will be closed, by Theorem 4). Let U be an open set containing x. There exists, by
definition,,y € U n B. Now, gither y € 4, or y is an accumulation point of 4. In the
latter case, there exists ze U n 4. In any case, U contains some element of A (different
from x, since x ¢ A), so x is an accumulation point of A as required. §

Theovem 6. Let A = R". Then x & bd(A) iff for every ¢ > 0, D(x, €) contains points
of A and of R"\A (these points might consist of x itself).-

Proof: Let x e bd(4) = cl(4) n cl(R"\4). Now, either xe 4 or x € R\A. If x € 4,
then, by Theorem 5, x is an accumulation point of IR"\A, and the conclusion follows.
The case x € R"\4 and the converse are similar. B

Theorem 7. A sequence x, in R* converges to x € R" iff for every ¢ > 0O, there is an N
such that n > N implies lx — xll <e.

Proof: Suppose x;, — x, and & > 0. Since D(x,g) is open, there isan Nsok 2 N
implies x; € D(x.8), or d(x,%) = Ilx — xll < & as required. Conversely, suppose the
condition holds and U is a neighborhood of x. Find & > 0 so D(x,e) = U. Then there
isan N so k = N implies [[x, — x|l < &, thatis, x.eDxg cU. B

Theorem 8. x, — x iff the components of x, converge to the components of x as sequences

of real numbers.

Proof: Let x, = (xi,. ..%}) (we use superscripts for the components fo avoid
confusion with the k). Suppose x, — x = {(x*,.. .,x"). Then, given ¢ > 0, choose N so
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k > N implies |Jx, — x|| < & But,

n 1/2
ek — %] < Iy~ xl = (Z (xh - x‘)2>
i=1
(why?), so that k > N also implies |xt — x!| <& Thus x} — x' and similarly,
xi - x'.
Conversely, suppose xi — x', forall i. Givene > 0,choose N so that Ik — x| < g/i/n
fork > Nandalli = 1,...,n(where N is the maximum of the N'’s required for each i).

Then
" 172 LI
e, — x| = (Z ok - x')2> < (Z -n—> =
i=1 ]

=1

fork = N,sox, —x. |

Theorem 9.

() A set A < R is closed iff for every sequence X, € A which converges, the limit lies
in A.
(ii) For aset B = R, x € ci(B) iff there is a sequence %, € B with x, —~ x.

Proof:

(i) First, suppose A4 is closed. Suppose x; —+ x and x ¢ A. Then, x is an accumulation
point of A4, for any neighborhood of x contains x, € 4 for k large. Hence x € 4, by
Theorem 4.

Conversely, we shall use Theorem 4 to show that A is closed. Let x be an accumulation
point of 4, and choose x, € D(x,1/k) ~ A. Then x, — x, since for any & > 0, we can
choose N = 1/g; then k > N implies X, & D{xg); see Figure 2-15. Hence, by hypothesis,
x e A, and so A is closed.

(if) The argument here is similar and we shall leave it as an exercise (Exercise 7). §

Theovem 10. A sequence x, in R" converges to a point in R" iff it is a Cauchy sequence.

Proof: If x, converges to x, then for & > 0, choose N so that k > N implies
%, — x|l < &/2. Then,fork, I > N, llx, — xll = ll(ee — %) + (¢ = 2l < fe, — xll +
fIx — x|l < &2 + &2 = ¢ by the triangle inequality.

FIGURE 2-15 Accumulation points of a set.
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Conversely, suppose X, is a Cauchy sequence. Then, since |xi — xj| < |x, — xl,
the components are also Cauchy sequences on the real line. By completeness of R and
Theorem 3 of Chapter 1, X}, converges to, say, x!. Then, by Theorem 8, x, converges
tox = (x*,...,x7.

Theorem 11. A series Y, x, in R" converges iff for every & > 0, there is an N such that
k = N implies ||x, + Xgay + 7" + Xl < & for all integers p = 0,1,2,... .

Proof: Let s, = ZLI x;. Then, by Theorem 105, converges iff 5 is a Cauchy
sequence. This is true iff for every € > 0 there is an N such that [ > N implies
lis; ~ Spaqll < € for allg =1,2,... .But, {is, — sl = ey + 00+ Xpaglls 5O the
result follows with k = | + landp = g — L.

Theorem 12. I Y, x, converges absolutely, then Y x, converges.

Proof: This follows at once from Theorem 11 with the use of the triangle inequality
X + - + xk+p“ < flxdl + 00+ “xk+p”~ B

Theorem 13.

@ If I < 1, then Z:’; 0 " converges to 1/1 — r) and diverges (does not converge) if
= L

(i) Comparison test: If zl‘:‘; , Gk converges, d >0, and 0 < by, < @, then Z’f’: b
converges; if Y.5. | ¢ diverges, ¢, = 0, and 0 < ¢, < dy, then Z:’: i d,, diverges.

(iif) p-se;ies test: Z:": . n~? converges if p > 1 and diverges to (that is, the partial
sums increase without bound) if p < 1.

(iv) Ratio test: Suppose that ljmit {0ys 1/, exists and is strictly less than 1. Then

~* o0

Z:‘; , @, converges absolutely. If the limit is strictly greater than 1, the series diverges.
If the limit equals 1, the test is inconclusive.

() Root test: Suppose that limit (ja)*" exists and is strictly less than 1. Then Z:"; , G '
n—+o

converges absolutely. If the limit is strictly greater than 1, the series diverges; if
the limit equals 1, the test is inconclusive.

{vi) The integral test: If [ is continuous, non-negative, and monotone decreasing on
[1,+col, then 3= f(3) and {? f(x) dx converge or diverge together.

Proof:
(i} We have, by elementary algebra, that

1+r+r2+-"+r"=—1-—:£+—x-
1 —r

if r # 1, Clearly, "t »0asn—> o0 if | <1, and "t — oo if || > 1. Thus we
have convergence if [} < 1 and divergence if || > 1. Obviously, 2 .=  r* diverges if
i} = 1, since " # 0.

(ii) The partial sums of the series Z;‘; L % form a Cauchy sequence and thus the
partial sums of the series Z,:“:l b, also form a Cauchy sequence, since for any k and p
we have by + Beyy + 0t Doy S Gt G+ + @y, Hence }° by con-
verges. A positive series can diverge only to +o0, so given M > 0, we can find kg
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such that k > k, implies that ¢, + ¢, + <+ + ¢, = M. Therefore, for k > k
d, + d2.+ w4 d > M, 503> dy also diverges to co. "

(u}? First suppose that p < 1;inthiscase 1/n” > 1/nforalln = 1,2, ... . Therefore
by (ii), Z:‘;l 1/n? will diverge if Z::l 1/n diverges. We recall the proof of this from,
calc.u.lus.* If 5, = 1/1 + 1/2 + + -+ + 1/k, then s, is a strictly increasing sequence of
positive real numbers. Write s.. as follows:

1 1 1 i 1 1 1
Su=1+-—+—- - - — _ —
? 2 (3+4>+(5+6+7+8)

1 1 1 1 1 1 1 1
e e e — - e - 1
<2k—1+1+ +2k)>1+2+(4+4)~+<§+'§+§+§>+“'

1 1 1 1 k
=144 (= t I *
3+ @)+ @) G)=1n

Hence 5, can be made arbitrarily large if k is made sufficiently large; thus '  1/n
diverges. , "=t

Now suppose that p > 1, If we let

Lol 11 1
=EtEtEt Tt

then s, is an increasing sequence of positive real numbers. On the other hand
3

1 1 1 1 1 1 1
Sopey == — e — o, o — —_ 1
2% 1P+<zp+3f'>+<4ﬂ+5"+6"+7v)
1 1 1 2 4 k=1
Flommt S+ =+ —
<(2"")" TS 1)") Sptate oy

1 1 1 1 1
Pttt

G < 1

~ 5
(why?). Thus the sequence {s,} is bounded from above by 1/(1 — 1/2°™!); hence
2o, 1/n? converges. ’ ‘

(iv) Suppose that lni_rpit la,+/a,l = r < 1. Choose ' such that r < r' < 1 and let N
be such that n > N implies that

A+

a,

]

<r.

Then |ay,| < lay| (). Consider the series |a,| + - -+ lay| + lay| ' + lay] ¢)* +

* We can al.so prove (iii) by using the integral test for positive series (sce vi of the theorem). The
der.nonstrau?x‘l given here however also proves the Cauchy Condensation Test: Let ) a, be a
;em:s of %oszAnlve terms with a,,; < a,. Then Y, a, converges iff Z;" , 2ay, converges (se; G.J
orter, “*An Alternative to the Integral Test for Infinite Series,” American Ma i hly

, th
751572, wage 636, hematical Monthly
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layl ¢*)® + -+ - . This converges to

lanl
1—r

fay| + -+ lay-qd +

;.

By (ii) we can conclude that Z;f: , la| converges. If limit |a, 4, /a,] = r > 1, choose 1
n—+w

such that 1 < r* < r and let N be such that n > N implies that |a,,,/a,| > 1. Hence
lay.pl > () lanl, so limit |ay] = oo, whereas the limit would have to be zero if the sum
n—+w

converged. Thus Y'® &, diverges. To see that the test fails if limit {a,4,/a,l = 1,
ne+ oo

= 1

consider the series 1 4+ 1+ 1+ ---, and Z::; 1/n? for p> 1. In both cases
limit |a,+ ,/a,] = 1, but the first series diverges and the second converges.

n-w

(v) Suppose that limit(la,))'" = r < 1. Choose ' such that r < r’ <1 and N such
H~ o0

that n > N implies that |a,/' < r'; in other words, |a,| < (')". The series la;| +
lagl + *+ + lay—gl + @)Y + @YW+ + - - converges to |ay] + lag] + -+ + lay-y| +
VL ~ ), so by (ii), 3= | a converges. If IETit(la”I)l’” =r>1,choosel <r <r
and N such that n = N implies that Ja,|'/» > 1 or, in other words, a,| > (')". Hence
ijit la,l = oo and therefore, ZI‘:‘; , @ diverges.

To show that the test fails when limit(ja,)*” = 1, observe that, by elementary
n—om

analysis,
1 1/n 1 1/n
1imit<—> =] and limit(—z> =1
n-ow \ N1 n—owo \N

(take logarithms and use the fact that (log x)/x — 0 as x — c0.) But Z:‘;  In diverges
and Z:’;i 1/n? converges. '

(vi) For this part we accept some elementary facts about integrals from calculus.
In Figure 2-16a the rectangles of areas a;, a;, . . ., 4y enclose more area than that under
the curve from x = 1 to x = n + 1. Therefore, we have
n+

1
a, +az+~--+a,,>J fx) dx

1

If we now consider Figure 2-16(b) and take the area from x = 1to x = nwe have
n
éZ + as +o +an <j‘f(x)dx
1

Adding a, to both sides
n
a; + a, -+ ay 4+ 4 a, < a +jf(x)dx
1

Combining our two results, yields

n

nt i
f fHdx<ay+a;+ - +a<a +J S(x)dx
i 1

If the integral {7 f(x) dx is finite, then the right-hand inequality implies that the series
Y, a, is also finite by the completeness property of R; p. 12. But if [ f(x) dx is
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FIGURE 2-16

infinite, the left-hand inequality shows that the series is also infinite. Hence, the series
and the integral converge or diverge together. §

Worked Examples for Chapter 2

1. Let S = {(x;,x2) € R?||x;] < 1,]x,) < 1}. Is S open or closed or neither? What
is the interior of S?

Solution: S is not open, since there is no neighborhood around any point of §

with x, = 1 which is entirely contained in S. See Figure 2-17. On the other hand,

S is not closed, since
RAS = {(x;,x2) € R? | |x,] > 1, x| = 1}

and no neighborhood around a point of R*\S with x, = 1 is contained in R?\S.

Alternatively, we see that § is not closed by noting that the sequence (0,1 — 1/n)
converges, but the limit point (0,1) does not lie in S (see Theorem 9). :

We assert that int(S) = {{x;,x;) € R?||x;| < 1,i{x,| < 1}. We cneck this by
showing that the members of this set are the interior points of §. If |x,]| < 1, Ix,] < 1,
then the disc of center (x,,x,) and radius r = minimum{1 — |x|,1 — }x,}} lies in S.
The other points of S are not interior points as we have seen.
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S e

FIGURE 2-17

As the student becomes more familiar with this type of argument, some of the
details may be omitted.

. Show that if x is an accumulation point ofaset S < R then every open set containing

x contains infinitely many points of S.

Solution: We use proof by contradiction. Suppose there were an open set U
around x containing only finitely many points of 5. Let Xy, X3, - - + 5 Xy be the points
of § in U other than x. Let ¢ be the minimum of the numbers d(x,x,), d(x,%2), . - - 5
d(x,%,), so that & > 0. Then D(x,8) contains no points of § other than x, which
contradicts the fact that x is an accumulation point of S.

. If x = sup(S) for § = R, thenx € cl(S).

Solution: By Theorem 5, it suffices to show that either x € S, or that x is an accumu-
lation point of S. By Theorem 2 in Chapter 1, for any ¢ > 0, there isa ye S with
d(x,y) < & This means that if x ¢ S, x is an accumulation point of 3.

. A sequence can converge to at most one point (limits are unique).

Solution: Let x, — x and x, — y. Given & > 0, choose N such that k > N implies
ix, — x|l < &/2, and M such that k > M implies {ix, — yli < &/2. Then, fk=N
k> M, we have |lx — yll < llx — xdl + IIx, — ¥l < & (by the triangle inequality).
Since 0 < ljx — yl| < ¢ holds for every & > 0,llx — yll =0andsox = y.

Write [ = 0(g) if g(x) > 0 for x sufficiently large and if f(x)/g(x) is bounded for x
sufficiently large. Write / = olg) if flg goes to zero as x goes to +o0. Also write
'f ~ g (read [ is asymptotic to g)if f/g — 1 as x — co. Prove the following:

(a) x* + x = 0(x?)

(b) x* + x ~x*

(c) eYo8% = o(x).

Solution: We note that if f is asymptotic to g then it will follow automatically
that f = O(g) (why?). Thus {a) will follow from (b). But (b) is easy since we know that
(x* + x)/x* = 1 + 1/x goes to 1 as x goes 1o infinity. To prove (c) we note that

&98% = x, 50 & VPFx = ol /IEx=logx) Byt since logx — o0 as X — &,

logx — 0 as x — co so for X large, +/log x < (log x)/2 and hence for x large,
e ER [y < ¢~ 082 which goes to zero as x — 0.

Jiog x/
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Exercises for Chapter 2

v 1.

© N[-Lim[inR
n=1

¢ 2.
¥ 3.

74,

+5,
¢ 6.

€7,
v 8.
¢ 9.
« 10.

s11.

Discuss whether the {ollowing sets are open or closed:
(@ N2[in R =R (®) [2,3]in R
w

d) R"inR"

(e) A hyperplanein R

O L Rt () (eeR| L o

(h) {xeR"||Ixl| = 1} in R".
Determine the interiors, closures, and boundaries of the sets in Exercise 1.

Let U _be open in R" and U « A. Then show that U < int{4). What is the corre-
sponding statement for closed sets?

(a) Sh?w that if x, — x in R™, then x & cl{x,,x,,. . .}. When is x an accumulation
point?
(b) Can a sequence have more than one accumulation point?

() If x is an accumulation point of a set A, prove that there is a sequence of distinct
points of 4 converging to x.

Show that x € int(4) iff there is an ¢ > 0 so that D(x,g} < 4.
Find the limits, if they exist, of these sequences in R2. )

@ (-1 o (11)

o (e e =) (o)

Let U be open in R". Show that U = cl(U\bd(U). Is this true for any set in R"?
Let § « R and S be bounded above. Show that sup(S) € S is closed.
Show that ci(4) = R"\(int(R"\4)).

Determine which of the following statements are true.

(a) int(cl(4)) = int(4)

) cd)nAd=4

(o) cl(int(4)) = 4

(d) bd(cl{4)) = bd(4) '
(e) If Ais open, bd(4) = R"\4.

Show that in R", Xy > X iff for every ¢ > 0, there is an N such that m > N implies
||x, — x|| < & (this differs from Theorem 7 in that here *“<¢” is replaced by “<eg”).

. Prove the following properties {for subsets of R").

(a) int(int(4)) = int(4)
(b) int(4 U B) = int{4) U int(B)
(¢) int(4 n B) = int(4) n int(B).

. Show that cl(4) = A U bd(4) and int(d) = A4\bd(4).
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s14. Prove the following (for subsets of R").
(a) cl(cl(4)) = cl(4)
(b) ci{4 v B) = cl(4) v cl(B)
(©) cl(4 n B) < cl(4) n ci(B).

s 15. Prove the following (for subsets of R%).
(a) bd(4) = bd(R"\4)
(b) bd(bd(4)) = bd(A4)
(c) bd(4 U B) = bd(4) v bd(B) = bd(Au Bju4uB
(d) bd(bd(bd(4))) = bd(bd(4)).

a16. Leta, = ﬁ, a; = (ﬁ)ﬁ, R B (ﬁ)"". Show limit a, exists and compute
n—+w
the limit.
a17. Iy x,, converges absolutely in R", then show that Y. x,, sin m converges.

+18. If x,y e R" and x # y, then prove that there exist open sets U and V such that
xeU,yeV,andUnV = (.

» 19, Define a limit point of a set A tobea point x € R, such that if U is any neighborhood

ofx,then Un 4 # .
(a) What is the difference between limit points and accumulation points? Give

examples.
(b} If x is a limit point of 4, then show that there is a sequence x, € 4 with x, — x.
(c) Hxisan accumulation point of 4, then show that x is a limit point of 4. Is the

converse true?
(d) If~x is a limit point of A and x ¢ A, then show that x is an accumulation point.

(e) Prove: a set is closed iff it contains all of its limit points.

+70. Foraset 4 and x € R, let d(x,4) = inf{d(x,y) | y e 4}, and for & > 0, let D(4,8) =
{x]d(x,4) < e}
(a) Show that D(4,e) is open. B
(b) Let Ac R and N, = {xeR | d(x,4) < &}, where &> 0. Show that N, is

closed and that A is closed iff 4 = () {N.|& > 0}.
{c) Give some examples.

+ 21. Prove that a sequence X; is a Cauchy sequence in R* iff for every neighborhood
U of 0, there is an N such that k,! > N implies x, — x,e U.

» 22. Prove that the interior of aset A = R’ is the union of all the subsets of A which are
open. Deduce that 4 is open iff A = int(4). Also, give a direct proof of the latter
fact using the definitions.

¢23. Prove Theorem 3. [Hint: Use Exercise 14 of the Introductory chapter.]

2 24. Identify R**™ with R* x R™ Show that 4 « R**™ is open iff for each (x,y)& A,
with x e R", y € R™ there exist open sets UcR,Vc R withxe U, yeV, such
that U x V < A. Deduce that the product of open sets is open.

4 25. Prove that a set A — R" is open iff we can write A as the union of some family of
e-discs.

AN
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o 26. Define the sequence of numbers a, by

1 1

ag=1,a, =1+ sy =14 —m—
1+ao " 1+a,,__1

Show a, is a convergent sequence. Find the limit.
~27. Let S = {(x,y) € R*| xy > 1} and B = {d((x,),0,0)) | (x,y) € S}. Find in{(B).

¢ 28. Give examples of : -
{a) an infinite set in R with no accumulation points
{b) a non-empty subset of R which is contained in its set of accumula'tion points
(c) a subset of R which has infinitely many accumulation points but which contains
none of them
(d) a set A such that bd(4) = cl(4).

229, Le‘t A, B = R"and x be an accumulation point of 4 U B. Must x be an accumulation
point of either 4 or B?

30. Show that_any open set in Risa union of disjoint open intervals. Is this sort of
result truc‘m R"for n > 1 where we define an open interval as the Cartesian product
of n open intervals, Ja;,b,[ x -+ x Ja,b,[?

231, Let A’ denote the set of accumulation points of a set 4. Prove that A4’ is closed.”
Is (4") = A’ true for all A?

@32, Let. A = R" be closed and x, e A a Cauchy sequence. Prove x, converges to a
point in 4.

v 33, Ifet's,, be a bounded sequence of real numbers. Assume 25, < S5,y + 5,4;. Show
limit(s, 4+, — 8 = 0. i "
[ Ak ]

. k

2 34, Let x, € R* and d(x,+,,%,) < rd(x,,x,-,) where 0 < » < 1. Show x, converges.

235, Show that any family of disjoint non-empty open sets of real numbers is countable.

3 36. Let A, B = R" be closed sets. Does 4 + B = {x + y | xe 4 and y e B} have to
be closed?

7 37. For A < R", prove bd(4) = [4 n cl(R"\A4)] v [el(aN4].
# 38, Let x, € R" satisfy ||x, — x| < 1/k + 1/I. Prove that x, converges.

©39, LetS « R bebounded aboveand below. Prove sup(S) — inf(S) = sup{x — y|xe S
and y e S}. T

# 40. Suppose in R that for all n, a, < b,, @, < a,+,, and b,,, < b,. Prove that a
converges. "

241, Let A4, be subsets of R, 4,,, = 4,, 4, # &, but ﬂ:’“AH = (7. Suppose

x€ ﬂ:’___ , cl(4,). Show x is an accumulation point of 4.

242, Let A = R and x € R". Define d(x,4) = inf{d(x,y) | y € A} (See also Exercise 20).
Must there be a z € 4 such that d(x,4) = d(x,2)?

<43, Let x; = \/3, coy X, = /3 + x,.,. Compute limit x,.
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44. Aset 4 < R is said to be dense in B R"if B « cl(4). Il A is dense in R" and U is
open, prove A n U is dense in U. Is this true if U is not open?

« 45. Show that x®** = o(e”) (see Example 5, p. 56).
2 w 46. If / = olg) and if g{x) = 0 as x — oo then show that ¢/ = o(e”).
+ 47. Show that limit(x log x)/e* = 0 by showing thatx = o(e*?)and that log x = o(¢*/?).

48, Prove the following generalizations of the ratio and root fests:

(a) ifa, > Oand ,}Lrg) SUp @, 41/, < 1 then ) a,converges and if 1i_1:n infa,. Ja,>1
then Y a, diverges,

(b) if @, >0 and if limsup .\'/Z,; < 1 (respectively > 1) then 3" a, converges
(respectively diverges). (See Exercise 10, Chapter 1 for treatment of lim sup and
lim inf). ]

49. Prove Raabe’s test: if a, > 0 and if @y fa, <1 — Anfor A > 1 some fixed
constant and n sufficiently large, then . a, converges. Similarly show that if
yeifa, = 1 — 1/nthen}) a,diverges. [Hint: show that a, = O(rn~*) by.considering
p,=1_ -4k and establishing that log P, = — A logn + o).]

Use the above result to prove that the hypergeometric series CONVverges whose
general term is
o= alor + 1) (e 4+ n— DBB + N PB+n—1
" -2 nyy+ 1) @+n—1

where a, 8, and y are not negative integers.

3 50. Show that for x sufficiently large the function fx) = (ecos® x + sirvxz x)e* is
monotonic and tends to -+ o, but that neither the ratio f(x)/x*/ 2¢** por its reciprocal
is bounded.

51. (@) Ifa, > 0,n=1,2,... , show that
lim inf u, ., ,/u, < lim inf W/, < lim sup Y, < lim Sup s 1/thy -

(See Exercise 10, Chapter 1 for the definition of lim sup and Him inf.)

¢ (b) Deduce that if im . 1/t = A then lim \Ju, = A.
« (c) Show that the converse of part (b) is false by use of the sequence Uy, = Uzpe1 =

27, .
1 -
. (d) lim;\'/n_! =1f

» 52. Test the following series for convergence.

00 e—k
F @ ;;»\/k +1
s {©) Z___.__._.._._V"H

@®

k
- 0 ,;, 2 +1

2 Joglk + 1) - logk
a(d
Lin? —3n+1 @ ,; tan~ }(2/k)
L) © .3
v (e) Zsin(n-u),o( real, >0 ) Z _';_; E
n=1 =1

Chapter 3

Cpmpact and
Connected Sets

. In ihis ch'aq'ner, we study two of the most important and useful kinds |
- of sets in R". Intuitively, we want to say that a set in R" is compact when it is

ci:tlgsgd e‘l‘nd is qonte&ned ina bqunded region, and that a set'is connected when
p 1fsi in “one piece. As qsual, it is necessary to turn these ideas into rigorous
efinitions. Figure 3-1 gives some examples. The fruitfulness of these notions

is revealed in Chapte i i
b reveal pter 4, where they are applied to the study of continuous

compact
P noncompact

connected

FIGURE 3-1

not connected

Compact and connected sets in R2.
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3.1 Compact Sets: The Heine-Borel and
Bolzano-Weierstrass Theorems

Our first task will be to introduce some terminology prior to giving a precise
definition of compactness for sets in R". We say thataset 4 = R"is bounded
iff there is a constant M > 0 such that A = D(0,M). Thus a set is bounded
when it can be enclosed in some (large) disc D(0,M) about the origin; in other

words, ||x]| < M for all xe 4. A cover of a set A is a collection {U,} of sets

whose union contains A4; it is an open cover if each U; is open. A subcover ofa
given cover is merely a subcollection whose union also contains A or, as we
say, covers A; it is a finite subcover if the subcollection contains only a finite
number of sets. For example, the set of discs {D((x,0),1) \ x € R} in R? covers
. the real axis, and the subcollection of all discs D((n,0),1) centered at integer

points on the real line forms a subcover. Note that the discs D((n,0),1)

centered at even integer points on the real line do not form a subcovering

(why?).
Note: Open covers are not necessarily countable collections of open sets.

We now state the main theorem and an associated definition.

Theorem 1. Let A = R'. Then the following conditions are

equivalent: .
(i) Ais closed and bounded.
(ii)" Every open cover of A has a finite subcover.
(iii) Every sequencein A has a subsequence which converges to a point

of A.

Definition 1. A subset of R” satisfying one (and hence all) of the
conditions (i), (i), (iil) of Theorem 1 is called compact.

The equivalence of (i) and (ii) is often called the H eine-Borel theorem, while
the assertion. that (i) and (iii) are equivalent is called the Bolzano-Weierstrass

theorem.

Note:
not equivalent to (i) and (iii); for arbitrary metric spaces one defines com-

pactness by either of properties (i) or (iii). The equivalence of (i) with (ii) and
(iii) is a special and very important property of R".

The Bolzano-Weierstrass theorem is very reasonable intuitively. If 4 is
bounded, then any sequence of points in 4 must “bunch up” somewhere,
and the “bunching point” (there can be more than one) must lie in 4 if 4 is
closed (see Theorem 9, Chapter 2).

The Heine-Borel theorem is less obvious intuitively. Perhaps the best way
to see its plausibility is to consider some examples.

For metric spaces, in general (ii) and (iii) are equivalent but @is .
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EXAMPLE 1. The entire real line R is not compact for it is unbounded.
Notice that

{D(n,)) =Jn — Ln + 1[|n = 0,+1,£2,.. .}

is an open cover of R but does not have a finite subcover (why)?

ExampLE 2. Let A = ]0,1]. Consider the open cover {J1/n2[|n =
1,2,3,.. .}. (Why does the union contain all of A It, too, cannot have an
open su})cover. This time, condition (ii) fails because A4 is not closed; the
point 0 is “missing” from A. This collection is not a cover for [0,1] and, any
open cover for [0,1] must have a finite subcover—the above phenomenon

" cannot happen.

'l;hlere is anothef equivalent way of formulating (iii) which is sometimes
useful.

(i) Every infinite subset of A has an accumulation point in A.

We shall leave to the student the task of showing that (iii) is equivalent to -

- (iii). (See Exercise 3, at the end of the chapter.)

There is an alternative way of stating condition (ii) in terms of closed sets.
This is done by means of the “finite intersection property for A.” We say that
a cqllection of sets {4;} has the finite intersection property for A iff the inter-
iec(t.{?ln of any finite number of 4; with 4 is not void. Then (ii) is equivalent
o (ii)'.

(iiy Every collection of closed sets with the finite intersection property .~
for A has a non-empty intersection with A.

As we spall see in the proof (p. 72), (ii)’ is the same statemént as (i)
expressed in terms of the collection of (closed) complements of the open
cover in (ii).

ExampLE 3. Determine which of the following are compact. )
(@) {xeR|x > 0}. W

(b) [0,1] v [2.3].

© {(xy)eR?|x* + y* < 1}.

' 'Solution: (a) Nop—compact because it is unbounded. (b) Compact because
it is a closed set and is bounded. (c) Non-compact because it fails to be closed.

EXAMPLE 4. Let x, be a sequence of points in R” with ||x,[| < 3 for all k.
Show that x, has a convergent subsequence.




ya
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i

B ‘1. Which of the following sets are compact?
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Solution: Theset A = {x¢& R | Ixll < 3} is closed and bounded, hence
compact. Since x, € 4, we can apply Theorem 1 (iii) to obtain the conclusion.

EXAMPLE 5. In Theorem 1 (i), can “every” be replaced by “some?”

Solution: No. Let 4 = R and consider the open cover consisting of the
single open set R. This certainly has a finite subcover, namely itself, but R,
being unbounded, is not compact.

s

"’::'“EXAMPLE 6. Let A = {0} U {1,1/2,..,1/n,.. .}. Show directly that con-

dition (ii) of Theorem 1 holds.
Solution: Let {U,} be an arbitrary open cover of 4. We must show that

there is a finite subcover. Now 0 lies in one of the open sets, say 0 e U,.
Since U, is open and 1/n — 0, there is an N such that 1/N, 1N + 1),...lie
inU,.Let1e Uy ..., 1N - 1)eUy. Then Uy, .. ., Uy is a finite sub-
cover since it is a finite subcollection of the {U;} and it includes all of the
points of A. Notice that if 4 were the set {1,1/2,. . .} then the argument would

not work.

Exercises for Section 3.1
B b
}_ . .

]
LA

“(a) {xeR|0< x < landxis irrational}.
®) {cmeR* o< x <1} [
© {y)eR? |xy = 1} 0 {p) [ %" + ¥ <5 bt

22, Let ry,rz,ra, ... be an enumeration of the rational numbers in [0,1]. Show that
there is a convergent subsequence.

¢ 3. Let x, — x be a convergent sequence in R".
(a) Show that {x,} U {x} is compact.
{b) Verify explicitly condition (i) of Theorem 1.

~ ‘“,.114.\Let A be a bounded set. Prove cl(4) is compact.

25, Let A be an infinite set with a single accumulation point in- 4. Must 4 be compact?

.

3.2 ' Nested Set Property

There is an important consequence of Theorem 1 called the nested set

property.
Theorem 2. Let F, be a sequence of compact non-empty sets in R"
such that Fyyy < Fpforallk = 1,2,... . Then there is at least one
point in (\=_ Fy.

NESTED SET PROPERTY

[Rl

b4 o
28T

AP/ RO
L

Joe

FIGURE 3-2 Nested set property.

Intuitively, the sets F are getting smaller and smaller, so it seems very
reasonable that there should be a point in all of them. However if the F, are
non-compact the intersection can be empty (see Example 2). Thus the actual
proof requires more care.

One can prove this precisely by using the Bolzano-Weierstrass theorem.
I?ick x, € F, for each k. Then the x, have a convergent subsequence, as they all .
lie in F,, which is compact. The limit point then must lie in all of the sets

- F, because they are closed (see Figure 3-2 and Exercise 4). V

An even easier proof which uses Theorem 1(ii)’ is found at the end of the

chapter.

ExampLE 1. Verify Theorem 2 for F, = [0,1/k] = R.

. Solution: Each F, is compact and clearly, Fy..,; < F;. The intersection
is {0} which is non-empty.

ExampLE 2. Is Theorem 2 true if “compact non-empty” is replaced by
“open non-empty” or “‘closed non-empty?”

Solution: No. Let F, = Jk,00[ or [k,c0[.

Exercises for Section 3.2

» 1. Verify Theorem 2 for F, = {xeR|x > 0,2 < x* <2 + 1/k}.

¢ 2. Is Theorem 2 true il “compact non-empty” is replaced by ‘‘open bounded

non-empty”’?

¢+ 3. Let x, — x be convergent in R". Verify the validity of Theorem 2 for F, =
{x/|I = k} U {x}. What happensif F, = {x, |1 > k}?

4. Let x, — x be convergent in R". Let o/ be a family of closed sets with the property
that for each 4 € &, there is an N such that k = N implies x, € 4. Prove that
xen .



66 COMPACT AND CONNECTED SETS
3.3 Path-Connected Sets

The second important topic to be discussed in this chapter is connectedness.
We know intuitively to what kind of sets we would like to apply the term
“connected.” However, our intuition can fail in judging more complicated
sets. For example, how do we decide if the set {(x,sin 1/x) | x>0} u
{(0,5) | y € [—1,1]} in R is connected? See Figure 3-3. Therefore, we would
like to formulate a sound mathematical definition upon which we can depend.

There are, in fact, two different but closely related, notions of connectedness.
The more intuitive and applicable of these is that of path-connectedness, sO
we begin with it. Our definition must first define what is meant by a curve

(or path) joining two points.

Definition 2. A continuous path joining two points x, yin R"is a
mapping ¢: [a,b] = R such that ¢(a) = x, () =y and ¢ is
continuous. Here x may or may notequal yand b > a.In Chapter 4,
we shall study continuous mappings in detail, but for now, let us
call @ continuous if

(t = ) = (o(t) — o(0)

for every sequence #, in [a,b] converging to some /€& [a.b]. (The
student will recall from earlier courses that, intuitively a con-
tinuoys path is one with no breaks or jumps in it.) A path ¢ is said
to lic in a set A if @(f) € A for all t € [a,b]. See Figure 3-4.

We say that a set A4 is path-connected if any two points in the set
can be joined by a continuous path lying in the set 4.

[RI

FIGURE 3-3 Connected?
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FIGURE 3-4 Curve joining x, y in A.

For example, it is evident that the region 4 in Figure 3-4 is path-connected.
Another path-connected set is the interval [0,1] itself. To prove this, let,
x, y € [0,1] and define ¢: [0,1] = Rby ¢() = (» — x)t + x. This is a path
connecting x and y, and it liesin 4 = [0,1].

Using the above definition of path-connected, a little thought will con- -
vince the reader that the set in Figure 3-3 is not path-connected, although

"the actual proof of this fact is not simple. Most of the time it is rather easy to

determine if a set is path-connected. Simply see if any two points can be
joined by a continuous curve lying in the set, and this is usually clear geo-
metrically. The second notion of connectedness is harder to check directly
but will be very useful. It appears in Section 3.4.

ExampLE 1. Which of the following sets are path-connected?
{a) [0,3].

by [1,2] v [3.4].

© {x»)eR*|0<x <1}

@) {(x»)eR*|0 < x* + y* < 1}.

Solution: Only (b) is not path-connected and is clear from a study of
Figure 3-5.
ExAMPLE 2. Must a path-connected set be closed? Or open?

Solution: No; [0,1], 10,1{, [0,1] are all path-connected.
ExampLE 3. Let ¢: [0,1] — R® be a continuous path, and ¥ = ¢([0,1]).
Show that % is path-connected.

Solut_ion: This is intuitively clear, for we can use the path ¢ itself to join
two points on %. Precisely, if x = ¢(a), y = @(b), where 0 < a< b < 1,
let ¢: [a,b] = R?, c(f) = @(#). Then, ¢ is a path joining x to y and c lies in €.
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FIGURE 3-5

Exercises for Section 3.3

1. Determine which of the following sets are path-connected.

¢ (a) {x e [0,1]] x is rational}.
s (b) E(x,y)elelxy >1landx > 1} u{xyeR?|xy<landx < 1}.

(o) {&x,p,2) e R? | x* + y* <z} U {,p:2) | x> + y* + 2 > 3}
s @ {xeR* |0 x < Bu{Eoll <x<2}
+2. Let A < R be path-connected. Give plausiblq argl'lmerzxts that A must be an interval
(closed, open, or half-open). Are things as simple in R*?
93. Let ¢: [a,b] — R be a continuous pathanda<c<d<b Let ¥ = {o@)]c
t < d}. Must ¢~ (®) be path-connected ?

<

i

3.4 Connected Sets

iti " if there do not
Definition 3. A set A c R" s called connected 1
‘exist two non-empty, open sets U, V suchthat Ac ULV, 4N

U#@',AnV;ﬁQ,andAnUnV=Q.

Intuitively, the sets U and V would separate 4 into two pieces, and if

i i d (Figure 3-6).
this happens, we want to say 4 is not connecte -
The Sept in Figure 3-3 can be shown to be connected but not path-connected;

thus the two notions are not the same. However, there is a valid relation
between the two ideas, which is presented in the next theorem.

- Exampre2. Is{(x,)e R?|0 < x?+ y* < 1} connected?
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—

FIGURE 3-6 A is neither connected
nor path-connected. ,

Theorem 3. If a set A is path-connected, then A is connected.

Use of this theorem is perhaps the easiest way to identify a connected set.
The theorem is reasonable, intuitively. In fact, the (false) converse theorem is
also reasonable. Here then is an example of two notions which are closely
related, and which are intuitively almost identical, but discerning the true
relationship between them requires more care. (The set in Figure 3-3 is .
connected but not path-connected.)

If a set 4 is not connected (and hence not path-connected), we can divide it
up into pieces, or components. More precisely, a component of a set 4 is a
connected subset 4, < A such that there is no connected set in 4 containing
4y, other than A, itself. See Figure 3-6. Thus we see that a component is a
maximal connected subset. One can define path-component in a similar way,
using path-connectedness instead of connectedness. Some properties of
components are found in the exercises of the end of the chapter.

ExameLel. IsZ ={...,—2,—1,0,1,2,3,...} < Rconnected?

Solution: No, for if U = ]1/2,00[, ¥ = J—00,1/4[, then Z =« U U ¥,
ZNnU={123,..}# T, ZnV={.,-2,-10}# Z,and Zn U n
V = (&. Hence Z is not connected. It is also evident that Z is not path-
connected, but observe that this fact cannot be used to conclude that Z is
not connected.

Solution: As in Example 1d of Section 3.3, we know that this set is path-
connected. Hence, by Theorem 3, it is connected. To prove this directly

would be difficult.

Exercises for Section 3.4
\(""1. Is [0,1] U ]2,3] connected? Prove or disprove.
- \{72; Is {x,)eR*[0 < x < 1} U {(x,0)] 1 < x < 2} connected? Prove or disprove.

7

4 ~.
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3. Let A = R® be path-connected. Regarding A < Rr?

let us show that (i) =
by proving a special case.

Lemma 1. The H eine-Borel property (if) h

set [a,x] can be covered by a finite collection of the U
[a,b]. To this end, ( :

is bounded above by b. Also, since [a,b] is €
Suppose ¢ € Uy such a Uy,
an & > 0, such that Je —&c + f =
suchthatc —e < x ¢ (see Theorem 2, Chapter 1). Becau

subcover, say, Uy, .
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as a subset of the x — ¥ plane,

show that 4 is path-connected. Can you make a similar argument for connected ?

4. Discuss the components of:

@ [01]u23] =R
) Z = {--0—2,= 10,12 -}
(© {xe[0,1]]xis rational}.

Theorem Proofs for Chapter 3

Theorem 1. Let A = K. Then the following conditions are equivalent:
() Ais closed and bounded. .

{ii) Every open cover of A has a finite subcover.

(iii) Every sequence inA .

(iiy Every collection of closed sets with the

has a subsequence which converges to a point of A.
finite intersection property for A has a

non-empty intersection with A.

i ii i hen (i) <> (i) First,
ro0f ! hall first prove that () = (i) = (i) = (@), and t . .
P that G (ii),p which is probably the most difficult. To do this, we begin

olds for closed intervals [ab]inR. .

r00f': = covering of [a,b]. Define A = {xe[ab] | the
P o e e c B o ;}. We want to show that 4 =

i i A),and 4

t ¢ = sup(d). The sup exists because A # & (since a € A),

o el losed, ¢ € [a,b] (see Example 3, Chapter 2?.
exists since the U;’s cover [a,b]. Since Uy, is open, there is
U,,. Since ¢ = sup(A), there exists an X € A,
f se x € A, [a,x] has a finite _
., Uy then [ac + ¢/2] also has the finite subcover Uy, . - - » Uy,

ad moreover, that ¢ = b. Indeed, ifc < b,we would

eAda
Uy e condde nite subcover. The latter

get a member of 4 Jarger than ¢, since [a,c + &/2] has a fi
cannot happen since ¢ = sup(4). B

Question. Why does this fail for Ja,b], [a,b[, or for [a,00[?

If A « R is compact and x, € R™ then A X {xo} is compact.

A % {xp},and ¥ = v|v= {yl(y,xo)eU},
4 has a finite subcover of
Ut is

Lemma 2.

Proof: Let % be an open cover of x (ks A8
U e #}. Then ¥ is an open cover of A in R", and hence fin
A, }= (Vi . Wb Each V; e ¥ corresponds to a U,e¥,and ¥ = {U,,.

then a finite subcover in% of A x {xo}. B

-1 < R~ has the Heine-Borel property, then [-RRY = R

Lemma 3. If [—R.R . x [—R,R], n times.

has the Heine-Borel property. where [R,R]" = [~R.R] %
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Proof: Suppose [—R,R]""! has the Heine-Borel property and that % is an open
cover of [—R,R]" Let § = {xe[~R,R]| [-R,R]""* x [—R,x] can be covered by
a finite number of sets in %}. Now — R € §, since [ —R,R]"~! satisfies (ii) by hypothesis,
and so by Lemma 2 [ —R,R]""! x {—R} hasa finite subcover in %. Also, S is bounded
above by R and therefore § has a supremum, say Xo. We will show that x, = R which
will prove the lemma.

Let %' = % be a finite subcover of [—R,R]"™' x {xo}. For each (yxo)€
[—R,RJ"™! x {xo} there exists &, > 0 such that D((y,xo),ﬁ g,) is covered by %'. But
V, = D(y.,) X 1o — €uXg + gl = D((y,xo),ﬁ g,) so V, is covered by #'. Consider

 the open cover ¥ = {¥,|ye[~R.R]""'} of [~R,R]""! x {xo}. By Lemma 2,

¥ hasa finite subcover of [— R,R]"™! x {xo},58y {¥,ys. - Vyy}- Lete = inf{ey,,. . sy}
Then [—R,R]"™! x Jxg — &xo + 8 = UY, %, and so [~RR]"™! x Jxg — &
xo + & is covered by %'.

Now with this &, there exists x € S such that xp — € < X < Xp. Since x € S, there
exists a finite subcover %" < % which covers [—RRI"* x [-R,x], and %' v "
is a finite cover of [—R,R]"™! x [—R,x, + &[. Thus x, € S. Suppose X, < R, then
choose & such that xp + 0 < R and xo + & < xg + & Thus [-R,R]! x
[—R,xy + 6] is covered by o o %", and x, + 6 € S, a contradiction, and therefore
x = R.

‘We will be able to prove our main theorem after we have one more lemma with which
to work.

Lemma 4. If A satisfies (ii), B is closed and B = A, then B also satisfies (ii).

Proof: Let {U,} be an open covering of B, and let V = R"\B. Then {U;,V} is an
open cover of 4. If {Uy,.. .Up,V} is a finite subcover of 4, then {U,,.. ., Uy} is a
finite subcover for B. ’

Theorem 1 Proof that (i)= (i): Since 4 is bounded, it lies in some cube
[—R,R}". By Lemma 3 and induction on », this cube satisfies (ii). By Lemma 4, A does
also, since A is closed. J

Theorem 1 Proof that (ii) = (iii): \ Suppose the sequence x, € 4 has no convergent
subsequences. In particular, this means that x, has an infinity of distinct points, say,
Y1s Y2, - - - - Since there are no convergent subsequences, there is a neighborhood U,
of y, containing no other y;. This is because if every neighborhood of y, contained
another y; we could, by choosing the neighborhoods D{(y,,1/m), m = 1,2, ... select ,
out a subsequence converging to yy. Also, we claim that the set y,, ¥, . . . is closed.
Indeed, it has no accumulation points by the assumption that there are no convergent
subsequences (see Exercise 4 at the end of Chapter 2). Now, by Lemma 3 above,
{y1:¥25- - -} satisfies (i). But {U,} is an open cover which has no finite subcover, a
contradiction. Thus x, has a convergent subsequencg.j’l’o show that the limit lies in A
amounts to showing that 4 is closed. We leave this to Exercise 20. §

Theorem 1 Proof that (iii) = (i): First, we show that 4 is closed. For this, we use
Theorem 9, Chapter 2. Consider a sequence X, — X with x, € A. By (iii), the limit lies
in 4, so A4 is closed.
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Next, we prove that 4 is bounded. Suppose, in fact, 4 is not bounded. Then there
are points x, € 4 with xdl =k k=1,2,3,.... This implies that the sequence X
cannot have any convergent subsequences since, il y was a limit point, |y}l =
llzamit llxl = co (see Exercise 16). This is impossible if we have y e R". il

Theorem | Proof that (ii) <> (ii): First, we prove that (i) = (iiy. Let {F;} be a
collection of closed setsand let U; = R"\F,,s0 U;is open. Supposethat 4 n (ﬂf"= . F) =
&. Then, taking complements, this means that the U, cover 4. Being an open covering,
there is a finite subcovering (by assumption (i) say, 4 < U,u: U Uy Then
AAF, A nFy =, s0 {F;} does mot have the finite intersection property.
Thus if {F;} is a collection of closed sets with the finite intersection property, then
An{F}+# . ‘

Finally, we show (i)' => (ii). Indeed, let {U;} be an open covering of 4 and let
F, = R\U;. Then 4 n (N, F) =3 and so by (ii), {F;} cannot have the finite inter-
section property for 4. Thus An(F,n-nFy)= 7 for some members Fy oo, Fy
of the collection. Hence Uy, . . . » Uy is the required finite subcover.

Theorem 2. Let F, be a sequence of compact nonempty sets in R such that Fy.y < Fy
forallk = 1,2,... . Then(\" Fu # &.

Proof: Let us observe that in the compact set 4 = F, the scts Fy, F,, .. havethe
finite intersection property. Indeed, the intersection of any finite collection equals the
F, with the highest index. Thus, since (i)’ holds for compact sets, we have

) F‘“@,F")= NF)#2. 1

k=1

Theorem 3. If aset A is path- connected, then A is connected.
Again, we begin by first proving a special case of the theorem.*

Lemma 5. The interval [a,b] is connected

Proof: Suppose the interval were not connected. Then there would be two open
sets U and V with U n [ab] # & and V0 [ab] # @, [ablnUnV =0 and
[a,b] = U v V. Further, suppose that b e V. Let ¢ = sup(U n [a,b]), which exists as
this .set is bounded above. Now U n [ab] is closed, since its complement is VU
(R\[a,b]), which is open. Thus c e U ~ [a,b] (sec Exercise 8, Chapter 2). Now ¢ # b,
since c ¢ ¥V and be V. Any neighborhood of ¢ intersects V ~[ab] since ¢ # b and no
neighborhood of ¢ can be entirely contained in U as ¢ = sup(U n [a,b]), so that ¢ is
an accumulation point of ¥  [a,b]. Butas with U, V ~ [a,b]isclosed,soce V' n [a,b].
This contradicts the fact that V.n U n [ap]=2. &

Proof of Theorem 3: Suppose A is not connected. Then, by definition, there exist
open sets U, Vsuchthat Ac Uu V,AnUNnV = Z.UnN A+ J,andV N A# @

* It is not necessary to prove Lemma 5 first; one can proceed directly as well, but it scems useful
to note that the crux of the argument has to do with connectivity of an interval.
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Chgose?c € U A Aand y e V A A. Since A is path-connected, there is a path ¢: [a,b] —
R" in A joining x and y. Set Uy = ¢~ {(U)and ¥, = @~ '(V), s0 Uy, V5 = [a,b] ’Now
U, 1s'closed., because if we let £, — t, with ¢, € Uy, then, by continuity of @, ¢(t ,) —+ o(t);
but since T'/IS open, o(t) ¢ V, or else o(t,) € V for large k. Hence ¢(t) e U r; A gr teU ’
Thus U, is closed. Similarly, ¥, is closed. Let U’ = ]—o0,a[ U (R\V), and V" o
1b,00[ U (R\U,), which arc open sets. Observe that U’ n [ab] # & (i(t) ’contains a)
V' [ab] # & (it contains b), U' n V' = &, and U’ U V'  [a,b]. Thus [a,b] i;

- not connected, contradicting Lemma 5. 8

Worked Examples for Chapter 3

1. Show that 4 = {xe R" | Jixil < 1} is compact and connected.’

Solufio.n: To show that 4 is compact, we show it is closed and bounded. To show
that it is closed, consider R\4 = {x € R"| [|x|| > 1} = B.Forxe B, D(x, {lx|| — 1) =
B (see Theorem 1, Chapter 2), so B is open, and hence 4 is closed. It is ,obvious that
A is bounded, since 4 « D{0,2) and therefore A is compact.

To show that A4 is connected, we show that 4 is path-connected. Let x, ye 4
Then the straight line joining x, y is the required path. Explicitly, use ¢: [0 lj - IR"'
@(t) = (1 — t)x + ty. One sces that o(t) € 4 since @l < (1 — o Ix] -; t vl <’ ‘
(1 — t) + t = 1 by the triangle inequality. h

2. Let A = R", x e 4, and y € R"\4, Let ¢: [0,1] - R" be a (continuous) path joining

x and y. Show that there is a ¢ such that o(t) e bd(4).

Solu!ioz.z: Intuitively, this result says that a path which joins a set to its complement '
must pierce the boundary of the set at some point. See Figure 3-7.

Let B = {xe[0,1]] ¢([0,x]) = A} = [0,1]. Now B # J, since O B. Let
t = sup{B). We shall show that ¢(t) & bd{4). Let U be a neighborhood of ¢(t). Choose
t, € [0,t], &, — ¢, such that (1) & A. This is possible by definition of B. Then p(t,) € U
for large k by continuity of ¢. By definition of ¢, there is a point s, such that ¢ <k 5 <
t + 1/k and such that ¢(s,) ¢ 4. Now s, — ¢, so by continuity of ¢, ¢(s,) e U fcl;r\k
large enough. Thus U contains points of 4 and R"\4,and so, by Theorem 6 of Chapter
2, ¢(t) € bd(4). i

3. Prove: A set A — R is connected iff it is an interval—an interval is a set of the form

[a,b], [a,b[, Ja,b], or Ja,b[, where a or b can be +co on an open end of the interval.

t

pierce point

24

FIGURE 3-7 A path joining A and R"\A.
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Solution: We have already seen that intervals are connected because they are
path-connected. Now, for the converse, assume that A is not an interval. We shall
show that it is not connected. Saying A is not an interval means that there exist
points x, y, z suéhthatx < y < z;x,zeAand y¢ 4. (Why?). Then U = ]— o0,¥L
and V = ]y,oo[areopensetssuchthatA cUUVUNVRA=UnA+#,
and Vn A # . Thus A is not connected.

Exercises for Chapter 3

« 1. Which of the following sets are compact? Which are connected?
(a) {(x1.x7) € R? f Ix,l < 1}
(b) {xeR"|lIxll < 10}.
© {xeR"|1 < [xll <2}
(d) Z = {integers in R}.
{e) A finite set in R".
() {xeR"||ixll = 1} (distinguish between the cases n = L and n = 2).
(g) Perimeter of the unit square in R%,
(h) The boundary ofa bounded set.
(i) The rationals in [0,1].
(j) A closed set in [0,1].

+ 7. Prove that a set 4 = R" is not connected iff we can write A « F, U F,, where
Fl,anreclosed,AnFlan =@ F nA# @ Fand#d.

« 3. Prove the following assertions. . o
a) A sét A is compact iff every infinite subset has an accumulation point in A.
{b) A bounded infinite set 4 has an accumulation point (not necessarily in 4).

« 4. Show that a set A is bounded iff there is a constant M such that d(x,y) < M for
all x, y e A. Give a plausible definition of the diameter of a set and reformulate

your result.

e 5. Show that the following sets are not compact by exhibiting an open cover with no

finite subcover.
(@) {xeR*|ixll < 1}.
(b) Z, the integers in R.. -

7 6. Suppose that in Theorem 2 {nested set property), the diameter .(F,‘) -+ 0, Show
that there is exactly one point in n{F,} (by definition, diameter (F,) =
sup{d(x,y) | x,y € Fi})- A

¢7. Let x, be a sequence in R" which converges to x. Let A, = {Xg X4+ 1, - -y and show
that {x} = ()=, cl(4y). :

k=1
s 8. Let A = R"be compact and x, a Cauchy sequence in A. Then show that x, converges
to a pointin 4.

59, Determine (by proof or counterexample) the truth or falsity of the following

statements.
; (a) (A compact in R") = ( R A connected).
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(b) (4 connected in R") => (R4 connected).

' (c) (A connected in R") = (4 open or closed).

cd) (A= {xeR|IIxl <1} = (R"\A connected). [Hint: Check the cases 1 =1
andn = 2.]

10. A set 4 is said to be locally path-connected® if each point has a neighborhood U
such that 4 n U is path-connected. Show that {4 connected and locally path-
connected) < (4 path-connected).

11. (a) Prove that if 4 is connected in R" and A c B < cl(4), then B1is connected.

(b) Deduce from (a) that the components of a set 4 are relatively closed. Give an
example in which they are not relatively open. (C = 4 is called relatively

 closed in A if C is the intersection of some closed set in R” with 4.)

(c) Show that if sets B; and B are connected and B, n B # @ for all i, then
(U, By is connected. Give examples.

(d) Deduce from (c) that every point of a set lies in a unique component.

(e) Use (c) to show R" is connected assuming just that lines in R" are connected.

#12. Let 8 be a set of real numbers which is non-empty and bounded above. Let —§ =
{xeR| —x & S}. Prove that :
(a) —S§ is bounded below,
(b) sup § = —inf —S.

» 13. Let M be a complete metric space and F, a collection of closed non-empty subsets
of M such that F,,, < F, and diameter (F,) - 0. Prove that ﬂ:’: , F, consists of
a single point.
¢ 14. (a) A point x € A in R" is said to be isolated in a set A if there is a neighborhood
U of x such that U n 4 = {x}. Show that this is equivalent to saying that there
is an ¢ > O such that for all y e 4, y # x, we have d(x,y) > &.

(b) A set is called discrete if all its points are isolated. Give some examples. Show
that a discrete set is compact iff it is finite.

15. Let K, = R"and K, < R be path-connected (respectively, connected, compact).
Show K, x K, is path-connected (respectively, connected, compact) in R+,

8 16. If x, — x, then prove that {{x,|| = |lx||. Is the converse true? Use this to give a proof
that {x e R" | |x]} < 1} is closed, using sequences.
217. Let K be a non-empty closed set in R", x € R"\K. Show there is a y € X such that
d(x,y) = inf{d(x,z) | z € K}. Is this true for open sets?
v18. Let F, < R be defined by F,={x|2— 1/n < x* <2+ l/n}. Show that
o P . Use this to show the existence of ﬁ

»19, Let ¥, = R™ be open sets such that cl(¥}) is compact, ¥, # @, and c(V;) < V,_,.
Prove (N2, ¥, # &.

v 20. Prove that a set 4 with property (i) of Theorem 1 is closed as follows. Let x be an
accumulation point of 4 and suppose x ¢ 4; for each ye 4, choose disjoint
neighborhoods U, of y and ¥, of x. Consider the open cover {u,}.

* This terminology differs somewhat from that of standard topology books.
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21,

2 22.

e 23,

¢ 24,

» 23,

26.

27.

328.

8 29,
v30.

31.

32.

COMPACT AND CONNECTED SETS

(a) Prove: aset 4 = R"is connected iff @f and A are the only subsets of 4 which
are open and closed relative to A. (A set U = A is called open relative to A if
U = V A for some open set ¥V < R"; closed relative to 4 is defined similarly).
(b) Prove that @f and R" are the only subsets of R* which are both open and closed.

Find two subsets 4, B = R? and a point x, € R? such that 4 U B is not connected
but 4 U B U {x,} is connected.

Let Q denote the rationals in R. Show that both Q and the irrationals IR\Q are not
connected. ) i

Prove thataset 4 = R"is ((ot connected if we can write 4 as the disjoint union of
twosets Band CwithBn A # &, CnA# I and such that neither of the sets
B or C has a point of accumulation belonging to the other set.

Prove that there is a sequence of distinct integers ny, fiz; ... = @ such that

limit sin(n,) exists.
ko0

Show that the completeness property of R may be replaced by the nested set

property.

Let {x,}2; be a bounded sequence in R. Let § be the set of all limit points of {x,}.

(a) Prove that § is bounded and non-empty. Let x* = sup S, x, = inf S, x* is
called the limit superior of {x,} and is denoted by lim sup x, or lim x,. x, is
called the limit inferior and is denoted by lim inf x, or lim x,. Prove the following.

(b) The definition coincides with that of Problem 10, Chapter 1.

(c) x*eS.

(d) Fdt each ¢ > 0 there exists me N suchthatn = m=x, < x* + &.

(e) x* is the only number having both of the properties (c) and (d).

(f) {x,} converges <>x* = x,.

(g) Let x, = (—1)""*(1 + 1/n). Find x* and x,.

Let A = R" be connected and contain more than one point. Show that every point

of A is an accumulation point of 4.

Let A = {(x,y) e R*| x* + y* = 1}. Show that 4 is compact. Is it connected ?
Let U, be a sequence of open sets in R". Prove or disprove that

(@ Uy, Uxis open,

(b) ()., U is open.

Su'ppose Ac R is not compact. Show that there exists a sequence F; o F; ©
F, ;- of closed sets such that F, n 4 # @ for all k and

ﬁFk)nA=Q.
=1

[Hint: A set in R" is compact iff every countable open cover has a finite subcover.]

(Baire Category theorem for R") A set S < R is called nowhere dense if
cl(S) n U # U for any non-empty open set U. Show that R" cannot be written as
the countable union of nowhere dense sets, R = U:’: , S [Hint: IFR" = UP_ | S,

@ 33.

034,

8 35.

036,

(~ « 37,

#38.

39.

40.
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find a non-convergent Cauchy sequence x, by carefully choosing nested balls
D(xy,) < 'R"\(Sx U Sy

Let x, be a sequence in R? such that |jx,., — x,/| < 1/(n* + n),n > 1. Show that
X, COnverges.

Prove that any closed set 4 < R" is a countable intersection of open sets. [Hint: Let
U, = {yeR"|d(x,y) < 1/k for some x € 4}.]

Let the sequence ay, a,, . . . in R be defined by

a; = a;

= g2 :
a,=at., — .y + 1, ifn>1.

For what ae R is the sequence {a) monotone? (b) bounded? (c) convergent?
Compute the limit in the cases of convergence.

Let A = R" be uncountable. Prove that 4 has an accumulation point.

Let A, B = R" with A compact, B closed,and A n B = (.
(a) Show thereis an ¢ > 0 so that d(x,y) > eforallxe 4, ye B.
(b) Is (a) true if 4, B are merely closed?

(Qantor set.) Let F; = [0,1/3] u [2/3,1] be obtainec\ from [0,1] by removing the
middle third. Repeat, obtaining F, = [0,1/9] u [2/9,1/3] u [2/3,7/9] u [8/9,1].
In general, F, is a union of intervals and F, ., is obtained by removing the middle
third of these intervals. Let C = ﬂ‘f F,, the Cantor set. Prove:

(a) C is compact.

{b) C has infinitely many points. [Hint: Look at the endpoints of F,.]

(c) int(C) = &.

(d) Show that C is perfect, that is, is closed with no isolated points.

Show that 4 < R" is not connected iff there exist two disjoint open sets U, ¥ such
that UnA# &, VnA# @ and 4 « Uu V. [Hint: Let U, ¥ be the open
sets from the definition; set 4, = AN Uy, 4y = ANV, and let U = {xeR"|
d(x,4,) < d(x,A,)} and V = {x e R*| d(x,d,) > d(x,4,)}.]

Let F, be a nest of compact sets (that is, Fp,..; < F;). Furthermore, suppose each
F, is connected. Prove that () {F,} is connected. (You may use the result of
Exercise 39.) Give an example to show that compactness is an essential condition
which cannot be replaced by “F, a nest of closed connected sets.” )



Chapterl 4‘

Continuous
Mappings

T:) be able to obtain interesting and useful theorems, it_ is often
necessary to make certain restrictions on the mathemgtical ,obJec.:ts one
studies. In this chapter we require that the functions studle.d be co.nt1lnuous,
and we will investigate some of the consequences of this I'eStI'lCtIOD.. In
Chapter 6 we study an even stronger restriction, namely, that of differ-

entiability.

4.1 Continuity

First, let us examine intuitively the notion of continuity for real functions on
the real line R. Figure 4-1a shows a continuous function, and 4-1b shows a
discontinuous one. A continuous function has the impor‘tant property that
when x is close to xg, f(%) is close to f(xo) (as shown in Figure 4-1a). On the
other hand, in Figure 4-1b, even if x is very close to X, f (x) may not b.e
close to f(xo). The reader should be familiar with these ideas from basic

calculus.

In order to define continuity in precise terms, first the concept of the limit

of a function at a point is defined.

Definition 1. Let A c R, f1 4~ R™, and suppose X, is an
accumulation point of 4. We say that b e R™ is the limit of f at xo,
written |

limit f(x) = b,

x—*X0
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) ________/
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/\ X
7 \// - 4

(a) ’ ®)

FIGURE 4-1 (a) Continuous function. (b) Discontinuous
function.

if given any & > 0 there exists § > 0 (depending on f, x,, and &)
such that for all xed, x # x5, |x — Xof < J implies that

If(x) — bl <e.

- Intuitively, this says that as x approaches x;, f(x) approaches b. We also
write f(x) = b as x — x,. (Compare this with the concept of the limit of a
sequence.) Note that if x, is not an accumulation point, there will not be any
X # Xq, X € A near x, in which case the condition becomes vacuous.

Note that limit f(x) may not exist; for example, let f: R\{0} = R be
-+ X0

defined by f(x) = 1ifx < 0,2if x > 0. Then 0 is an accumulation point of

R\{0} but lir_p(i)t [{x) doesn’t exist. However, if f(x) = 1,ifx # 0,and f(0) = 0

then lix_*{lgt f(x) = 1. Another example is f: R\{0} — R, f(x) = sin(1/x);

this function oscillates faster and faster near 0 and so cannot approach
any limit there. However, if EEE: f(x) exists, then it is unique, so we are
justified in saying the limit of f at x,. To clarify further, suppose li_.mit flx) =

b and b'. To show & = &', let ¢ > 0 be given. Then there existxélxo> 0 and
8, > Osuch that |x — x,| < 6, implies || f(x) — b]| < &/2and [[x — x,[| <

8, implies ||f(x) — &'] < ¢/2. Let § = min{6,,6,}; then |x — xo| <&’
implies |6 — &) < ||b — S| + | f(x) = b'l| < &/2 + &/2 = g;thus ||b —

b'| < eforanye,andso |b — &' = 0,orb = b'. (Compare with uniqueness

of the limit of a sequence, p. 56.)

We are now ready to define continuity of a function at a point.

Definition 2. Let 4 = R*, f1 4 - R", and let x, € 4. We say that
[ is continuous at x if either x, is not an accumulation point of 4 or
limit f(x) = f(xo).

X—*Xxp
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Note that this requires the existence of limit f(x) in addition to specifying
xX=*X0

its value. Definition 2 can be rephrased as follows: f is continuous at the
point x, in:its domain iff for all ¢ > 0, there is a 6 > 0 such that for all
xed, ||x — xo| <& implies [|f(x) — flxo)ll <e. In Definition 1 we
needed to specify that x # x, because f was not necessarily defined at xg,
but here there is no need to specify x 5 x, since our condition is certainly
valid if x = x,.

There is some additional notation that is useful. Suppose f is defined at
least on ]xo,a] = R for some a > x,. Then

limig fx) =0

means the limit of f with domain 4 = Jx,,a]. In other words, for every & > 0
there is a 6 > 0 such that |x — xo| < &, x > x, implies 1f(x) — bl <.
Thus we are taking the limit of f as x approaches x, from the right. Similarly

we can define
limit () = b,

the limit as x approachés x, from the left. These are, for obvious reasons,
called one sided limits. It should now be clear to the reader how to define

expressions like limit f(x) = a, and so forth.
X+

Definition 3. A function f: A — R™is called continuous on the set
B < A if f is continuous at each point of B. If we just say f is
continuous, we mean [ is continuous on its domain 4.

There are other useful ways of formulatirig the notion of continuity. One
of these is particularly significant because it involves only the topology (that
is, the open sets), and so it would be applicable in more general situations.

Theorem 1. Letf: A — R" be a mapping, where A < R" is any set.
Then the following assertions are equivalent.

(i) fis continuous on A.
(it) For each convergent sequence X, = Xo in A, we have f(x;) —
f(xo)-
(iii) For each open set U in R", f “YU) = A is open relative to A;
that is, f ~Y(U) = V n A for some open set V.
(iv) For each closed set F = R™, f~ Y(F) « Ais closed relative to A;
that is, f ~}(F) = G A for some closed set G.

Actually condition (ii) in this theorem has an analogous version for limits
which can be proved in the same way as (ii) is proved. Namely if /1 4 — R"
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and x, is an accumulation point of 4, then
limit f(x) = b
if and only if T
llggnit flx) =108

for every sequence x, € 4 which converges to x,.

. Fror.n this theorem it is evident that our definition of a continuous path
given in Chapter 3, coincides with continuity as we have defined it here,
In Sectlon 4.3, we shall establish theorems which will enable us to establish'
easily the continuity of the more common functions.

We' s}lall now briefly discuss the plausibility of Theorem 1. First of all
Fhat .(1) is the same as (ii) should be clear, for (i) means that f(x)is near f(x ),
if x is near x,, and (ii) is the same except that it lets x approach x, via oa
sequence. The assertions (iii) and (iv) are also the same if we rememb?er that
open sets are complements of closed ones.

Let us see what (iii) is telling us. Choose U to be a small open set containing
S(xo). Th‘en f “ (U) being open means that there is a whole open disc around
Xq pontamed in f ~}(U). For x in this disc, x is mapped to U, which represents
points negr‘ J(xo). In other words, using U as a measure ol,’ closeness of f(x)
to f(xo), if x is near enough to x, (namely, x € £ ~}(U)), f(x) will be near to
S (xg). This therefore represents the same idea expressed, in (i).

EXAIYIPLE 1. Let f: R" = R" be the identity function x > x. Show that fis
continuous.

Solution: Fix x, € R. By definition we must find § > 0 for given ¢ > 0

such that |x — x4] < 5. %mplies [ f(x) — f(xg)ll < &. But, clearly, if we
f:hoo_se 0 = ¢, the definition becomes the statement that ||x — xoll <&
implies lx — x,| < ¢, which is a tautology. Hence f is continuous.

ExampLE 2. Let f: ]0,00[ — R; x + 1/x. Show that f is continuous.

Solution: Fix Xo € ]0,00[; that is, fix x, > 0. To determine how to
choose J, we examine the expression

)

1769 = Fxo)l = H- _L
Xo
- [xo — x|

[ xol

If|x — x4 < &, then we would get

[f(x) — flxo)l <i.=_.5_

[x xg] X xg )
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FIGURE 4-2 <

Now, if we make sure that § < xo/2, then we will have x > x,/2 (Figure 4-2)
s0 8/x xo < (26/x3). Now given ¢ > 0, choose = min(xo/z,sx(z,/_Z). Then
the above argument shows that | f(x) — f (%) < gif|x — xo| < 6. Thus f
is continuous at x,.

ExaMPLE3. Letf: R" — R™be continuous. Show that {xeR"| /)l <1}
is open. ‘ , |

Solution: The above set is nothing but f ”l{yl l! yll < 1} which is thg:
inverse image of an open set, so by Theorem 1 (iii) it is open.

Exercises for Section 4.1

pl. @) Let 1R~ R, x> x2. Prove that f is continuous.
" (b) Let f: R? — R, (x,y) —>x. Prove that f is continuous.

+.2. Use (b) above to show that if U = R is open, then A = {(x,y)e R*| x e U} is open.

» 3. Let 'f: R? > R be continuous. Prove that 4 = {(x.y)€ R?|0 < flx,y) < 1} is
closed.

» 4. Give an example of a continuous function f: R — R and an open set U < R such
that f(U) is not open. :

o 5. Prove directly that condition (iii) implies condition (iv) in Theorem 1.

4.2 Images of Compact and Connected Sets

Now some important consequences of continuity shall be deduced. Tl'1e first
thing to know is how compact and connected sets beha\fe under contxquous
mappings. It is crucial to distinguish between the terms image and p‘re-zma.gﬁ
(that is, inverse image) in these theorems; compare the following wit

Theorem 1 above.

Theorem 2. Let f: A — R" be a continuous mapping. Then

(i) ifK = AandKis connected [respectively, path-connected], then
f(K) is connected [respectively, path-connected],

(i) if B = A and B is compact, then f(B) is compact.
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The result of (i) is clearest if we use path-connectedness, that is, if ¢(z) is
a path joining x and y in K, then f(c(¢)) is a path joining f(x) and f(y) in
f(K). {(See Theorem 3 below for continuity of f(x{#)).) Hence f(K) is path-
connected.

The result of (ii) is less obvious intuitively. However, if we use the Bolzano-
Weierstrass characterization of compactness it comes fairly easily, for if
f{x,) is a sequence in f(B), then x, has a convergent subsequence, so we get
a corresponding convergent subsequence for f(x,).

ExampLE 1. Let K = R? be compact. Prove that 4 = {xe R | there exists
a y such that (x,y) € K} is compact.

Solution: Letf: R? — R,{x,y) — x.Then fis continuous (see Exercise 1
of Section 4.1). We claim that 4 = f(K), so 4 would be compact by Theorem
2. To prove the cldim, let x € 4. Then (x,y) € K for some y, so x = f(x,y) €
f(K). Conversely, if x = f(x,y) for some (x,y) € K, then x € A by definition.

ExampLE 2. Find a continuous map f: R — R and a compact K = R such
that £~ }(K) is not compact.

Solution: Let f(x) = 0 for all x e Rand let K = {0}. Then f"}(K) = R

" is not compact.

ExampLE 3. Let f: R?> » R be continuous, and let 4 = {f(x) | |x| = 1}.
Show that 4 is a closed interval.

Solution: Clearly, A = f(S) where S = {xe R?||lx|| = 1} is the unit
circle. Now S is connected and compact so 4 is connected and compact.
By Example 3, at the end of Chapter 3, 4 is an interval. But the only compact
intervals are the closed ones.

Exercises for Section 4.2

¢ 1. Let f: R — R becontinuous. Which sets below are necessarily closed, open, compact,
or connected?
@) {xeR|flx) = 0}.
() {xeR|sx) > 1]. ) '
© {fmeR]|x > 0}.
@ {fHeR[0<x <1} thaal !

v 2. Verify Theorem 2 for f: R* = R, f(x,) = x* + y,K = B = {(x,)| x* + y* < 1}.

¢ 3. Give an example of a continuous map f: R — R and a closed set B < R such that

Sf(B) is not closed. Is it possible if B is bounded as well?

“4. Let A, B = R, and suppose A x B « R?is connected. Prove that 4 is connected.

¢ 5. Let 4, B = R, and suppose A x B = R? is open. Must A be open?

AN



84 CONTINUOUS MAPPINGS

FIGURE 4-3 Composition of mappings.

4.3 Operations on Continuous Mappings

is intuiti lausible that the composition of continuous functlon:
Isiméfxléngtltézit};nsous, as we shall now discuss. Rec:'il! that for. {4 : _/_1) Eﬂ [i;y
and g: B » R? with f (4) = B, we define the cqmposﬁmn geof: ena
x = g(f(x)). If x is close to Xo, thf:n g o f(x) is close ;o gFS f éf§4-3
f(x) is close to f (xo); hence g(f(x)) 18 close to g(f(x0))- See Fig .

This indicates the plausibility of the following result.

Theorem 3. Suppose [+ A = R" and g: B - RP are continuous
functions with f(4) < B. Then g o f: A — RP is continuous.

For example, the function ¢*in * is continuous because it is the composition
2 3 _ <
of the two continuous functions f(x) = sinx and g(x) = €.

Note: We'shall accept as known from calculus the properties of the basic

i i ed later in several
functions such as sin x, €%, and so forth. These will be us

les. ' ]
ex?l'rlr':g following theorem gives some of the fundamental properties con-

cerning the arithmetic of limits.
. " lation point of A.
Theorem 4. Let A = R, and let xg be an agcurrfu int
(i) Let f: 4~ R" and g: A — R be functions; assumfe 1:911: J(x)
and limit g(x) exist and are equal to a and b respectively. Then
x—*Xo

'limit (f + g)x) exists and is equal to a + b (where f+g:4-R"

e dofined by (f + @) = £() + g(x). N
lfigeﬁj f :};1({-» Rgc)z(mz g: A — R™ be functions; assume 1,1‘151:: f(x)

and limit g(x) exist and are equal to a and b respectively. Then
1imit’z}fng)(x) exists and is equal to ab (where f-g: A4 — R™ is
Jefined by (f * 9)x) = S(x)g)-

OPERATIONS ON CONTINUOUS MAPPINGS 856

(ii)) Let f:A - R and g: A — R™ be functions; assume liglit f(x)
and ijét g(x) exist and are equal to a # 0 and b respectiu;lyfoThen
fis n.on'-(.'zero in a neighborhood of x4 and li_rpit (g/f¥x) exists and is
equal to bja (where g/f: A — R™ is deﬁnez l;yo (g/f)x) = g(x)/f(x)).

These results are eminently reasonable intuitively. For instance, (i) states
that if x is close to x4 so that f(x) is close to a and g(x) is close to b, then
Sf(x) + g(x)is close to a + b. From Theorem 4 we may deduce immediately
some basic properties of the arithmetic of continuous functions.

Corollary. Let A = R", xo € A an accumulation point of A.

(i) Let f: A — R™ and g: A - R™ be continuous at x,; then the
sumf + g: A — R™is continuous at x,.

(it) Let f: A — R and g: A - R™ be continuous at x,; then the
product [+ g A — R™ is continuous at x,.
(iif) Letf: A — Randg: A — R™be continuous at xq withf(x,) # 0;
then f is non-zero in a neighborhood U of x, and the quotient
g/f: U — R™ is continuous at x,.

For example, we have seen that f(x) = x, mapping from R to R, is con-
tinuous, and therefore so is f(x) = x"; also, any polynomial a,x" +
Ay X" 4 4 aq.

Now consider f: R? — R, Think of f as a function of two real variables,
f(x,y). It is crucial to distinguish between continuity of f (sometimes called

joint continuity) and continuity in each variable separately. For example,
consider the function

0 fx#0andy +# 0;
fx,y) = .
1 ifeitherx =0ory = 0.
See Figure 4-4. In each individual variable, f is continuous at (0,0) (the
Y
\

FIGURE 4-4 Separate and joint
continuity.
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mappings x — f(x,0) and y — f(0,y) are constant, and so are continuous),
but f itself is not continuous at (0,0) (why?). See Exercise 16 at the end of this
chapter for sufficient conditions on separate continuity needed to imply
continuity.:

ExampLE 1. Let f: R — R, f(x) = x sin x. Show that f is continuous.

Solution: We know x and sin x are continuous and f is the product of
two continuous functions and so is continuous.

ExaMpLE 2. Let f: R — R? be continuous. Show that g(x) = f(x* + x°) is
continuous.

Solution: g is the composition of f on the continuous function x — x* +
x3 and so is continuous by Theorem 3.

ExaMmpLE 3. Let f(x) = x*/(1 + x). Where is [ continuous?

Solution: We define f for x # —1. Then, by Theorem 4(iii), f is con-
tinuous at all x # —1.

Exercises for Section 4.3

# {. Where are the following functions continuous?
(a) f(x) = x sin(x?).
» 2

(b) f1x) = );z+_x1 ,x2# 1, f(£1) = 0.
© ) =325 x 2 0,50 = 1.

2. Let, in R, @, — a and b, — b. Prove @b, — ab by using Theorems 3 and 4.
3. Let A = {xeR|sinx = .56}. Show that 4 is a closed set. Is it compact?
* 4, Show /1 R-> R, x— \/l—x—l is continuous.

v 5, Show f(x) = \/3cz_-§-—I is continuous.

4.4 The Boundedness of Continuous Functions
on Compact Sets

We are now ready to prove an important property of continuous real-valued
functions called the “boundedness theorem.” The boundedness theorem
says that a continuous function is bounded on a compact set and attains its
largest or maximum value and its smallest or minimum value at some point
of the set. The precise definitions will be stated in Theorem 5.
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y

R

fx) =

FIGURE 4-5 An unbounded
continuous function. :

To appreciate this result let us consider what can happen on a noncompact"

. set. First, a continuous function need not be bounded. Figure 4-5 shows

the functi.on f{x) = 1/x on the open interval J0,1[. As x gets closer to 0,
the function becomes arbitrarily large, but f is nevertheless continuous,

since f is the quotient of 1 by the continuous function x ~» x which does
not vanish on ]0,1[.

.Next, we can show that even if a function is bounded and continuous, it
might no’f assume its maximum at any point of its domain. Figure 4-6 shows
the function f(x) = x on the interval [0,1[. This function never attains a

0

FIGURE 4-6 A function with no
maximum.
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maximum value because even though there are an infinite number of points
as near to 1 as we please, there is no point xfor which f(x) = 1. From these
examples, it should be fairly plausible that, for a continuous function on a
compact set, these pathologies cannot occur.

Let us now state the theorem formally.

Theorem 5. Let A = R"and f: A — R be continuous. Let Kc A
be a compact set. Then f is bounded on K, that is B = {f(x) |xe
K} = Ris a bounded set. F urthermore, there exist points xq, x; € K
such that f(xo) = inf(B) and f(x;) = sup(B). We call sup(B) the
(absolute) maximum of fon K and inf(B) the (absolute) minimum of

fon K.

1t should be appreciated that this result is deeper than the usual derivative
tests for the location of maxima and minima that we learn from calculus.
For example, there are continuous functions on R which are differentiable
at no point; such functions cannot be graphed by a smooth curve so our
intuition is not as clear in these cases (see Exercise 19, p. 144).

ExampLE 1. Give an example of a discontinuous function on a compact set
which is not bounded.

Solution: Let f:[0,1] = R be defined by f(x) = 1/x if x>0 and
f(0) = 0. Clearly, this function exhibits the same unboundedness property

as does 1/x on ]0,1].

ExampLE 2. Verify Theorem 5 for f(x) = x/(x* + 1) on [0,1].

Solution: f(0) =0, f(1) = 1/2. We shall verify explicitly that the
maximum is at x = 1, the minimum is at x = 0. (Elementary calculus helps
to determine this, but we shall givea direct verification.) First,as 0 < x < 1,
x/(x* + 1) = 0since x > Oand x* + 1 = 1,50 f(x) = f0) for 0 < x < 1.
Thus 0 is the minimum. Next, note that 0 < (x — 1) =x*—2x + 1,50
x? + 1 > 2x and hence for x # 0,

I

B -

Rl

x4+ 1
so f(x) < f(1) = 1/2 and thus x = 1 is the maximum point.

ExAMPLE 3. Show that x, and x, in Theorem 5 need not be unique.

Solution: Let f(x) = 1 for all x € [0,1]. Then any Xo, X, € [0,1] will do.
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Exercises for Section 4.4

s 1, ?;vi an example of a continuous and bounded function on all of R for which Theorem
ails.

a2, Verify Theorem 5 for f(x) = x® — x on [~ 1,1].

a 3, Let f: K < R" — R be continuous on a compact K and let M = {xe K| f(x) is
the maximum of f on K}. Show that M is a compact set.

4, Let f1A < R"— R be continuous, x,ye A4 and ¢:[0,1] » R" a curve joining
x and y. Show that along this curve f assumes its maximum and minimum values.

¢ 5. Study Theorem 5 in the context of f(x) = (sin x)/x on ]0,00[.

4.5 The Interimediate-Value Theorem

The intermediate-value theorem is perhaps well known from elementary
calculus. It states that a continuous function on an interval assumes all
value's between any two given values. See Figure 4-7a. The noncontinuous
‘functxon f in Figure 4-7b never assumes the value 1/2. Briefly, this tells us
that while a discontinuous function can jump from one value to another
a continuous function must pass through all intermediate values. ,
' Another way the intermediate-value property can fail is if the domain 4
is not connected, as illustrated by the continuous function ihﬂﬁgﬁ}éh'—&
Thus the crucial assumptions are that f be continuous and f be defined
on a connected region. We shall see that the proof of Theorem 6 is quite
simple because of the way we have formulated the notion of connectedness
{see Example 1 below and the theorem proofs at the end of the chapter).

fx)
1
B —_—
7
_l___—-—l
4
x e o IELS
4
(b)

FIGURE 4-7 Intermediate-value theorem.
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FIGURE 4-8 Continuous function
with a disconnected domain.

Theorem 6. Let A < R* and f: A — R be continuous. Suppose
K < A is connected and x, y € K. For every number ¢ € R such that
f(x) < ¢ < f()), there exists a point z € K such that f(2) = c.

Since intervals (open or closed) are connected (this was proven in Example 3
at the end of Chapter 3) the usual intermediate-value theorem becomes a

special gase of Theorem 6. However, notice that Theorem 6 is more general.

It applies, for example, to continuous real-valued functions of several
variables [(Xy,. . .,x,) defined on all of R", which is a connected set.

ExampLE 1. Discuss a possible proof of Theorem 6 using the fact that f(K)

is connected.

Solution: That f(K) is connected comes from Theorem 2.. Henc? f(K)
is an interval, possibly infinite. But if f(x), f (_y) € f(K), in .partxcular,'
[/ (),f (] = f(K)since f (K)is an interval. So if ¢ is the same as In Theorem
6, ce [S(x).f(»)] so c€ f(K), s0o ¢ = f(2 fgr some z. This is in fact one
way of proving Theorem 6. Another is given in the theorem proofs section.

EXAMPLE 2. | Let f(x) be a cubic polynomial. Argue that £ has a (real) root
X, (that is, f(xo) = 0).

Solution: f(x) = ax® + bx* + ¢cx + d, where a # 0. Suppose that
a > 0.For x > 0, x large, ax? is large (and positive) and w11} be bigger than
the other terms so f(x) > 0 if x is large, x > 0. This reqmres‘som.e exact
estimates but should be intuitively clear. Similarly, f(x) < 0 if x is large
and negative. Hence we can apply the intermediate-value theorem to conclude
the existence of a point x, where f(xo) = 0.
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ExaMpLE 3. Let f:[1,2] — [0,3] be a continuous function with f(1) = 0,
f(2) = 3. Show that f has a fixed point. That is, show that there is a point
X € [1,2] such that f(xp) = x,.

Solution: Let g(x) = f(x) — x. Then g is continuous, g(1) = f(1) — 1 =
—1, and ¢(2) = f(2) — 2 = 3 — 2 = 1. Hence by the intermediate-value
theorem, g must vanish at some x, € [1,2] and this x, is the fixed point for

fx).

Exercises for Section 4.5

1 1. What happens when you apply the method used in-Example 2 to quadratic poly-
nomials? To quintic polynomials?

#2, Let f be continugus: R" — R™ Let I' = {(x,/(x)) | x e R"} be the graph of f in
R* x R™ Prove that I is closed.

s 3. Let f: [0,1] = [0,1] be continuous. Prove that f has a fixed point.

24, Let f:[ab] — R be continuous. Show that the range of f is a bounded closed
interval.

> 5. Prove that there exists no continuous map of [0,1] onto J0,1[.

4.6 Uniform Continuity

Sometimes it is useful to have available a slight variant of the definition of
continuity. Often the applications are technical ones, such as labor-saving
devices in proofs. Still, the notion of a uniformly continuous function is a
basic one and it is used widely. The exact definition is as follows.

Definition 3. Let f:' A - R"and B < 4. Wesay that [ is uniformly
continuous on the set B if for every-¢ > 0 thereisa § > 0 such that
x,y € B and d(x,y) < & implies d(f(x),f(y)) < &.

The definition is similar to continuity, except that here we must be able
to choose & to work for all x, y once ¢ is given. For continuity we were only
required to choose a § once we were given ¢ > 0 and a particular x,. Clearly,
if f is uniformly continuous, then f is continuous.

Forexample,consider f: R — R, f(x) = x*. Then fiscertainly continuous,
but it is not uniformly continuous. Tndeed, for ¢ > U and %, = 0 given, the
§ > Owe-needis-atleast assnmall-as £/(2x,), so if we choose x, large, 6 must
get smaller. No single § will do for all x,. This phenomenon cannot happen
on compact sets, as the next theorem shows.
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Theorem 7. Let f: A~ R" be continuous and let K = A be a
compact set. Then f is uniformly continuous on K.

{ i i do, for consider
The use of merely bounded sets in Theorem 7 will not do, :
what can happen on the noncompact set 10,1]. Let f(x) = 1/x. Then if we

examine the proof that f is continuous (Example 2, Section 4.1ywe see again
that f is not uniformly continuous. Of course, we cannot make f continuous

on the compact set [0,1] because itis unboundefi. L
Another very useful criterion for uniform continuity is given in Example 2

below.

ExampLe 1. Let f: 10,11 = R, f(x) = 1/x. Show f is uniformly continuous
on [a,1] fora > 0.

Solution: The solution can be immediately drawn from Theorem 7,
since [a,1] is a compact set.

ExampLi 2. Let f:]ab[ = R be differentiable and suppose ' M.
Here, a or b may be 00, and f* stands for the derivative of f. Show that f

is uniformly continuous on Ja,bl.

Solution: The definition of uniform continuity a.sks us to estimate
1f(x) —f(y) in terms of |x — y|. This suggests using the mean-value
theorem (see p. 156 for a review). Indeed,

£69 = f) = f'Gxo)lx = 3)

) — fOl < Mlix — )l

Given ¢ > 0, choose § = ¢/M. Then |x — y| < 6 implies

for some x, between x and y. Hence

) = fON < M-8 =M-¢/M=¢.

Hence f is uniformly continuous. . . o
The intuition here may shed some more light on uniform continuity.

Namely, this result says that if the slope of the graph ofa tjunction is bour}dgd,
then it is uniformly continuous. This is often a good guide when examining

specific functions or their graphs.
ExaMPLE 3. Show that sin x: R — R is uniformly continuous.

Solution: d(sin x)/dx = €08 X is bounded in absolute value by 1, so by
Example 2, sin x is uniformly continuous.

THEOREM PROOFS FOR CHAPTER 4 93

Exercises for Section 4.6
# 1. Demonstrate the conclusion in Example 1 directly from the definition.
2 2. Prove that f(x) = 1/x is uniformly continuous on [a,co fora > 0.
3. Do you think a bounded continuous function on R has to be uniformly continuous?

¢4. If f and g are uniformly continuous, R —» R, must the product f - g be uniformly
continuous? What if f and g are bounded?

5. Let f(x) = |x|. Show that f: R — R is uniformly continuous.

46. Show that f: R — R is not uniformly continuous iff there exists an & > 0 and
sequences x, and y, such that |x, — y,| < 1/n and | f(x,) ~ Sy = e. Use this to
prove that f(x) = x? is not uniformly continuous. .

Theorem Proofs for Chapter 4

Theorem 1. Let f: A—R™ be a mapping, where A = R" is any set. Then the following
| assertions are equivalent.
g . (i) [ is continuous on A.
© (ii) For each convergent sequence x, — Xo in A, we have f(x;) — f(xo).
(iti) ForeachopensetUinR™, f~}(U) = Aisopenrelativeto A;that is, [T WU)y=Vnd
Jor some open set V.
(iv) For each closed set F = R™, f ~YF) < A is closed relative to A; that is, [ ~“YF) =
G N A for some closed set G.

Proof: The pattern of the proof will be (i) = (ii) = (iv) = (iii) = (i).

Proof of (i) = (ii): Suppose x, — Xx,. To show that f{x;) — S(xg), let € > 0; we
must find an integer N so that k > N implies d(f(x,),/{x0)} < & To accomplish this,
choose & > 0 so that d(x,x) < & implies d(f(x),f(xo)) < &. The existence of a dis
guaranteed by the continuity of f. Then choose N so that k > N implies d(x;,x¢) < 0.
This choice of N yields the desired conclusion.

Proof of (i) = (iv): Let F = R be closed. To show [N(F) is closed in A4, we use
the fact that a set B is closed relative to 4 iff for every sequence x, € B which converges
to a point x € A4, then x € B (see Theorem 9, Chapter 2). The reader should write out
the proof of this assertion. Here, let x, € f ~1(F) and let x, — x, where x € 4. We must
show that x  f~(F). Now, by (ii), f(x,) — f{x), and since f(x,) & F and F is closed,
we conclude that f(x) € F. Thus x € /~!(F).

Proof of (iv) = (iii): If U is open, let F = R™\U, which is closed. Then, by (iv),
f~YF) = G n A for some closed set G. Thus 7Y U) = An (R\G), so fTHU) is
open relative to A. '

Proof of (iii) = (i): Given x,€ 4 and & > 0, we must find & so that d(x,xp) < &
implies d{(f(x),f(xo)) < . Since D(f(xc).e) is an open set, f~}(D(f(xo).8)) is open by
(ifi). Thus by the definition of open set and the fact that xo € £~ (D{f(xo):€)), there is a
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5 > 0 such that D(xg,0) M4 < f “YD(f(xo),£). This is another way of saying that
(x € A and d(x,x,) < 6) = (d([(x).f(xo)) < &) B i

To gain practice with these concepts, one might try proving (directly) other impli-
cations above; for example, (i) = (iii), or (i) = ().

Theovem 2. Let i A - R™ be a continuous mapping. Then
() if K = A is connected, then f(K) is connected;
(ii) if B = A is compact, then J(B) is compact.

Proof: (i) Suppose f(K) is not connected. Then, by definition, we can write
fIK)yc UuV, where Un VafK) =, UnflK)# O, Vn f(K) # &, and
U, V are open sets. Now, [ “YU) = U' n A for some open set U’; and similarly,
fYV) = V' A for some open set V', From the conditions on U, ¥, we see that

UAaVAK=g KcUuV, U nK# ,and V'~ K # . Thus K is not

connected, which proves the assertion.
(ii) Let y, be a sequence in f(B). By Theorem | of Chapter 3, it must be shown that

"y, has a subsequence converging to a point in f(B). Let y, = f(x), for x, € B. Since B -

is compact, there is a convergent subsequence, say, x,, — X forx € B. Now, by Theorem
1(i), f(x,,) — f(x), 50 f (x,,) is a convergent subsequence of y,. B ’

The path-connected part of Theorem 2(i) follows as in the text. In the proof of (ii) we
used the characterization of a compact set as a set in which every sequence has a
convergent subsequence. One may also use the Heine-Borel criterion for compact
sets (try it). Note that, in general, the continuous image of a closed set need not be
closed. THus compactness of B is crucial in proving that f(B)is both closed and bounded.

Theorem 3. Suppose f: A — R" and g:B—~[R" are continuous functions with f(4) < B.
Thengo [ A —» RT is continuous.

Proof: Let U < R? be open. Then (g o f)~YU) = f~ g~ *(U)). Now, g N U) =
U' ~ B for some U’ open, and f~}(U' n B) = f~}U"), since f(4) = B. Since [ is
continuous, f ~YU") = U" n Afor U” open. Thus g o fis continuous by Theorem1. §

The other conditions of Theorem 1 can just as easily be used in order to prove
Theorem 3. Instead of proving Theorem 4, we shall confine ourselves to proving its
Corollary. The general case is similar; the only complexity is in notation.

Corollary. Let A = R".
() Let f:A—R" and g: A~ R™ be continuous. Then [ + g: A~ R" defined by
(f + g)x) = J{x) + g(x) is continuous. i
(ii) Let f:A— R and g: A - R™ be continuous. Then f-g: A— R" defined by
(f* g)x) = fx)glx) (multiplication of the scalar f(x) by the vector g(x)) is continuous.
(iii) Let f1A— Randg: 4 — R™ be continuous for A = R If f(x) # 0 for allxe A,
then g/f is continuous on A.

Proof:- (i) Let xoe A and suppose & > 0 is given. Choose &, > 0 such that
d(x,xo) < 8, implies d(f(x), f(%0)) < &/2 and &, > 0 such that d(x,x,) < &, implies
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d(g(x),g(xo)) < &2. Then let & be the minimum of 8, 6,. Therefore, if d(x,xo) < 6,
we have by the triangle inequality, '
If + 9)x) — (f + ol = IL1x) = flxo) + g(x) — glxolll
< 7)) = Sxolll + llglx) — gleolll

<ELE_
ST E

(ii) Let xoe 4 and suppose € > 0. Choose &, such that d(x,xo) < o, implies
1f(x) — f(xo)l < &2 llglxolll and [/ < f(xo)l + 1 (why is this possible?). Also
choose &, such that d(x,x,) < &, implies that ljg(x) — gleolll < &/2(/(xo)l + 1). Then
for & = min(8,,8,), d(x,x,) < 6 implies (by the triangle inequality)

1/506) — falxoll = 1/ ()g(x) = fx)glxo) + f(x)glxo) — STxodg(xo)ll
< |/ llglx) = gleolll + 17(x) — SGxoll llgleolll

{using the fact that j{jex|| = [of [lx]| for xe R", x € R). Continuing the above estimate,
we get )
1/80) = faleolll < (7 Gxo)l + De/20/Gxoll + 1) + llglxolll /2 llglxolll
e &
A

(iii) By proof (ii), it suffices to consider the case 1/f for g/f = g- (1/f).

To show that 1/f is continuous, given x4 € A, choose §; such that |f(x) — fixo)l <
(Lfxolif2) for flx — x| < &,. This is possible by the continuity of /. It follows that
1 = (L/(xo)l/2). Now, given & > 0, choose &, such that [ix — x.il < &, implies

1fx) — flxoll < &1f(xo)l?/2 .
Then if 8 = min(5,,6,), l|x — xoll < & implies

| ) = f)] G — Sl
76 Tol | feofe) | T TGP

This shows that 1/f(x) is continuous at x, and hence it is continuous on 4. B

Theorem 5. Let A < R and f: A — R be continuous. Let K « A be a compact set.
Then f is bounded on K, that is B = {f(x)| x € K} = R is a bounded set. Furthermore,
there exist points xo, %; € K such that f(xo) = inf(B) and f(x;) = sup(B). We call
sup(B) the (absolute) maximum of f on K and inf(B) the (absolute) minimum of f on K. '

Proof: TFirst, B is bounded above, for B = f(K) is compact by Theorem 2, 50 it is
closed and bounded by the definition of compactness. Second, we want to produce
an x, such that x, € K and f{x,) = sup(B). Now, since B is closed, sup(B) & B = SIK)
(see Exercise 8, Chapter 2). Thus sup(B) = f{x,) for some x; € K.

The case of inf(B) is similar. (The student should write out the details.) §

Note: We can also get the case of inf(B) by applying the above supremum case to
—f and observing that the maximum of —f is the minimum of f.
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Theorem 6. Let Ac Riandf: A~ R be continuous. Suppose K = A is connected and
x, y € K. For every number c & R such that f(x) < ¢ < f(y), there exists a point ze K
such that f(z) = c.

Proof: Suppose no such z exists. Thenlet U = ]—ooe = {teR |t < ¢} and Jet
¥ = Je,o0[. Clearly, both U and V are open sets. Since f is continuous, we have
f~YU) = Uy n K for an open set Uy, and similarly, /~'(V) = Vo n K. By definition
of Uand V,wehave Ugn Vo n K =, and by the assumption that (zeK|f(2) = c} =
@, we have Ug 0 Vo 2 K. Also, Uy n K # @, since x € U; and ¥V, n K 5 &, since
y € V. Hence, K is not connected, a contradiction. B

Theorem 7. Let [1 A — R™ be continuous and let K = A be a compact set. Then fis
uniformly continuous on K.

Proof: Given & > 0, for each x e K, choose &, such that d(x,y) < ¢, implies
d{f(x),f(») < &/2. The sets D(x,8,/2) cover K and are open. Therefore, there is a finite
covering, say, D(x;,0,,/2), - - - D(%y,0.,,/2). Let & = minimum &,,/2, . . . , 0x,/2. Then
if d(x,y) < 6, there is an x; such that d(x,x;) < 8,,/2 (since the discs cover K), and
therefore d(x;,y) < d(x,x) + d(x,y) < 3, Thus by the choice of d,,, d(f(x),f(y) <
AfES(x)) + dUGe).S) < &2 + &2 =& i

Worked Examples for Chapter 4

1. Let /1 A — R™ be written as

’ F60) = (f10se - o Sul6) -

Then show that f is continuous iff each component f; is continuous, i=1,...,m
Solution: Let f be continuous. If x, — x in A, we must show that fi(x,) = fi{»)
for each i. But this is an immediate consequence of the fact that f(x,) — f(x), and a
sequence in R™ there flx,)) converges iff its component sequences converge (see
Section 2.7). The same reasoning proves the converse.

2. Let f: A — R™becontinuous. For K < Aaconnected set,show that {(x,f(x)) |xeK}

is connected in R* x R™ = R+, This set is of course just the graph of f.

Solution: Consider the rﬁapping g KR~ R x R™ defined by g(x) = (x,f(x)).
By the previous example, g is continuous. But g(K) = {(x.f(x)) |xeK}, and the
image of a connected set is connected, by Theorem 2.

3. Let f: A — R™ be continuous at X, € A, A open, and f(xo) # 0. Then show that f
is non-zero in some neighborhood of xq. '
Solution: Givene > QOthereisa neighborhood U of xq such that || f(x) — f(xo)ll < &
for all x € U, by the definition of continuity. For our purpose, choose & = ||S(xo)ll-
Then |lf(x) — fGxo)l < 1S (xoll implies that f(x) # 0, because it is not true that
=S Gxolll < 1L/ (xoll (they are equal). Therefore, on the neighborhood U determined
by & = ||f(xo)ll, f is not zero.

4. Show that a linear map L: R* — R" is continuous.
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Solution: We shall show that for our given linear map L: R* - R™ we can find a
number M such that |L(x)|| < M |ix]| for all x € R". Then [|x — x,l| < &/M implies
HL(x? —~ L{xoll = IIL{x — xo)ll € M lix — xoll < & which will prove that L is
continuous.

Let M, = sup{liL(e}l,. . IlL{e)ll}, where e, ..., €, is the standard basis for
R", Then for x = (X{,. . .,X,), and using the triangle inequality,

L@ = flx,Lieg) + -+ + x,Llell < beal ILGenll + -+ + Ixal lL(enl
S Ml(lxl[ Ao 4 Ixul)
< Myn|ixl| .

Thus we can take M = nM,, and we get our result.

. A multilinear map L from R™ x R" x -+ x R™ to R™ is defined as a mapping

such that for each r, 1 < r < k, we have
L(ay,de « oy F Abpye . @) = L@y . e . @) + AL(ay,8z50 - by 04 5

where the g; € R™, b, € R™, and A € R. Show that a multilinear map is continuous.

Sollution: Let ey, . = e, be the standard’ basis of R’, and for xe R", let x =
Hy .

(.. : X" —.ZL xXen Define fixed elements of R™, a;,, ; for integers i; with

I<ijsn,j= 1,...,k by

Ayt = Llers - 1)
Then, it is true that v

ny

g
L(xh' . "xk) = te Zall,...,l"xlll e xllck 3
h r=1

=1
which is the analogue of writing a linear transformation in terms of 2 matrix. Indeed,
by multilinearity,

1y
Lxg, . X)) = L( Z xie;, Xa, . .,xk>

i1=1
1y
=Y xiL(e, %25 - %) -
6=t
Repeating this k times gives the desired result.

From this formula it is clear that L is continuous since the functions x¥, . .., x{
a;e products of continuous functions and are thus continuous, and L is a sum of
these.

Another solution to this problem, which proceeds similarly to Example 4, is to
show that there is a constant M > 0 such that L(xy,. . .,x0 < M [x;] - %, from
which continuity can be deduced directly.

Exercises for Chapter 4

2 1 (a) Prove directly that the function 1/x? is continuous on ]0,00f.
{b) A constant function f: 4 — R™ is such that f(x) = f(y for all x,ye A. Show

that f is continuous.
(c) Is the function f(y) = sin(cos(y?) - €’) continuous? Justify your answer.
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(a) Prove that if f: 4 — R" is continuous and B < A, then the restriction f | B is
continuous (f | B is the function f but defined only at points of B).

(b) Find a function g: 4 » Rand a set B « A such that g | B is continuous, but
g is continuous at no point of A. [Hint: Let 4 = [0,1] and B the rationals.]

{a) If f: R — R is continuous and K = R is connected, is f~!(K) necessarily

connected?
{b) Show that if f: R" - R™ is continuous on all of R" and B « R" is bounded,

then f(B) is bounded.
Discuss why it is necessary to have in the definition of limit f(x) that x # x, by

considering what would happen in the case where f: R — R, _Df(x) = 0ifx # Oand
JO) = L.

Show that f: A — R™ is continuous at x, iff for every & > 0 there is a 6 > 0 such
that ||x — Xoll < & implies || f(x) — f(xo)ll < &. Can we replace¢ > 0 ord >0 by
g=0o0rd =07

(a) Let {c} be a sequence in R. Show that ¢, = ¢ iff every subsequence of ¢, has a
further subsequence which converges to c.

{b) Let f: R — R be a bounded function. Prove that f is continuous if and only
if the graph of f is a closed subset of R?. What if f is unbounded?

Consider a compact set B < R" and let /1 B — R" be continuous and one-to-one.
Then prove that f~!: f(B) — B is continuous. Show by example that this fails
if B is not compact. (To find a counterexample it is necessary to takem > 1))

Definesmaps @:R" x R" > R* and O: R x R* — R* as addition and scalar
multiplication defined by @{x,y) = x +y and ©O(4,x) = Ax. Show that these
mappings are continuous.

Prove the following “‘glueing lemma™: Let J: [a,b] = R™ and g: [b,c] » R™ be

continuous. Define h: [a,c] = R™ by h = f on _[ab[ and h =g on [be] If
S(b) = g(b), then h is continuous. Generalize this result to sets A, B « R".

. Show that f: 4 - R", 4 = R"is continuous iff foreveryset B = A4, f(cl(B) n A) =

cl(f(B)).

(a) For f: Ja,b[ -+ R,show thatif fis continuous then its graph I"is path-connected.

Argue intuitively that if the graph of /f is path-connected then f is continuous.
_(The latter fact is true, but is actually more difficult.)

(b) For f: A = R", A c R", show that for n > 2 connectedness of the graph does
not imply continuity. [Hint: For f: R? - R, cut a slit in the graph.]

(c) Discuss (b) form =n = 1. [Hint: On R consider f(x) = 0if x =0, flx) =
sin(1/x), x > 0.]

(a) Amap 1A R'—> R"is called Lipschitz if there is a constant L > 0 such
that ||/ (x) — O < Lilx — yli, for all x, y € A. Show that a Lipschitz map

is uniformly continuous.
(b) Find a bounded continuous function f: R— R which is not uniformly

continuous.

13.

o 15.

¢ 16.

< 17.
s 18.
» 19,

20.

: 21,
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(c) Is the sum (product) of two Lipschitz functions again Lipschitz?
(d) Answer question (c) for uniformly continuous functions.

Let f be a bounded continuous function f: R* = R. Prove: f(U) is open for all
opensets U = R"iff for all non-empty opensets ¥ < R, inf f{x} < f(y) < sup f(x).
forallye V. i e’

. (a) Find a function f: R* — R such that

lim lim f(x,y) and lirr‘x’ Iir% Sx,»)
¥

x~0 y=0 -0 x=

exist but are not equal.

(b) Find a function f: R? — R such that the two limits in (a) exist and are equal,
but [ is not continuous. [Hint: f(x,y) = xy/(x* + y*) with / = 0 at (0,0).]

(c) Find a function f: R? — R which is continuous on every line through the origin
but is not continuous. [Hint: Look at the hint in (b), or the function r tan(6/4),
0 < r < w,0 < 0 < 2z in polar coordinates.]

.Let fi»+ .., fy be functions from 4 = R" to R. Let m; be the maximum of f,, that
is, m; = sup(fy(A)). Let f = ¥ f; and m = sup(/(4)). Show that m <} m;. Give
an example where equality fails.

Consider a function f: A x B - R", where 4 = R", B « R". Call f separately
continuous if for each fixed x, € 4, the map g(y) = f(x,,y) is continuous and for
yo € B, B(x) = f{x,y) is continuous. Say f is continuous on A uniformly with
respect to B if for each ¢ > 0 and x, € A there is a 6 > 0 such that |jx — x|l < 0
implies || f(x,3) — f(xq,)l < eforall y e B. Show that if f is separately continuous
and is continuous on A4 uniformly with respect to B, then f is continuous.

Demonstrate that multilinear maps on Euclidean space are not necessarily uniformly
continuous. [Hint: Try f(x,y) = xp.]

Let A = R" be connected and let f: 4 — R be continuous with f(x) # 0 for all
x € A. Then show that f(x) > 0 for all x e 4 or else f(x) < Oforall xe 4.

Find a continuous map f: R" — R" and a closed set A < R" such that f(4) is not
closed. In fact, do this when f: R* — R is the projection on the x axis (f(x,y) = x).

Give an alternative proof of Theorem 5 using the subsequence characterization of
compactness. [Hint: First argue that sup(B) < ov as follows. Say sup(B) = o
and choose x, so that f(x,) > k. Then to show sup(B)e f(B), choose y, so
that f(y) < sup(B) < f(y) + 1/k and pass to a convergent subsequence.]

Which of the following functions on R are uniformly continuous?

1
(@) fix) = m »
(b) f(x) = cos® x,
x2
© fix) = m y
(d) f(x) = x sin x.
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22,

23.
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o 32,

33.

Give an alternative proof of Theorem 7 using the subsequence characterization of
compactness (Bolzano-Weierstrass theorem) as follows. First, show that if [ is
not uniformly continuous, there is an & > 0 and sequences X, such that
d(x,,y,) < 1/n and d(f(x,).f(y,)) = . Pass to convergent subsequences and obtain
a contradiction to the continuity of f.

{a) Define the notion of a compact metric space by examining Theorem 1, Chapter 3.
Show that all the properties there except (i) are equivalent. Adopt any of these
other than (i) as the definition.

(b) Let X, Y be metric spaces and f: X — Y. Go through Theorem 1, p. 80,
and show that it remains valid.

{c) Let X be a compact metric space and [: X — X an isometry; that is,
(%), /() = d(x,y) for all x, y € X. Show that [ is continuous and must be a
bijection. [Hint: If x € X\f(X) show there isa ¢ > 0 such that d(x,y) = c for
all y e f(X). Use the sequence x, f(x}), f(f(x)), ... to contradict the compactness
of X.]

Letf: A < R"—» R™

(a) Prove f is uniformly continuous on A iff for every pair of sequences X, y; of 4
such that (x, — y) — 0, we have f(x) — f(»J = 0.

{b) Let f be uniformly continuous, and x, be a Cauchy sequence of 4. Show Jx)
is a Cauchy sequence.

(c) Let f be uniformly continuous. Show [ has a unique extension to a continuous
function on 4 = cl(4).

Let f: J0,1[ —+ R be differentiable and let f "(x) be bounded. Show that linéit f(x)
x-0*
and liqriit f(x) exist. Do this both (a) directly and (b) by applying Exercise 24(c).
x-+i"
Give a counterexample if f*(x) is not bounded.

Letf: [a,b] - Rbecontinuously differentiable; that s, f*(x) exists and is continuous.
Prove f is uniformly continuous.

Find the sum of the series ), , (3/4).
Let f: ]0,1[ — R be uniformly continuous. Must f be bounded !

Let f: R — Rsatisfy | f(x) — f(O) < Ix — yi2. Prove f is a constant. [Hint: Show
that f'(x) = 0.] ;

. (a) Let f: [0,00[ = R, f(x) = \/; Prove f is uniformly continuous.
(b) Letk > Oand f(x) = (x — *Mflog xfor0 < x < land f(0) = 0, /(1) = 1 — k.

Show f: [0,1] - R is continuous. Is f uniformly continuous?

Let f(x) = x=~1 for x # 1. How should f(1) be defined in order to make f
continuous at x = 17

Let A = R*beopen,xp€ A, ro > 0and B, = {x¢€ R"| Ix — xgll < ro}. Suppose
that B,, = A. Prove that there isan r > rgsuch that B, < 4.

A set A = B is called relatively compact when cl(4) is compact. Prove that 4 is
relatively compact iff every sequence in 4 has a subsequence which converges to a
point in R”.
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¢34. Given that temperature on the surface of the earth is a continuous function,

prove that on any great circle of the earth there are two antipodal points with the
same temperature. [Hint: Let T:[0,2z] —+ R be a continuous function such that
T0) = T@2n). Let f(x) = T(x) — T(x — n), and show that f(x) = 0 for some
xe[0,2n].]

»35. Let f: R — R be increasing and bounded above. Prove that limit f(x) exists.

X+ 4w



Chapter 5

Uniform
Convergence

In later parts of this book, many of the functions we discuss will be
defined by means of infinite sequences or series. To study such functions we
shall need to understand the concept of uniform convergence of a sequence or
series of (continuous) functions. In order to effectively deal with concrete
situations and examples, we will also consider several important tests for
uniform convergence. Perhaps the most helpful test in particular examples
is the Weierstrass M-test for series. Another test is the Cauchy Criterion
which is mainly of theoretical use. We also include the more refined tests of
"Dirichiet and Abel.

In connection with uniform convergence we introduce a space whose
points are functions. On this space we introduce a norm and show that

convergence for this norm is exactly uniform convergence. The space is -

proved to be complete in the sense that Cauchy sequences converge. A second
basic property of this space, called the Arzela-Ascoli theorem, establishes
compactness of a subset (in the sense of having the Bolzano-Weierstrass
property). An important result, called the Stone-Weierstrass theorem, is then
proved. This theorem enables one to approximate continuous functions by
polynomials, or by functions from other appropriate classes. Finally, some
applications of this machinery to differential and integral equations are given.

5.1 Pointwise and Uniform Convergence

The most natural type of convergence for a sequence of functions is probably
pointwise (or simple) convergence, defined as follows.

102
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Definition 1. A sequence of functions f: 4 » R", 4 = R"is said
to converge pointwise (or simply) to f: A — R™ if for each x € 4,
fi(x) = f(x) (convergence as a sequence in R"). We often write
£, = f (pointwise) if f, converges pointwise to f.

While this type of convergence is very useful for certain purposes, there
are other situations where it is not. The main disadvantage of pointwise
convergence is that even if the functions f, are continuous, f need not be
continuous. For example, consider Figure 5-1 in which

0, X = -

A =

=

—kx + 1, 0 x<

In this case, for each x e [0,1], fi(x) converges. If x # 0, fi(x) = O (since

« fix) = 0 for k large), while if x = 0, fi(x) = 1 (as f(0) = 1 for all k). The

limit is thus

0 x # 0,

fx) = [ x=o0,

which is not a continuous function.

How can we avoid this type of behavior? No matter how large k is, there
are points where f; is not close to f. To remedy this a notion is introduced
guaranteeing that f; will be uniformly close to f (that is, close for all xe A)
as follows.

Definition 2. Let f,: 4 - R™ be a sequence of functions with the
property that for every ¢ > 0 there is an N such that k > N implies

y

0, 1) %

FIGURE 5-1 Pointwise convergence.
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I filx) — fx)| < & for all xe A. Under these conditions we say
f,, converges uniformly to f and we write f;, — /f (uniformly).

The conditioﬁ I fix) — f(x)ll < emeans that f, is withing of f everywhere.
We think of f, as being within the & “ribbon” of f. See Figure 5-2. .
Perhaps another example will make the idea clearer. On R consider the

sequence
0, x <k,

i) {1, x =k,

(k =1,2,3,...). Then f, = 0 (pointwise) because for eachxeR, filx) =0

for k large (k > x). However, f; does not converge to zero uniformly, t.“or

there are points x such that fi(x) — 0 is not small no matter how large k is.
Let us observe that if f, — f (uniformly) then fi = f (pointwise). This is

because for any x € 4, and ¢ > 0 we have an N such that || fi(x) — fEM < €

if k > N, that is fi{x) = f(x). We make similar definitions for a series of

functions.

Definition 3. We say the series Z;:‘;l g, converges to g poiniwise,
and write )° g =4 (pointwise) if the sequence s; = _Zi=1 g;
converges pointwise to g. Also, we say Z;f:l gr = g (uniformly)
or Y g, converges to g uniformly if s, — ¢ (uniformly). For a

sequence f; (or series ), g,) we say that f; (or Y. g4 converges
uniformly if there exists a function to which it converges uniformly.

The first basic property of uniform convergence is its connection with
continuous functions given in the next theorem.

FIGURE 5-2 Uniform closeness. (a) frAcR—-R.
(b) f: Ac R— RS,
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Theorem 1. Let f,: A — R™ be continuous functions, and suppose
that f, — f (uniformly). Then f is continuous.

Thus, uniform convergence is a strong enough condition to guarantee
that the limiting function of a sequence of continuous functions is continuous.
In view of the preceding examples, this should not be unreasonable.

Corollary 1. If g2 A - R"™ are continuous and )\> g, =g
(uniformly), then g is continuous.
This follows by applying Theorem 1 to the sequence of partial sums.

ExampLe 1. Let f,(x) = (sin x)/n, f,: R - R. Show that f, — 0 uniformly
asn-— 0. !

Solution: We must show that | f,(x) — 0] = |f,(x)| gets small independent
of x as n — oo, But |f,(x)| = Isin x|/n < 1/n which gets small independent
of xasn — oo.

ExampLE 2. Argue that the series for sin x,

. X
SIm X == X — ?{ -+ —5—'- -
converges uniformly, 0 < x < r.
Solution: We must show that
n (_I)kx2k+l
X} == [ A
5i(x) ,;, @k + D!

converges uniformly to sin x. To do this, estimate the difference:

i . x2k+1 ]
(%) — sin x| = Y <
b0 = sinxdl = 2, VG

(r)zk +1

k=n+1 (Zk + 1)' ‘

But this gives a number independent of x which — 0 as n — oo since it is
the tail of a convergent series. Thus the convergence is uniform. Note that
continuity of sin x follows from this, a result we knew already.

¥

ExampLe 3. Let f(x) = x",0 < x < 1. Does f, converge uniformly?

Solution: First we determine the limit point by point. We have f(0) = 0
for all n and f,(x) - 0 if x < 1, but f,(1) = 1 for all n. Thus f, converges
pointwise to

0, x# 1,
fx) =

1, x = 1.

It cannot converge uniformly because this limit is not continuous (Figure 5-3).
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¥y

x=0 x=1
FIGURE 5-3 The sequence f,(x) = x".

‘Exercises for Section 5.1
« 1. Let fi{x) = (x — 1/n)%,0 <

< x < 1. Does f, converge uniformly?
¢ 2. Let fy(x) = x — x",0 < x < 1. Does f, converge uniformly?

+ 3. Let f,: R - R be uniformly continuous and let £, converge uniformly to /. Do you
think that f is uniformly continuous? Discuss.

1 4, Let f{x) = x",0 < x < .999. Does f, converge uniformly?

+ 5, Let © en2
9=y o0<x<l
/) Z n(n)® *

n=0

Discuss how you might prove f is continuous.

5.2 The Weierstrass M-Test

We shall now consider some tests for uniform convergence. The first is of
theoretical use and is entirely analogous to the Cauchy Criterion for a
sequence in R". It is also called the Cauchy Criterion.

Theorem 2. Let f,: A — R™ be a sequence of functions. Then f
converges uniformly iff for every ¢ >0 there is an N such that
I,k = N implies | fi(x) — Sl < ¢for allxe A.

For the case of series, the Cauchy Criterion takes the following form
when applied to the sequence of partial sums (as in Theorem 10, Chapter 2):
The series Z;”: , 9 converges uniformly iff for every & > O there is an N such
that k > N implies ||gy(x) + -+ + gea g < & for all x € A and all integers
p=012,....
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Using the above, we can obtain the following important technique for
determining the uniform convergence of a series, called the Weierstrass
M-test.

Theorem 3. Suppose g,: A — R™ are functions such that there exist
constants M,, with |lg,(x)ll < M, for all xe A, and )2 M, con-
verges. Then Zz‘; , 9k converges uniformly (and absolutely).

It is not always possible to use the M-test but it is effective in the majority
of cases. For more refined tests, see the Dirichlet and Abel tests in Section 5.8.

Theorem 3 is, in fact, fairly clear intuitively, since the constants M, give
a bound on the “rate of convergence,” the point being that the bound is
independent of x. (More exactly, the tail of the series " gy, which represents
the error, is bounded by that of . M,, which — 0 independent of x.)

ExampLE 1. Show that

22}

& (sin nx)?

Z gux) = Z —

1 1 n
converges uniformly.

Solution: Let M, = 1/n*. Here |g,(x)] < M, since |sin nx| < 1. Hence
by Theorem 3 the convergence is uniform.

=5 (Z)

1]

ExampLE 2. Prove that

is continuous on R.

Solution: Here we cannot choose an M,, for the nth term, because x" is
not bounded. We do not therefore expect uniform convergence on all of R,
but we can prove uniform convergence on each interval [ —a,a] by letting
M, = (a"/n!)* which is an upper bound for the nth term on [—a,a]. The
ratio test shows Y. M, converges since

Mu+1 n! 2 an+1 2 a 2
M, m((n+1)!><a">-<n+1> :

which converges to zero, which is less than one. Hence we have uniform
convergence on [ —a,a] and so by Theorem 1, we get continuity of f on
[ —a,a]. Since a was arbitrary, we get continuity on all of R.

EXAMPLE 3. Suppose a sequence f,(x), 0 < x < 1 converges uniformly and
f, is differentiable. Must f’,(x) converge uniformiy?

Solution: The answer is no. In general, control on the derivatives gives
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control on the functions via the mean-value theorem, but not vice versa.
For example, letf,(x) = [sin(n*x)]/n. Then f, —~ 0 uniformly, but f,(x) =
n cos(n®x) does not converge even pointwise (set x = 0, for example).

Exercises for Section 5.2

, 1. Discuss the convergence and uniform convergence of

i

X
X) = — x20n=12,....
@ ) = ——, % > 0,n

e~x1/n

(b) f(x) = ,xeR,n=1,2,....

n

2 x"
¢ 2. Discuss the uniform convergence of Z?, 0 x< 1. ,
1

zx"
+ 3. Prove that f(x) = Zn—z-is continuous on [0,1].
1

©
1
« 4. Discuss the uniform convergence of ) —s——-.
Bence of 0. G 1)

o «©
+ 5, 1Y a, is absolutely convergent, prove 3" a, sin nx is uniformly convergent.
1 1

”

5.3 Integration and Differentiation of Series

i
For a sequence or series converging uniformly, statements can also be made

concerning integration and differentiation of the limit function. The question

that needs to be answered is whether or not these operations can be performed
term by term. For the integration process the answer is yes as can be seen
from the next theorem. The general definition of integrability is found in
Chapter 8, but the basic properties of integration and differentiation are

assummed known from elementary calculus for continuous real-valued

functions of a real variable.

Theorem 4. Suppose fy:[a,b] = R are continuous functions
(a,b € R) and f,, — [ uniformly. Then

F Ju(x) dx —»Jb f(x)dx .
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Corollary 2. Suppose g,: [a,b] — R are continuous and ).°_, g
converges uniformly. Then we may interchange the order of integra-
tion and summation

b o 0 b
J kgl gulx) dx =k21 J gilx) dx .

The corollary follows easily from Theorem 4 applied to the sequence of
partial sums.

Intuitively, the theorem should be fairly clear, because if f, is very close
to f, then its integral (the area under the curve) should be close to that of f.
But be careful here. Indeed, this result is false if f, only converges pointwise!
(See Example 1.) '

Note: Actually, there is a theorem with a much wider scope than the
above, called Lebesgue’s Dominated Convergence theorem. One version of
this result states that if f; converges pointwise to f and the f; are uniformly
bounded (that is, |f,(x)] < M for all k =1, 2, ..., xe[a,b]), then the
conclusion of Theorem 4 remains valid. We shall be content in this book with
the more elementary form of the result in Theorem 4. (See however, Section
8.8,

Can we take the same liberties with derivatives? The answer to the question
of term-by-term differentiation of a uniformly convergent sequence or series
is no as we saw in Example 3 above. This result is a good illustration of the
sort of care that is often needed to turn an intuitively plausible statement
into one of actual fact. Thus we need more assumptions than just uniform
convergence, Sufficient conditions are given in the following theorem.

Theorem 5. Let fi: Ja,b[ = R be a sequence of differentiable
functions on the open interval Ja,b[ converging pointwisetof: Ja,b[ —
R. Suppose the derivatives f, are continuous and converge uniformly
to a function g. Then f is differentiable and f' = g.

Corollary 3. If the g, are differentiable, the g are continuous,
Z,'f: , i converges pointwise, and if 2o, gk converges uniformly,
then '

(Z gk> = G-
k=1 k=1
As usual, the corollary follows by applying the theorem to the sequence

of partial sums.

ExampLE 1. Give an example of a sequence f: {0,1] — R which converges
to zero pointwise, but for which [§ f, does not converge to zero.
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] x
x=1

FIGURE 5-4

~ Solution: Let f, have the graph in Figure 5-4. Thus, f, is such that
{6 fi=1forall k =1,2,3, . Furthermore, for each x, fi(x) — 0 as
k — oo (clearly if x = 0 and 1f x > 0, then fi(x) = 0 as soon as k > 1/x).

ExampLE 2. Let g (x) = nx/(1 + nx),0 < x < 1. Examine Theorem 5 in
this case.

Solution: For x # 0 we see that as n — o0, g,(x) — 1, since g,(x) =
x/(x + 1/n). But, for x = 0, g,(x) = 0. Thus g, converges pointwise but not
uniformly. The convergence is uniform only on each interval [d,1] where
6>0. .

The derivative is g;(x) = (1/n)/(x + 1/n)®. This — 0 uniformly on [§,1],
but g,(0) — co. Thus the conditions of Theorem 5 hold only on [4,1] for
é > 0. The limit function is not differentiable at x = 0.

ExampLE 3. Verify that [je'dt =e* — 1, using ¢* =) * x"/n! and
Theorem 4.

Solution: By the Weierstrass M-test, e* = Y'® x"/n! converges uniformly
on any finite interval. Thus by Corollary 2, applied to the interval [0,x],

[a-3 L5

© tn+l

=Y

X

2

b

I
|

x )
ntat

=N

X

I
&
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Exercises for Section 5.3
¢ 1. Investigate the validity of Theorem 4 for the sequence f, defined by

nx
= <x<1.
W =g 0S

+ 2. Show that the sequence { f,} defined by
Lix) = n®x"(1 — x)

converges pointwise to f = 0 on [0,1], and then use Theorem 4 to show that the
convergence is not uniform.

» 3, Investigate the validity of Theorems 4 and 5 for fi(x) = \/z-rx”(l ~ x). [Hint:
Locate the maximum of f(x).]

+ 4. Verily that [§sintdt = 1 — cos x, using

Ld x2n+l
inx=Y (-1~ .
s x 20:( Ve

+ 5. Verify that sin’ x = cos x, using the series in Exercise 4 and Corollary 3.

5.4 The Space of Continuous Functions

Fix a set 4 = R" and consider the set V of all functions f: 4 — R™. Then
V is easily seen to be a vector space. In ¥, the zero vector is the function which
is 0 for all x € A. Also, we define (f + g)(x) = f(x) + g(x) and (Af)(x) =
Mf(x) for each 1eR, f,ge V. Now let € = {fe V| [ is continuous}.
If there is danger of confusion we write €(4,R"). Then ¥ is also a vector space
since the sum of two continuous functions is continuous and, for each x € R
and fe ¥, we have of € . '

Let ¥, be the vector subspace of ¥ consisting of bounded functions:
%, ={fe¥ [ f is bounded}. Recall that *f is bounded™ means that there
is a constant M such that || f(x)| < M for all x € A. If A4 is compact, then
%, = % by Theorem 5, Chapter 4.

For f € @), let | /|| = sup{|l f(x)|l | x € A}, which exists since [ is bounded!
The number || /]| is a measure of the size of f and is called the norm of f.
See Figure 5-5. Note that || f|| < M iff |f(x)ll < M forall xe 4.

What we are trying to do here is to look at the space %), in the same way
as we look at R". Namely, each point (that is, vector) in %, (which is a
function) has a norm, so we can hope that many of the concepts developed
for vectors in R" will carry over to %,. Such a point of view is useful in doing
analysis, and some important results (see Section 5.5) can be proved by using
the methods of R" on the space %,. For this program to be successful, the
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FIGURE 5-5 Norm of a function.

first task is to establish that the basic properties of a norm studied in
Chapter 1, Theorem 5 are valid.

Warning: Although we have a norm, we do not have an inner product
associated with it such that || f]|> = {f,f). Other spaces of functions which
we study in Fourier analysis (Chapter 10) do have such an inner product.

Theorem 6. The function ||| on €,(4,R") satisfies the properties
of a norm:

@) ASl = 0,and | f|| = 0ifff =0,

@) lofll = led IS, for e R, f &Gy,

(i) 1f + gl < |71 + lgl (eriangle inequality).

These are the basic rules we need to talk about open sets, convergence,
and so forth. For example, write f;, = fin %, iff || f, — I — 0. Recall that
a vector space with a norm obeying these rules (i), (ii), (iii) is called a normed

. space. Essentially all of the results of Chapter 2 still hold in the context of
normed spaces using the same proofs, and we shall use some of them in the
following discussions and proofs. The connection with uniform convergence

is simple.

Theorem 7. (f, = f (uniformly on A)) <> (fi = f in G, that is,
Ife = fI = 0).

Also remember that a sequence f, is called a Cauchy sequence if for any
&> 0 there is an N such that k, ! > N implies || f, — fil <& A normed
space is called complete if every Cauchy sequence converges. Another name
for a complete normed space is Banach space. Completeness is an important
technical property for a space, since often we may be able to prove a sequence

s
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is Cauchy and we want to deduce its convergence to some element of the
space.

Theorem 8. ¥, is a Banach space.

The space €, is only one of a host of spaces of functions of great importance
in analysis. While the rules in Theorem 6 (compare with Theorem 5, Chapter 1)
allow us to introduce notions of open sets, convergence, etc. as in R, the
space %, is quite different from R* in other respects. For instance, as we have
mentioned, %, does not have an inner product which gives the norm | - ||,
{Exercise 48, at the end of this chapter). Another is that %, is not finite-
dimensional. In Sections 5.5, 5.6, and 5.7 we shall see some specific problems
to which this theory‘can be applied.

ExampLEl. Let B = {f € %([0,1],R)|f(x) > O for all x € [0,1]}. Show that
B is an open set in €([0,1],R).

Solution: By definition, for fe B we must find an ¢ > 0 such that
D(fie) ={g €% ||/ — gl <&} = B. So fix feB. Now, since [0,1] is
compact, f has a minimum value at some point of [0,1], say, m. Thus
fix) = m> 0forall xe [0,1]. Let e = m/2. Thenif | f — g| < &, the result
is that for any x, | f(x) — g(x)| < & = m/2. Hence g(x) = m/2 > 0,s0¢g € B.

. ExampLE 2. What is the closure of the set B in Example 1?

Solution: We assert that the closure is D = {fe€ % | f(x) = 0 for all
x€[0,1]}. This is a closed set because if f,(x) = 0 and f, — f uniformly,
and hence pointwise, then f(x) = 0 for all x. To show D is the closure, it
suffices to show that for f € D there is f, € B such that f, — f (why?). Simply

letf, = f + l/n

ExaMPLE3. Suppose we have asequence f, € €, suchthat [ f,. — fill <1,
where ) r, is convergent, r, > 0. Prove that f, converges.

'

Solution: 'We have, by the triangle inequality,
Ify = fosell S WSy = Fowall 4+ Wosr = fawal + o+ Wasnet = foall
Srytrpuy + 000k P

Since Y. r, is convergent, this expression — 0 as n — o0 since it is less than
or equal to s — s,_, where s, is the nth partial sum and s is the sum. Hence
£, is a Cauchy sequence, and so converges.
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Exercises for Section 5.4
» 1. Let B = {f e @,(R,R) | f(x) > 0 for all xeR}. Is B open? If not, what is int(B)?
9 2. What is the‘closure of B in Exercise 1?7

3. Do you see a connection between Example 3 above and the Weierstrass M-test?
Discuss.

a 4. Tet

1/ nx
X) = — s 0gx<gt.
Jix) n(l + nx) *
Show f, — 0in €([0,1],R).

s 5. Let f; be a convergent sequence in €,(4,R"). Prove {fi |k =12,.. .} is bounded in
@, (A,R™). Is it closed?

5.5 The Arzela-Ascoli Theorem

This theorem is closely related to the notion of compactness in the space %,
introduced in Section 5.4. As we saw in Chapter 3, in R" there are several
equivalent ways of formulating the notion of compactness. But in more
general spaces, such as @, these different ways are not equivalent. Specifi-
cally, in Theorem 1 of that chapter, (i) will not be equivalent to the others,
but (ii), (ii)’, (ifi), and (iii)’ are all mutually equivalent. An examination of the
proof shows this (see also Exercise 21, at the end of this chapter).

In more general spaces, we adopt one of (ii), (i), (iii), or (iii)’ for the
definition of a compact set. The reason for this choice and not (i) is because

as we already know in R", conditions (ii) through (iii) are the most useful .

in proving the key theorems; (see Chapter 4).”
The Arzela-Ascoli theorem gives conditions under which a set in € is

compact. Specifically, this is proved in terms of the Bolzano-Weierstrass.

property. To state the theorem we need a little terminology.

Definition 4. Let B < %(4,R™). We say that B is an equicontinuous
_set of functions if for any ¢ > O thereisad > 0 such that ifx,ye A,
d(x,y) < & implies d(f(x),f()) < &for all f € B.

This definition is the same as that of uniform continuity except that now
we also demand that & can be chosen independent of f as well as x,.
The Arzela-Ascoli theorem is as follows.

Theorem 9. Let A = R" be compact and let B < G(A,R"™). If B is
bounded and equicontinuous, then any sequence in B has a uniformly
convergent subsequence.
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Thus a set in %(4,R™) will be compact if it is closed, bounded, and equi-
continuous, This result is not really intuitively clear but it is very fundamental
for an analysis of the space € of continuous functions.

ExampLe 1. Let f,: [0,1] = R be continuous and be such that | f,(x)| < 100
and the derivatives f, exist and are uniformly bounded on J0,1[. Prove f,
has a uniformly convergent subsequence.

Solution: We verify that the set {/,} is equicontinuous and bounded.
The hypothesis is that | f(x)] < M for a constant M. Thus by the mean-value

theorem,

s0 given & we can choose § = &/ M, independent of x, y, and n. Thus {f,}
is equicontinuous. It is bounded because | f,|| = sup |f,(x)] < 100.
0<€x<1

ExampLE 2. Is the result of Example 1 valid if we omit “| f(x)| bounded?”

Solution: No, for let fi(x) = n. Then f, =0 but.clearly there is no
convergent subsequence.

ExampLe3. LetI: 4([0,1],R) — R be defined by I(f) = [§ f(x) dx. Prove I
is continuous.

' Solution: We must show that f, — f in € implies I(f,) — I(f). But this
is an immediate consequence of Theorem 4.

Exercises for Section 5.5

s 1. Show that in Example 1, J, bounded can be replaced by f,(0) = 0 with the same
conclusion.

2. In Theorem 9, need the whole sequence be convergent?
2 3. (a) Show that .
{fe #([0,11R) } f f(x)dxe 10,3[}

0

is open.
(b) Show that, within the space of all bounded functions on a set 4, the space %, is'
closed.

44. Let B < ¢([0,1],R) be closed, bounded, and equicontinuous. Let /: B — R,
I{f)y = {§ f(x) dx. Show that there is an f, € B at which the value of I is maximized.

v5. Let f,: [a,b] — R be uniformly bounded continuous functions. Set
F,(x) =Jj;,(t)dt, ag<x<b.

Prove F, has a uniformly convergent subsequence.
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5.6 Fixed Points and Integral Equations

In this section we want to give a brief indication of how analysis on the space
@(A,R™) can be used in several applications.
In many physical problems one considers integral equations; these have

the form

fx)=a +J k(x,y)f (y) dy » 1)

where a = f(0) and k are given. We suppose k is continuous.
For example, f(x) = ae* solves the differential equation df/dx = f(x)
which is the same as

fx)=a +J f) dy.
0

One can use the Arzela-Ascoli theorem to analyze Eq. 1 (see also Exercise
45, at the end of this chapter). However we shall confine ourselvesto studying
Eq. 1 under some special hypotheses, for which the following theorem is

applicable.

Theorem 10 (Contraction Mapping Principle). Let T: €,(4,R™) —
%,(A,R™ be a given mapping such that there is a constant 4,0 <

A < 1 with
IT() — T@l < Alf — 4l

for allf, g € 6,(4,R™). Then T (is continuous and) has a unique fixed
point; that is, there exists a unique point fo € €(A,R™) such that

T(fo) = fo--

Note: The proof is actually valid for any complete metric space. The -

condition on T then reads d(T(x),T(y)) < Ad(x,y). Such a map T is called a
contraction; it shrinks distances by a factor 4 < 1.
The method of proof is called the method of successive approximations.

We start with any f € €, and form the sequence

£ T, TA)=TAE) Tf) = T(TT ...

We then show that this sequence is Cauchy, so converges in %, and the
limit function gives the solution. Observe that the method is constructive.
One can successively compute the members of the approximating sequence.
Observe that if we started with the solution, or by luck hit it during the

iteration, the sequence ‘“‘stops.”

FIXED POINTS AND INTEGRAL EQUATIONS 117

Application of Theorem 10. If sup [% |k(x,y)|dy = A < 1 then
xe[0,r]

Eq. 1 has a unique solution on [0,].

Indeed, define T(f) by

T()x) = a +L k(x,y)f(y) dy .

Thus a solution of Eq. 1 is a fixed point of T and vice versa. In order to apply
Theorem 10 we must verify that T is a contraction: |T(f) — T(g)| <
Alf — gl . Here A = [0] and m = 1. Now

IT() = TG = sup IT(f)x) — T(g)x)|

xe[0,r]

= Sup
xe{0,r]

f k(x,)[f(¥) — g(y)] dy’

A

< ( sup L (¢, )] dy) I =gl

xe[0,r]
=Alf -4l

since | f (y) ~ g(y)| € | f — gl, a constant. Hence T is a contraction and so
hasa unique fixed point, which represents the desired solution.

Later in the book we shall see additional applications of this sort of
method. It should be clear that these techniques are very important in the
theory of differential and integral equations.

ExampLE 1. Give an example of a complete metric space X and a map

g‘: Xt — X with d(T(x),T(y)) < d(x,y) but with T not having a unique fixed
oint.

Solution: Let X = R with the usual distance d(x,y) = |x — y|. Let
|T(Jc) = x + 1. Clearly, there is no x so x = x + 1. But [T(x) — T(y)| =
x — yf.

This example shows that in Theorem 10, it is essential to have 1 < 1;
A = 1 will not do.

1

ExampLe 2. Show that the method of successive approximations applied to

f(x) =1 + [ f() dy leads to the usual formula for ¢*.

Solution: Begin with the zero function 0. Since T(g) = 1 -+ jg g(y) dy,
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we get:
T() =

T2(0) = T(TO) = 1 +| dy = 1 + x;
w0

fx 2

X
TTHO) = 1 +| (L+ ) dy =1+ %+ 53
JO

2 3

f*x 2
T(T3(0))=1+ <1+y+ )dy'*1+x+-2—

2]

xn-l

T"(O)=1+x+"'+m-

So this sequence converges to e”.

ExampLE 3. Let k(x,y) = xe™*. On what interval [0,r] does the method of
the text guarantee a solution for Eq. 17

Solution: BEvaluate A and check that A < 1. Now

”

A = sup j xe™ ' dy
xe[0,/1J0O
=sup (1 — e~ ")~1--e -
xe[0,r]

Thus we get a unique solution on any interval [0,r].

Exercises for Section 5.6

v 1. For what « is T(x).= ax a contraction on R?

\ 9. Find a series expression on [0,4] for the solution of Exercise 1 if k(x,y) = x and
a=1. .

« 3. For what interval [0,], r < 1is f: [0,] = [0r], x — x? a contraction?

v 4. Let T: %([0,],R) = ¥([0,/],R) be defined by T( 1)) = af (x) + [ k(e )f() dy.
For what «, k is T'a contraction?

\ 5. Convert dy/dx = 3xy, y(0) = 1 to an integral equation and set up an iteration

scheme to solve it.
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5.7 The Stone-Weierstrass Theorem’

In the study of continuous functions and uniform convergence, two of the
most basic results are the Arzela-Ascoli theorem, discussed above, and the
Stone-Weierstrass theorem which will be discussed here. This list of theorems
is expanded when courses are taken in topology.

The aim of the Stone-Weierstrass theorem is to show that any continuous
function can be uniformly approximated by a function which has more easily
managed properties, such as a polynomial. Such polynomial approximation
techniques are 1mportant theoretically and in numerical work.*

We begin by giving the result for the special case of the real line. This was
first proved by Weierstrass, but here we present a version due to Bernstein.

Theorem 11. “Let f: [0,1] — R be continuous and let ¢ > 0. Then
thereis a polynomial p(x)suchthat p — f|| < &.In fact the sequence
of Bernstein polynomials

— (n k\ . .
pn(x) = kg:o (’C)f(;>x (1 - JC) k

converge uniformly to f as n — oo, where

ny n!
k) k!'(n— k!

denotes the binomial coefficient.

The first statement here is a consequence of the second. The second can
be easily understood if one knows a little probability theory, which is
assumed only for the.following paragraph of discussion. Needless to say,
Bernstein’s knowledge of probability theory undoubtedly helped him with
the understanding and the proof of this theorem.

Now, an illustration follows. Imagine a “‘coin” with probability x of getting
heads and, consequently, with probability 1 — x of getting tails. Then one
computes that in n tosses, the probability of getting exactly k heads i§

(;:)x"(l — x)n—k.

Suppose in a gambling game called “n-tosses,” f(k/n) dollars is paid out
when exactly k heads turn up when n tosses are made. Then the average
amount (after a long evening of playing ‘“‘n-tosses”) paid out when n tosses

* See for instance McAloon, Tromba, Calculus, Chapter 12, Harcourt Brace Jovanovich Inc.,
1972.
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are made is

ZO (Z)f(k/n)x"(l — XPF = 9.

Here f(k/n) is f at the fraction of tosses which are heads. Now imagine n very
large, that is a great number of tosses. Then we expect that in a typical game
of n-tosses, k/n will be very close to x = probability of k heads (= fraction
of the time k heads occurs) so our average payout should be very close to
f(x). Hence when n is large, we expect p,(x) to be close to f(x). This is the
intuitive reason for the validity of the result. The actual proof is a little
complicated, as might be expected from the complexity of the game.

Even for simple f such as f(x) = \/;, finding an approximating poly-
nomial is not trivial.

We can rephrase the theorem as follows. Let 2 denote the set of all poly-
nomials p: [0,1] = R. Then the first statement of the theorem asserts that
P is dense in ¥([0,1],R); that is, cl(??) = %([0,1],R).

Stone discovered a very useful generalization of the theorem above by
allowing for more general sets than [0,1] and by replacing 2 with a general
family of functions satisfying certain properties. The proof makes use of the
above special case. The theorem is very useful in various branches of analysis
(for example, we shall use it in Chapter 10 in our study of Fourier analysis).

Tlheorem 12. Let A = R" be compact and let B = ¥(A,R) satisfy
] B is an algebra; thatis,f,ge B,acR=>f +geB,[ 9B,
and of € B;
(ii) the constant function x > 1 lies in #;
(iii) B separates points; that is, for x,ye 4, x # y there is an
f € B such that f(x) # f(y)-
Then & is dense in €(A,R); that is, cl{(B) = C(A,R).

ExampLe 1. Let p, be a uniformly convergent sequence of polynomials and
f = limit p,. Must f be differentiable?

Solution: No, for any continuous function is, by Theorem 11, such a
limit -and there are plenty of continuous functions which are not differen-

tiable, such as .
o =1 ’
X) =
2x — 1,

ExaMPLE 2. Prove directly from Theorem 11 or from Theorem 12 that the
polynomials on [a,b] are dense in %([a,b],R).

3

N A

X
X

VAR
[ X1

W3
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Solu'tion: (a) We. know that if f: [0,1] — Ris continuous and & > 0 then
there is a polynomial p with ||/ —.p| < &. Now let g: [a,b] - R be con-

tinuous and let us rescale and set
f(x)=g(x(b_a)+a)v 0<x<1,
so f:[0,1] — R. Find p as above and, rescaling backwards let
_ (x—a
q(x)—p<(b_~a) , asx<b,

so ¢: [a,b] - R. Thus q is a polynomial as well. We claim |lg — q|| < &.
Indeed, :

_ _fr—a) _ (x—a

o) = oot = |1 (G =5) - oG =5)

s0 |lg — qll <&, since ||/ — pll < &. Thus the polynomials on [a,b] are
dense.

. (b) In Theprem 12, we let A = [a,b], and set & = {qge ¥([a,b],R) | q

is a polynomial}. Then & clearly satisfies (i) and (ii). It also satisfies (iii) for

if x # y we can let 10) '
t) =1t

so f(x) ¢ f(y). Thus & is dense by the theorem.

3

Exercises for Section 5.7

+ 1. Show that there is a polynomial p(x) such that |p(x) — sin x| < 1/100 for

0<x<2n

2. Suppose p, is a sequence of polynomials converging uniformly to / on [0,1], and f
is not a polynomial. Prove that the degrees of the p, are not bounded. [Hint: An
Nth degree polynomial p is uniquely determined by its values at N + 1 points
Xg, + - « , Xy Via Lagranges interpolation formula '

e mx)p(x)
) =) e — 7

where ni{x} = (x — xg)(x — x;) - (x — xp).]

» 3, Prove that the polynomials in %([a,b],R) are not open. Can a subset of a metric

space ever be both open and dense?

¢ 4, Consider the set of all polynomials p(x,y) in two variables x, y e [0,1] x [0,1].
Prove this set is dense in €([0,1] x [0,1],R}.

i 5. Consider the set of all functions on [0,1] of the form

n
h{(x) = Z a@’”,  a,beR.
j=1

Is this set dense in ¥([0,1],R)?



122 UNIFORM CONVERGENCE

5.8 The Dirichlet and Abel Tests

In some cases in which we would like to determine if we have uniform
convergence, the Weierstrass M-test fails. For such instances mathematicians
have devised other tests. The first test below was created by the Norwegian
mathematician Niels Abel, and the second is credited to P. G. Dirichlet,
a German (of French origins) who worked in the first part of the 18th century.
These tests are useful in many examples, and are especially useful during the
study of Fourier and power series. They are important when we have uniform
convergence but not absolute convergence.

Theorem 13 (Abel’s Test). Let A < R" and ¢, A —R be a
sequence of functions which are decreasing; that is, @, 4 ,(x) < @,(x)
for each x € A. Suppose there is a constant M such that X)) < M
for all xe A and all n. If Z:;l f.(x) converges uniformly on A,
then so does Y™ @,(x)f,(x).

We get useful tests for ordinary series when we take the special case in
which ¢, and £, are constant functions. One has a similar test if the ¢, are
increasing, which can be deduced by applying the above to —¢,. A related
test is the Dirichlet test.

Theorem 14 (Dirichlet Test). Let s,(x) = 1 [(x) for a sequence
f,: A © R™ - R. Assume there is a constant M such that s ) < M
for all xe A and all n. Let g,: A = R" —» R be such that g, — 0
unifo"ml)’a Gn = 0, and In+ l(x) < gn(x)' Then Z:;l f;:(x)gn(x) con-
verges uniformly on A. -

For example, consider the alternating series Y. (—1)"g,(x), where g, > 0,
g,(x) = 0 uniformly, and g,.; < g,. Let f(x) = (=1)". Then |s,(x)] < 1s0
that ) (—1)"g,(x) converges uniformly. Note that, as a special case, an
alternating series whose terms decrease to zero is convergent.

Notice that these theorems are similar but are not the same. The con-
ditions on ¢, in Theorem 13 do not imply that ¢, converges uniformly.
Also, in Theorem 13, we do not require ¢, > 0. The proofs of these theorems
are effected by a device known as Abel’s partial summation formula,
described in the proofs.

ExampLE 1. Show that Z‘f {sin nx)/n converges uniformly on [d,n — §],
o> 0.

Solution: We want to apply Theorem 14 with f,(x) = sin nx and g,(x) =
1/n. The only hypothesis which is not obvious is [Z;‘: S < M. To show
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this requires the use of a technique as follows. Write
2 sin(Ix)sin(x) = cos[(! — %)x] — cos[(I + $x]
and add from [ = 1, ..., n. We get a collapsing sum so
2 sin(3x)(sin x + -+ * -+ sin nx) = cosix
— cos(n + Y)x

<2.
Thus
1

sinx+"‘+sinnx<-—-——l. il
SIn 5X|

which gives a bound on ZLI Si(x). The bound is good as long as sin x/2 is
not zero. For example, on [d,m — ] we get a good bound. Note that the
arguments needed here are somewhat more delicate than the M-test.

ExaMpLE 2. Show that Zf (—1)"e~"*/n converges uniformly on [0,00[.

Solution: This time apply Theorem 13. Let ¢, (x) = e™". For x > 0,.
@, is decreasing and |e ™" < 1 (why?). We know already that Z;" (—1)'/n
converges, so by Abel’s theorem, the series converges uniformly.

ExaMPLE 3. Let

=2

G
1 n

Show f is continuous.

Solution: The solution is immediate from Example 2 and Corollary 1.

Exercises for Section 5.8

Test the following series for convergence and uniform convergence.

ooxn
’I'Z’_!e-—nx, 0sx<t
Tl
© 1)t
IZ-Z( )ts Osxsl |
T n
o
(_._l)n
.3, , 0<x< oo
Zl’(n+—\) h
%
r4‘len,rce—.,1x’ O<6<x<n_5
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5.9 Power Series and Cesaro and
Abel Summability

In this section we consider some additional optional topics in the theory of
infinite series. We shall begin by studying power series.

Definition 5. A power series is a series of the form ) = a,x* where
the coefficients g, are fixed real (or complex) numbers. Let

1
1 k =
im sup lad = =
R is called the radius of convergence of the power series, and
{x||x| = R} is the circle of convergence (x may be real or complex).

See Exercise 10, Chapter 1 for the definition of lim sup and note that 0 <
R < +00; RmaybeO0 or + 0. The reason for the terminology in Definition 5
is brought out by the following result.

Theorem 15. ZZ‘; 0a,‘x" converges absolutely for |x| < R, con-
verges uniformly for |x| < R’ where R' < R and diverges ifIx] > R.
(The theorem gives no information if |x| = R)

These convergence prdperties clearly distinguish R uniquely.

Corollary 4. The sum of a power series is a C* Junction inside its
circle of convergence. It can be differentiated termwise and the

differentiated series has the same radius of convergence.

The method of proof is to make use of the previous results on termwise

differentiation of series.
If limit |a,/a, . ,| happens to exist, then this limit is R, the radius of con-
n-wo

vergence. This is easily seen by using Theorem 15 together with the ratio
test. We ask the reader to prove this for himself.
Next, the concept of Cesaro summability is examined.

Definition 6. Set " .
Sn=2aks 0'"-’—‘- ZS";
k=1 k=1

thus o, is the arithmetic mean of the first n partial sums of the
series. Note the formula

RN

0z + -+ + o,)/nif the limit exists.
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The ger{es Y.o-1 @ is called Cesaro I-summable or (C,1) summable
to A if limit o, = A4. If this is the case, write

n—+w

Ya=4 (Cl).
k=1

The idea_ here is to find some way to attach meaning to otherwise di-
vergent series. For example,

fj=1-1+1-1+--- (Cl).

Thus ¢,, = n/2n, 05,1 = n + 1/(2n + 1) and so limit ¢, = 1/2.

Honever', we can introduce a yet more powerful method of summation by
averaging the ,’s, just as the (C,1) method was based on averaging the S, ’s.
That is, we define the (C,2) sum of the given series to be limit (01"+ ‘

n-—ow

The reader can easily see how to define (C,r) summability for arbitrary
values r = 1,2,..., obtaining successively more powerful methods of
sum{nation. Some basic properties of (C,1) summability follow.

(i) If Y @ = A(C,1) and } b, = B(C,1), then Y (xa; + fb,) = ad +
BB (C,1).

(ii) {f 2;;:1 a. = A(C]1), then ) ° @, = A~ a,(C,1) (“decapita-

ion”).

(iii) Regularity:If Z;f: , &% = Aintheusual sense, then )™  a, = 4 (C,1).
(Obviously this property is crucial; any self-respec':‘;irllg summati’on
method must have it.)

Proof of (iii): We have S, — 4. So, given B < 4, there is an n, such that

nznyg=3S, 2 B. Now

1
O.II=H(S1+‘.'+SIIQ+S"0+1+‘..+Sn) )

n"'no
B.

1
2= (St At S +

Hence lim inf 0,, = B. Since B < A was arbitrary, lim inf g, > A.
n—>o0

n— oo

A similar proof shows lix’l;x_‘ﬁxp o, < A. Accordingly, limit ¢, = 4.

Next we turn to another method of summation called Abel summation
(although it was actually invented by Euler).
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Definition 7. Y* @, is summable to 4 in the sense of Abel if
limit Y2 ax* = A. We write 3,2 @ = 4 (Abel).

x=1-

For instance, we again have
f=1-14+1-1+"- (Abel)

since f(x) =1 — x + x* — <-- = 1/(1 + x) for |x| < 1 and this — 1/2 as
x—1—.

Note that (at least in this example) the Abel method gives the same result
as the (C,1) method. Actually, this is always the case, as we shall see below.
First we shall prove that Abel summability is regular.

Theorem 16 (Abel). If Y= ~a, = A then e ax* converges for
x| < 1 and limit T wxt = A

Thus, if a power series converges throughout a closed interval, its sum is
continuous, even at the endpoints.
Actually, Abel’s method is more powerful than the (C,1) method.

Theorem 17. }.° &, = A(C,1) implies o G = A (Abel).

It is interesting to ask for conditions under which a Cesaro summable
series (or Abel summable series, and so forth) is actually convergent in the
usual sense. Along these lines we give a result of G. H. Hardy.

Theovem 18. If Y a, = A(C,1) and if a, = O(1/n) (that is, if
la,] < M/n for a constant M and n large), then Y. a, converges
(to A) in the usual sense.

Note: Theorems of the above type are known as “Tauberian,” after
A. Tauber, who proved:such a theorem relating Abel summability to
ordinary convergence.

ExampLE 1. Find the radius of convergence of Y, x* and )’ x/k!

Solution: In these cases we can use the formula

a

R = limit

n-+oo

Ayt

The first example gives R = 1 and the second gives

((n + 1!

R = limit

n-r oo

) = limit(n + 1) = oo .
n! n—w
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}‘husnz x* converges (to 1/(1 — x))if |x| < 1 and ) x*/k! converges (to €*)
or all x.

EXAMPLE 2. Show that )% (—1)*k is not summable (C,1).

Solution: Herea, —1, -+2, -3, +4, -5, +6,...
S, -1, +1, -2, 42, =3, +3,...
T: -1, 0, -2, 0, =3, O,...
n 1
Gy = 0, = — . —_—
2n Oap—1 m— 1 - 2
Thus l,}»m;t o, does not exist. However, the (C,2) sum is — 1/4 (Exercise).

ExAMPLE 3. Show )= . (—1)*k = —1/4 (Abel). Here

e

(—D¥kxt = x d%cz (—1)kx*

_d_ 1
dx 1 + x

k=1

X
= —(qug?y le< 1.
This =+ —1/4asx — 1—,s0

2(—1)'% = -% (Abel) .

Exercises for Section 5.9
¢+ 1. Compute the radius of convergence of
> x*/k*  and of PRIE
« 2. Show that
(1—__1—;55 =§:ka"" =§:o(k + 1)k, —-l<x<1

by differentiating an appropriate series.

¢3. Showthat2/3=14+0—-14+14+0—-14+14+0—-1+""" (C,1).
(Note that insertion of zeros can alter the Cesaro sum.)

/4. Show!l +0—14+1+0—=2/3 (Abel).
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Theorem Proofs for Chapter 5

Theorem 1. Letf,: A — R™ be continuous functions, and suppose that f, — f(uniformly).
Then f is continuous.

Proof: Since f, - [ uniformly, given & > 0, we can find an N such that k= N
implies that || filx) — f(x)]| < &3 for all xe 4. Consider a particular point x, € 4.
Since fy is continuous, there exists a & > 0 such that (fx — Xo < §,xed)=>
(L1 = fu(xo)ll < &/3). Then for |x — Xoll < 8, [1f(x) — S(xo)ll < 1SG) = Syl +
I fwx) = fulxoll + Wfalxo) — Sl < g/3 + &3 + ¢/3 = &. Since x, is arbitrary, S
is continuous at each point of 4, hence it is continuous. [

Theorem 2. Let f,: A — R™ be a sequence of functions. Then f,-converges uniformly iff
for every & > O there is an N such that I,k > N implies || fi{x)} — fH(x) < & for all
xe 4.

Proof: If f, ~ f uniformly, then given ¢ > 0, we can find an N such that k > N
implies | fi(x) — f&)Il < &/2 for all x. Thenif k,/ 2> N, 149 = fix) < 1) — Sl +
1/) = O < &/2 + /2 =&

Conversely, if given ¢> 0, we can find an N such that k, /> N implies -

14x) = fiell < & for all x, then fi{x) 5 a Cauchy sequence at each point x, so fi(x)
certainly converges pointwise to, say, f{(x). Morcover, we can find an N such that k,
! > Nimplies || fi(x) — fi{x) < &2 for all x:.Since filx) = f(x) at each point x, we can
find for each x an N, such that / = N, = [ fi(x) — f(x)| < &/2. Let /> max{N,N.}.
Thenk > N = | /i) — /&) < IAx) ~ N+ 1) = fEI < &2 + 82 = &
Since this is true for each point x, we have found an N such that k > N =
1/:x) = f(x)] < & for all x. Hence f, = [ (uniformly). §

Theorem 3. Suppose g,: A — R" are functions such that there exist constants M, with
g < M, for all x € A, and 3> | M, converges. Then }.°_ g, converges uniformly
(and absolutely).

Proof: Since Y, M, converges, for every & > 0 there is an N such that k > N implies

M+ -0+ Myl <elorall p= 1,2, ... (see Theorem 11, Chapter 2). For k = N
we have, by the triangle inequality,

lgx) +  + Gra N < gl + -0 + Ngse o
SMk+"'+Mk+p<8

for all x € A. Thus by the Cauchy criterion for series, Z g, converges uniformly. [

Theorem 4, Suppose fi: [a,b] — R are continuous functions and f, — [uniformly. Then

b b
j‘ Sux) dx —-»j f{x)dx .
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Corollary 2, . Suppose g,: [a,b] — R are continuous and ZZ“_ | G converges uniformly
Then we may interchange the order of integration and summation

L] o b
Saw =3 [awar.
ak=1 k=1 Ja

Proof: For integrals recall tﬁat if | f(x)] € M then

b
U J(x) dx
For ¢ > 0 choose N such that k > N implies | f(x) — f{x)| < /(b — a). Then
b b b
ﬁmwﬁ—fﬂwa fmm—nu»a b-a

g ———— =g
as required,

6-a °
For the coroll = Y% . YT .
the above orollary, Iet f =1 953 then fu = [ =3 | g, (uniformly), and so by

< Mb - aq).

b b
Jfk(x)dx —*ff(x)dx. ]

.Tlxef;rem 5. Let f: ]f"b[ - R be a sequence of differentiable functions on the open 3
émtet.val Jab[ converging pointwise to f:lab[,— R. Suppose the derivatives Sy are
continuous and converge uniformly to a function g. Then f is differentiable and f'=g

Proof* tite fi{x) = filxo) + j"‘ Jiu(x) dt, where a < x, < b. This i i
W o s . This is bl
the fundamental theorem of calculus. Letting k — o0, we get of(x) = f(xg) +pc}s"81g(f) bd);
xXg

using Theorem 4. Hence /' = g again by the fundamental th i
tinuous by Theorem 1. J eorem. Here g is con-

Theorem 6. The function || || on €,(4,R™) satisfies
@Il = 0,and|if|| = 0ifff = 0;
@) llofl =l |fll; for e e R, f € %,
@) W + gl < U1 + lgl (triangle inequality).
Proof: (i) and (ii) are clear. For (iii),
I/ + gl = sup{I(f + @)Xl | x & 4}
< sup{l./G)I + Nlg(all | x € 4}

by the triangle inequality in R™. Now, since sup(P
. ] + = P, i
7, at the end of Chapter 1), and . &) = oup(P) + sup(Q) (Bxercise

{ILFG + gl | x € 4} = (1A + lgyll | x,p & 4}

we have

sup{ll/N + llgooll [ xe 4} < 171 + llgh - H

. Theorem 7. (f, — f (uniformly on A) <> (f, = f i ,; that is, | f, ~ f] ).

Note: y prove the theorem even if [ are not continuous it requires
" , but it re
more-work; see Apostol, Mathematical Anal ysis, p. 402. ' l
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Proof: This is nothing more than a transcription of the dcfinitions. The student
should write it out. H
Theorem 8. %,:is a Banach space.

Proof: Let f, be a Cauchy sequence. By Theorem 2, f, converges uniformly to f.
Since | /()] < I/l + 1 for k large, [ is bounded, and by Theorem 1, f is continuous.
Thus f € %, and therefore f, converges in %,. §

The proof of the Arzela-Ascoli theorem is a little long and involved. It may be omitted,
if desired, in a less ambitious course.

Theovem 9. Let A — R be compact and let B < G(A,R™). If B is bounded and equi-
continuous, then any sequence in B has a uniformly convergent subsequence.

To prove this, we first prove a lemma.

Lemmal. Let A < R"be any set. Then there is a countable set C < A whose closure

contains A.

Proof: The points in R" with rational coordinates are a countable set (see the
Introductory chapter). Call them x,, x5, . . . . Consider for each integer n the discs

1 1
D(xl,~>, D(xz,—>, e
n n

These clearly cover all of R”. Whenever one of these, D(x,(1/n), meets 4, select one
point from D(x,,(1/n)) N A, and the collection so obtained will define our set C. Now C
is countable since this collection {D(x;,(1/m)) | L,n € N} is countable.

We claim that cl(C) > 4. Indeed, let x& 4, & > 0. Choose 1 50 1/n < ¢/2. Now x
lies in some D(x,,(1/n)) for some value of /, so there is'a point in C N D(x,,(1/n)), say y.
Thus d(x,y) < dx,x) + dx,y) < 1/n + 1/n < & Hence x € cl(C), so c(C)y> 4. &

We shall need to exploit compactness of A in the following way.

P
Lemma 2. Let'A be compact and C be constructed as above. Then for any é > 0 there
is a finite set C, « C say Cy = {}y,. .- D} such that each x € A is within & of some
v, e C’l .

Proof: Choose n so 1/n < &. Then in Lemma I, there is a finite number of the
collection D(x,(1/n)), D(x2,(1/n)), . . . which cover A, because A is compact. Then C, is
defined as those members in this finite collection which were chosen for C. The result
then follows as in Lemma 1. §

Now we turn to the proof of the theorem. Let C be as constructed in Lemma 1, say
C = {x,,%;.. . . }. Let f, be our sequence in B. Now {1.} is bounded, so, in particular,
the sequence f,{x,) is bounded in R™. It follows from the Bolzano-Weierstrass theorem
in B™ that there is a subsequence of f(x,) which is convergent. Let us denote this
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subsequence by

Jux)s fiaberds oo Sl - o

Similarly, the sequence fy,(x,): k = 1, 2, ... is bounded in R™; hence it has a sub-
sequence

FETLC 70 221 £ RURRIIS S 6 2 B

which is convergent. Continuing the process, the sequence fy(x;):k = 1,2,... is
bounded in R™, so some subsequence '

Saulxah faalxs)s - oo faulxs), - o

is convergent. We proceed in this way and then set g, = f,, so that g,, is the nth function
occurring in the nth subsequence. .

Diagramatically, g, is obtained by picking out the diagonal:
Ja Nis o i

*++ fon ** (second subsequence)

{first subsequence)

<+« f3, -+ (third subsequence)

{nth subsequence)

f;n /;12 ./;:3 \

This trick is called the “diagonal process’ and is useful in a variety of situations.

From the construction of the sequence g,, we see the sequence g, converges at each
point of C; indeed g, is a subsequence of each sequence f,: k= 1,2,... .

We shall now prove that the sequence g, converges at each point of 4 and that the
convergence is uniform and this will prove the theorem. To do this, let ¢ > O and let 6
be as in the definition of equicontinuity. Let C; = {y,. . .,y be a finite subset of C

such that every point in 4 is within 6 of some point in C, (see Lemma 2). Since the
sequences

(gn(yl»v (gn()’z)), sy (gn(yk))
all converge, there is an integer N such that if m, n > N, then )
lgu(p) — gyl <& fori=1,2,... k.

Foreach x € 4, thereexists a y; € C, such that lx — y;| < é. Hence, by the assumption
of equicontinuity, we have

"gu(x) - gn(yj)" <ée
foralln = 1,2,.... Therefore, we have
"gn(x) - gm(x)” < "gn(x) - gu(yj)u + ”gn(yj) - gm(yj)“ + Hgm(yj) - gm(‘x)[]

<e+é&-+e=3e,
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provided m, n = N. This shows that
g, — gull < 36 formnz N,

so the uniform convergence of the sequence g, on A follows from the Cauchy Criterion
(see Theorem 2). H

Instead of proving Theorem 10, the following more general result is established.

Theorem 10'. Let X be a complete metric space and let T: X — X be a contraction;
d(T(x), T(y) < Ad(x,p), where 0 < A < 1 is a fixed constant. Then T is continuous

and has a unique fixed point.

Proof: That T is uniformly continuous is immediate, for given £ > 0 we can use
§ = g/A; d(x,y) < & implies d(T(x),T(y)) < Ad = &.
Let xo€ X, and let x; = T(xg), X; = T(x,), ..,y Xuy = T(x,) = T" xg). We
claim x,, is a Cauchy sequence. Note that
d(xn+17xn) = d(T(xn):T(xn— 1))
< 4 d(xmxn~ l)
=1 d(T(xn— 1))T(xu—2))
< Az d(xn— lixn—l)

" < A" d(Txg,x0) .

Hence
X Xyr) S AXpXps1) + Ay (Xnr2) + 70+ By 10X 44)

. < (/1" + ;UH-l + e + /lu-f-k— l) d(Txg,xo).
Nowsince A< 1, Misa r'onvergent geometric series, so given & > 0 there is an N
such that n > N implies (A" + -+ + A"~ 1) < g/(d(Tx,.%,)). Hence n > N implies

d(%,%q+x) < & Thus we have a Cauchy sequence, and by the assumption of complete-

ness, x, — x for some x e X.
We claim Tx = x. Indeed, x = limit x,, so Tx = limit T(x,) by continuity of T.
n—+o0 n-+ow

But Tx, = X, 50 Tx = limit x| = x.
-+
Finally, x, the fixed point is unique, for suppose that Tx = x and Ty = y. Then

. dix,y) = d(Tx,Ty) < Adx,y) .
If d(x,y) # 0 we would get 1 < A, a contradiction. Hence d(x,y) = 0,50 x = y.

Theorem 11. Let f: [0,1] = R be continuous and let ¢ > 0. Then there is a polynomial
px) such that | p — f|| < e. Infact, the sequence of Bernstein polynomials

5 n\ [k e
Pix) =k;(k)f<;)x"(1 - X
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converge uniformly to [ as n — oo where
(n n!
k) kln = k)l

Proof: The binomial theorem asserts

denotes the binomial coefficient.

" n
x+yyr=3 <1>x"y""‘ . (1
k=0 \X
Differentiating Eq. 1 with respect to x and multiplying by x gives the identity
nx(x 4+t =3y k(n)x"y"”" ' V)]
=0 \k

Similarly, by differentidting twice,

n(n — Dx*x + p)=? = ik(k -1 < ) ek 3

. n
Let (for notation) r,{x) = < k)x"(l — x)""* Thus Egs. 1,2, and 3 read, withy = 1 — x,

Yo =1, Z fr(x) = nx, Z k(k — Dryx) = n{n — Dx? .
k=0 k=0

k=0

It follows that we have the identity

kgo(k — nx*rfx) = n rzz rx) — 2)1‘CZ kryx) + Z k*rx)

= n2x? — 2nx - nx + [nx + n(n — 1)x?] “)
=nx(l — x).

. Now choose M such that | f(x)}] < M on [0,1]. Since f is uniformly continuous there
is,for ¢ > 0,a 6 > Osuch that |x — y| < & implies |f{x}) — f())| < e.
We want to estimate the expression

1) = 2l = 1) = 3 S
k=0

- k‘;o(f(x) —f(%))rk(x) .

To do this, divide this sum into two parts; those for which |k — nx| < én and those for
which [k — nx} = dn. If [k — nx| < 6n, then |x — (k/n)] < 3, so |f(x) — fk/n)| < e,
and therefore, remembering that r(x) > 0, these terms give a sum < ¢ Yo =e.
The second type of terms have a sum

2M &
2M ) r®) < s 3 (k — nx)*ryx)
k=0

|k —nx|23n
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which, by Eq. 4, is
2Mx(1 — x) M
e s e o ¥
né* 26%n
since x(1 — x) < 1/4 (why?). Thus we have proven that for any & > Othereisad > 0
such that

M
1) = ol < & + 5

Thus if 1 is sufficiently large, M/(26%n) < &so

|f(x) ~ pfx)l < 2¢
ifn > M/26%. Thus p, — [ uniformly. §

Theorem 12. Let A = R be compact and let # = 4(A.R) satisfy
(i) @ is an algebra;
(if) the constant function x v 1 lies in B
(iii) @B separates points.
Then @ is dense in €(4,R).
Proof: Let us introduce some notations as follows:

(f v g9 = max(f(x)g(x) and  (f A g)x) = min(f(x)glx) .

(See Figure 5-6.) Let 7 be the closure of 2. Then by continuity of addition and multi-
plication, we see that & also satisfies (i). It clearly satisfies (if), (iii). Thus 4 is closed and
what we then want to show is that & = ¥(4.R).

By the preceding theorem and solution (a) to Example 2, Section 5.7 we can find a
sequence of polynomials p,(¢) such that

1
Hfi—p,.(l)i<; for —-n<t<n.

Thus
1
I = pS N < - if —n< flx)<n.

This proves that for f € 8, |f| € 4, because p, o f € & since & is an algebra,

fve
f
R /
g N/
f fng &

FIGURE 5-6
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Now we have the identities I+ I |
Jreg g

vy T

f+g _/—d

frg=—==="3

(an exercise for reader), soif f,ge &, f v gand f A gliein % as well.
Let he G(4,R) and x,, x, € 4 with x, # x,. Choose g € & such that g(x,) # glx3)
(which is possible by hypothesis (iii)), and let .

Soed®) = 0g(x) + B,
[h(x,) — h(x,)] [gle)lxz) — hxglxa)]
=2 d f= :
Sl ey e B [90) = g0ea)]

The numbers of «, ff are chosen 5o Sa(%1) = h(xy) and [, . (x2) = h(x2).
Lets > 0and x & 4. For y € 4 there is a neighborhood U(y) of y such that

fix2) > h(z) — ¢ ifzeU(y).

where

This is simply by continuity of . Let U(y), . . . , U(y,) be a finite subcover of 4, which s |
possible by the Heine-Borel theorem. Set f; = f,,, v *** V [, Thus, as above,

. f.e® and f{z) > h(z) — ¢ for all ze A. Also, fi(x) = h(x). Thus there is a neighbor-

hood ¥(x) such that f,(y) < h(y) + ¢ if y € V(x). Let V(x,), . . ., V{x,) cover 4 and set

f=lan AL

Then again f € &. Now f(z) > h(z) — ¢ for all ze A because f (u) > hlu) ~ & for all
ue A and also for ye A4, ye V(x) for some x; so f{y) < S < h(y) + e Thus
|f(z) — h(z) < &,50 he B. Thus B = ¥(4,R). B

For both Theorems 13 and 14 which follow Abel’s partial summation formula is
employed; this is contained in the next lemma.

Lemma 1. Consider two sequences ay, ay, ...and by, by, .. .of real numbers. Let
s, =a, ++* + a, Then

Zakbk = §,buey — Zsk(bk+1 - by)
k=1 k=1

= 5,by + D (50 — 5)Bewr — b
k=1
Proof: Note that a, = s, — 5,_,. Then

Zakbk = Z(Sk = Se_ )by = Zskbk - Zsk-—-lbk s
k=1 k=1 k=1 k=1

where 5, = 0. Now
n "
Zsk—-lbh = Zskbk+l = Sbus1 s
k=1 k=1
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so we obtain the first result. The second equality is obtained by putting

busy Z(bk+l — by + by
in the first equality. §

Theorem 13 (Abel’s Test). Let A « R™and @,: A — R be a sequence of functions which
are decreasing; that is, @, (X) < @,(x) for each x € A. Suppose there is a constant M
such that |o(x)| € M for all xe A and all n. If Z:‘; . [+(x) converges uniformly on A,
then so does 3. @ (X)f()-

Proof: Let
5(%) =k§j ) and ) =k21 PUS) .
=1 =

Then, by the second equality of the lemma, we find that

I'"(.Y) - "m(x) = (S"(X) -
for n > m, so that

{ n( ) ’m(t)[ Isn(x) - m(‘x)l l(pl(x)l + Z lsn - S,J !(plﬂ-l(x) - (pk(x)l

k=nm+1

SulxXNe () + a—zu(s"(x) = SN Prer 1{x) — @)

since

Prr1 S Prs [Pre1 — @d = O = Pps1

.
Given & > 0, choose N so that n, m =
xe A. Then

N implies |s,(x) — s.{x)| < &3M for all

frx) — rafel <5 + < - ) [‘Pk(x) - @rs (2]

=m+1
‘g' (‘3874 [On+1(¥) — Ous )]
-§- (36 )[lcpm(xl + 1ns (]
<ELE + e
<3t3ty=e

for all x € A. Hence by the Cauchy Criterion (Theorem 2), f,(x) converges uniformly. §

Theorem 14 (Dirichlet Test). Let 5,(x) = Z fm(x) for a sequence f,: A =« R™ — R.
Assume there is a constant M such that 1s (x)l <M for all xe A and all n. Let
gp: A = R™ = R be such that g, — O uniformly, g, = 0, and gn41(x) < g,x). Then
fo:l [(x)g.(x) converges uniformly on A.
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Progf: We use the same notation as in the above proof, writing ¢, = g,. Now,
however, to compute r, — r,, we use the first equality in the lemma. Namely,

r,,(x) - rn:(x) = Sn(x)(pn-i- l(x) - sm(x)‘pm+ l(x)

n

= ) 5)@rs (%) — Pilx)

k=m+1

so that, since @, 2 0 and @44, < @,

‘l',,(x) - rm(x)i < M((pn-(-l(x) + (pm+t(x))

+ M Z (@u(x} — Prs1(x))

k=m+1

= M{@y41(%) + Os1(¥) + Orir(x ) = Py 1(X)
T = 2Men(0).
Now, given ¢ > 0, choose N so that m > N implies @,(x) < ¢/2M for all x. Then
m,n = N implies |r(x) — r.{x)| < &, which proves the assertion. §
Theorem 15. Z;‘; 0 a,x* converges absolutely for |x| < R, converges uniformly for.
|x] < R where R"< R and diverges if |x| > R.
Proof: Let R < R.Choose R" with R' < R” < R. Then, for n sufficiently large,

1 . 1y
v |a ‘ F ) that 1s, Ianl < ('E;‘) .

Hence if |x] € R, we have
Rl
o <(2).
R

Since R'/R" < 1, we have uniform absolute convergence in the disk |x] < R' by the
Weierstrass M-test.

On the other hand, suppose . a,x" converges. Then 4,x" = 0, 50 |g,x" < 1 for n
large. Thus \"/{_aﬁ < |x|7! for n large. Hence R™! = lim sup \'/m < |x|7Y, that is,
x <R § :

Corollary 4. The sum of a power series is a C* funciion inside its circle of convergence.
It can be differentiated termwise and the differentiated series has the same radius of
convergence.

Proof: The series obtained by termwise differentiating is Y ka,x*~*. The radius of
convergence is R', where

1/R' = lim sup Wk |a .

But %k — 1 (why?), so

1 . 1
== lim sup Wlay| = 2 thatis, R' = R..
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Thus, by Corollary 3, the differentiated series converges uniformly inside any smaller
circle, and therefore it is the derivative of the sum of the original series. By induction,
we see that the original series is differentiable any number of times. §

Theorem 16 (Abel). If }° a.= A then Yeo ax* converges for |xi < 1 and
lin}it Tt =4

Progf: By changing ag, we can assume 4 = 0. Since g, is bounded (in fact g, — 0)
the series ) a,x* converges for |x| < 1 by Theorem 15 on the radius of convergence.

Write S, = 3 a. Since S, is bounded as n — co, the series > Sx* likewise
converges for |x| < 1. Now, since 4 = 0, §, » 0 as n — co. Write f{x) = ) * axk,

lx| < 1. Then
Six) =S, +kZ:x(Sk — S x*

o
=(1—x)) Sx*.
k=0

Since S, — 0, given ¢ > 0 we can find n, so that |S,| < eforn > no Then

e < 1= 2| st + 00 3 e
k=0 k=np+

SU=2| ) S+ (1 - x)-ax™*(1 - x)7!

S(U—%|) S +e.

Accordingly, hm 1 Sup |f(x)| < &. Since ¢ > 0 was arbitrary,
hmxlt fix)=0. R

Theorem 17. 3= a, = A (C,l) implies 2 o 4= A{dbel).

Proof: As before, we may suppose 4 = 0. Write S, = Zz= 0% T = ZL o Sk
Then, by assumption, T, = O(n). Hence S, = T, — T,., = Omanda, =8, — S,_y =
O(n). Accordingly all three series Y. a,x*, 3 S,x", and ¥ Tix* converge if |x| < 1. Also,

J) =Y axt =1~ x) Y Sk

= (1 — x* ) Tx~
Now, as T, = O(n), given ¢ > 0 we may choose ny so that #n > n, implies |T}} < en
Accordmgly,
< (L — %2 ), T + (1 — %) ) ekt
k<ng k>np
SU=0* Y T + (1 — % -ex(l — x)72
k<ng

and we find hmlt sup | f{x)| < &. Thus, as in the previous theorem, hmxt fx)=0. §
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Theorem 18. IfY a, = A (C,l)andifa, = O(1/n) then } a, = A.

Proof: We can as usual, suppose that 4 = 0. Write S, = " a, T, = 3" S;. Then
the first hypothesis is written as T, = o{n). The second hypothesis implies there exists a
constant C with |a,] < C/n for all n.

We want to show S, — 0. If not, then for some ¢ > 0, [S,| = ¢ for infinitely many
indices n. It can be assumed (by reversing all signs if need be) that S, > & for infinitely
many values of n. But if S, > § and r > §, we have

Sr=Sn+an+l +an+2+'“+ar

5—-C< 1 + - +£>
n+ 1 r
S
>5—Clog(—>‘
n

This will be =5/2 l;rovided Clog(r/n) < /2, that is, r/n < €% = ). (Note that
A > 1). Hence we have

{av]

5 .
([;"n] - ")E < Z Sr = TI.).n] - T;t‘

r=nt

(Here [x] means the largest integer <x.) Now the right side of this inequality is o(»),

+ but the left side is of the order (4 — 1)n/2, a contradiction. Hence $, must tend to 0. §

Worked Examples for Chapter 5

1. () If f, — f (pointwise) and g, — g (pointwise), then show that f, + g, — f + g
(pointwise) for functions f,g: 4 <« R" —» R™.

(i) Answer the same question for uniform convergence.

Solution:

(i) For x e 4, we must show that (f;, + gJ)(x) — (/' + g)(x). Given ¢ > 0, choose
N, so that k = N, implies || fi(x) — f(x)|| < &/2 and N, so that k > N, implies
lgulx) — g(x)I| < /2. Then let N = max(N,,N,) so that k > N implies (by the
triangle inequality)

10 + gdx) = (F + 9N < 1flx) — S+ Nlgulx) — gboll < €.

(i) Repeat the argument in (i) where each statement is to hold for all x € 4.

2. Prove that a sequence f;: 4 — R" converges pointwise (uniformly) iff its components

converge pointwise (uniformly).

Solution: The portion of the example on pointwise convergence follows from the

fact that a sequence in R" converges iff its components do (see Chapter 2). However,

write out the argument again so its validity for uniform convergence can be seen.
Letx = (x',...x") e R™ Then |x| < |||l < X" |x|. Indeed, the first inequality

is obvious and the second follows from the triangle inequality if we write x =

(x'.0.....0) + (0,x%0.....0) + *++ + (0,0,. . ..x").
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Applied to f;, = (f1,.. /1), we have
V) = 7 < AR — fll <Z‘:l[f i) — S

Now if fi(x)is a ‘Cauchy sequence for all x, so is fi(x) by the first inequali.ty. Hen.ce
J converging pointwise implies that f% converges pointwise. The same inequality
and Theorem 2 show that if f, converges uniformly, so does f£.

Conversely, suppose fi(x) converges for each i and x. Choose N, such that
k, I > N, implies | fi(x) — fi(x)| < ¢/m. Then if N = max(N,,...,N,), k, I= N
implies || fi(x) — £l < g/m + -+ + g/m = g, so fi(x) converges. .

For uniform convergence we repeat the argument with each statement holding
forallxe 4.

. Find an example of a sequence f; converging uniformly to zero on [0,00[, with each

J& f{x) dx existing (that is, converging), but {§ f,(x) dx —» -+ oo, Does this contradict
Theorem 4?
Solution: Let

if0 < x < k2,

R

Jdx) =

+

y ifx > k2.

0
Then f;, — 0 uniformly, since l}",‘(x)l < 1/k for all x. However,
2

® k
ffk(x)dx——-—-:kaoo.
o k

This does not contradict Theorem 4 because that theorem dealt with finite intervals.
(Dini’s theorem). Let 4 « R" be compact and f; a sequence of continuous functions
Ji: A = Rsuch that

(@) fi{x) > Oforxe 4;

(b) fi — 0 pointwise;

(©) fulx) < fi{x) whenever k > /.

Prove that f, — 0 uniformly.

Solution: This example requires a little care because we are trying to deduce uniform
convergence from pointwise convergence plus some other hypotheses and we know
that the result won’t be true without these extra ones (study Figure 5-1, where all the
hypotheses here are valid, except f;(0) - O as k — o).

Given ¢ > 0 we want to find an N so that | fi(x)] < e¢forallk > Nandall xe A
For each x € 4, find N, so that | fi(x)] < ¢/2 if k > N,. We write N, to en'lph.asne
that this number depends on x. Here we have used hypothesis (b). By continuity of
fi(x) there is a neighborhood U, of x such that |f{y) — fi(x)| < &/2 for.y € Ux:k.
The neighborhoods U, ,_form a covering of 4, so by compactness there is a finite
subcover, say centered at x,, . .., Xp. Let N = max(N,,.. ., N,,). Nf)w letxe A,
k = N.Then x e Uy, for some /, 50 | fy,(x) — fu,(x) < &2. Thus, using (c),

0 < 00 < /) < Sl = ufod + L) = fufd] <5 +2 =

Therefore fi(x) < efor k = N, x € A and so we have uniform convergence.
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5. Preamble. Consider the alternating series Z:; , (—1)"/n which converges (see
Theorem 14 above), However, we cannot rearrange the terms of the series, or else
we may get divergence. In fact, the series 3 (—1)%n can be rearranged to yield any
desired sum! This was discovered by Riemann (see Exercise 17).

To be able to rearrange series, it is necessary to have absolute convergence.
First, let us define a rearrangement. Let Z;’f’__ , @ be a series. A rearrangement is the
series Z;‘i | %o, Where o is a permutation of {1,2,3,. . . }» or more precisely, a bijection
o: {1,2,3,.. .} > {1,2,3,... }.

Prove the following theorem,

Theorem. Let g e R" and suppose w1 O converges absolutely; that is,
Z,“‘“:I lgil converges. Then any rearrangement of the series Zl‘j‘:l gx also con-
verges absolutely, and to the same limit. ’

Solution: Let g, be the rearranged series. Given g > 0, there is an N such that
n = N implies ¢
”gn“ + R ”gn-l-p” <eg.

Now choose an integer N, so that o(n) > N whenever n > N,. (We can do this
because there are only finitely many integers # for which o(#) < N because ¢ is a
bijection). Thus if # > N, we have o(rr + k) > N, so by the above,

IGaemll + -+ + (Gotmsmll < €.

By the Cauchy Criterion then, ¥ 9a(m COnverges absolutely (Theorem 10, Chapter 2).

To show that the limits are the same, given g, select N, > N, where N is as above
sothatif 1 < n < N, thenn = o(k) for some k, 1 < k < N,. This is because such
k are finite in number and ¢ is onto. Then let Ny = max(N,,N,) and so form > Ny,

m @ " Ng o<
Z gn’(k) - Z gl = ng(k) - Z Gn — Z Gn
k=1 n=] k=1 n= g n=Ng+1
n Na 2]
< Zga(h) - Z gl + Z I
k=1 n= n=Ng+1
m f=e]
== Z ga(u) + Z Gn
n=Ng+1 n=Ng+1
<eéet+e=2.
Here we have used the fact that ,
o No w
20 =20+ Y 4,
n=1 n=1 n=Ng+1

and that

which holds by construction of ;.

Thus the series Z,"": { 9oy CODVELgES to Z:': o Gn Which is the desired conclusion.
The result of this example is closely related to important rearrangement theorems
for double series (see Exercise 51).
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Exercises for Chapter b

e L.

1+ 4,

y 8.

(a) Let f, beasequence of functions from 4 < R"to R™. Suppose there are constants
my, such that || f(x) — f(x)]| < my for all xe A and that m, — 0. Prove that
fi = [ uniformly.

(b) M my, —» meR and ||fi(x) —
f;, converges uniformly.

jm, — my| for all x e 4, then show that

BASIIIES

. Determine which of the following sequences converge (pointwise or uniformly).

Check the continuity of the limit in each case.

(sm x) 1
( ) n R. (b) mOn }0,1[.
x X
(© Tt D) on ]0,1[. @) i) on R

© (1‘°—‘;f~’f-

)> , a sequence of functions from R to R2.

. Determine which of the following series Z"; | & converge (pointwise or uniformly).

Check the continuity of the limit in each case.

(@ ) = 0, x <k, geR-R
I =1, x>k
-%, |x <k, g R=R
3
(b) gufx) =
- |x] > k.
" x

© gux) = ((—1)k>cos(kx) on R.
Jk
Let f,: [1,2] — R be defined by f;(x) = (.1:_’6) )

(a) Prove that Z"“ "(x) is convergent for x e [1,2].
(b) Isit umformly convergent?

{©) Is [} Z‘” Sx) dx = Z”

(d) gilx) = x*on J0,1[.

2 fix) dx?

. Suppose f; — f uniformly, where f,: 4 - Rand g, — g uniformly whereg,: 4 — R
and there is a constant M, such that |jg(x)|| < M, for all x, and a constant

M, such that || f(x)}| < M, for ali x. Then show that f,g, — fg uniformly. Find a
counterexample if M, or M, does not exist. Are M, and M, necessary for point-
wise convergence?

. Prove that the sequence f;: 4 — R™ converges pointwisc iff for each x € 4, fi(x)

is a Cauchy sequence.

. For functions f: 4 — R, form %, as in the text. Show that we always have

/gl < 071+ lgll. Discuss with examples.

Does pointwise convergence of continuous functions on a compact set to a con-
tinuous limit imply uniform convergence on that set?

s 9.

» 10,

» 11,

13,
ol4.

V15,

16.

3 17.

s 18,
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Suppose Z ., 9x converges uniformly on 4. If x, = x, in A4, prove that
Z gn(xk) - Z gn(xo) .
a=1 . nw=l

For the sequences and series of Exercises 2 and 3, when can we integrate or
differentiate term by term?

(a) Must a contraction on a metric space have a fixed point? Discuss.

(b) Let f: X — X, where X is a complete metric space (such as R) satisfying
df(x)S(») < dx,y) for all x, ye X. Must f have a fixed point? Discuss.
What if X is compact?

. A function f: 4 - R, 4 = R" is called lower semicontinuous if whenever x, € A

and A < f(x,), there is a neighborhood U of xy such that 1 < f{x)forallxe U A 4.

Upper semicontinuity is defined similarly.

(a) Show that f is continuous iff it is both upper and lower semicontinuous.

(b) If f, are lower semicontinuous, f, — f pointwise and f;.,(x) = fi(x) then
prove that f is lower semicontinuous.

(¢} In (b) show that f need not be continuous even if the f, are continuous.

(d) Let f:[0,1] — R and let g{x) = su% mf f( ). Prove that g is lower semi-
continuous.

In Theorem 5, show that f, — f uniformly. [Hint: Use the mean-value theorem].

Let f: X — X be a contraction on a compact metric space X. Show that

» J"X) is a single point where [ = fofo-*-of (n times). Is this true if
9 :

Let g, € R™ and let f, be a subsequence of g,. Prove thatif ). g, converges absolutely,
then ) f, converges absolutely as well. Find a counterexample if Y g, is just
convergent.

Observe that in Example 5, the same argument applies in any normed space. Use
this observation and the space %, to prove the following:

Theorem. Let g,: A = R* — R" be bounded, continuous, and suppose 3 g,
converges uniformly and absolutely. Then any rearrangement also converges
uniformly and absolutely, and to the same limit.

Let Z"f’: 0

number x, show that there is a rearrangement . b, of the series which converges

a, be a convergent, not absolutely convergent, real series. Given any

to x. [Hint: Let p, denote the nth positive term of a, and — g, its nth negative term.’

Non-absolute convergence implies that both of these series 3. p,,, 3. g, diverge. Let

X, =X~ 1/nand y, = x + 1/n. Choose k,, so that s, = p; + -+ + p, > x,
and /, so that ry = p; + -+ + p, — g, —+* — q;, <'y,. Then choose further
terms so that sy =py + b p, — g~ gy Pt F Py > X

Repeat this, obtaining a series with partial sums s,, r, 55, 13, . . . . Argue that we
can choose, for k large enough, x, < 5, < y, and x;, < r, < y,, from the fact that
P g = 0. Show that this is the desired rearrangement.]

Give an example of a sequence of discontinuous functions f, converging uniformly
to a limit function f which is continuous.
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19. Construct the function g(x) by g(x) = || if x e [—1/2,1/2] and extend g so that it
becomes periodic. Define

LATE 4n~l
f) = Zf’%-,._—;—) :

+ (a) Sketch g and the first few terms in the sum.
+ (b) Use the Weierstrass M-test.to show f is continuous.
(c) Prove f is differentiable at no point [Hint: It would be helpful to consuit
Gelbaum and Olmsted, Counterexamples in Analysis, p. 38].

« 20.

<

S, [sinnx\ 4 . .

Prove that Z 5— |x° defines a continuous function on all of R.

n=1 n

21. (a) Prove that if A = R" is compact, B < %(4,R™) is compact <> B is closed,
bounded, and equicontinuous. Note: One half of this, <=, was proved in the

text.
(b) Let D = {fe €[0ILR) | I/l < 1}. Show D is closed and bounded, but is
not compact, Construct a sequence in D which is not equicontinuous and then

make use of (a).

22. Let B = %(4,R™) and A compact. Suppose for each x, € 4, and ¢ > 0 there is a
5 > 0 such that d{x,x,) < & implies d(f(x).,/(xo)) < & for all fe B. Prove B is
equicontinuous.

+23. Let f: R — R and suppose f o f is continuous, Then must f be continuous?

24. A metric space X is called second countable if there is a countable collection U,,
U,, . ..of open sets in X such that every open set in X is the union of members of
this collection. Prove that such an X has a countable subset C such that cl(C) = X.
(We then say that X is separable). Prove conversely that a separable metric space
is second countable.

Let g: [0,1] — R be continuous and one-to-one. Show that g is either increasing or
decreasing. :

v 25.

» 26. Let k(x,y) be a continuous real-valued function on the square U= {(xp]0<x<1,

continuous. Prove that there is a unique continuous real-valued function f(x) on
[0,1] such that

1
flx) = Alx) +J kx y)f(y) dy .
o
¢ 27, Let f:Ja,b[ — R be uniformly continuous, and suppose that x, — b. Show that
limit f(x,) exists.

n—w

- 28. Let f,(x) = x/n.Is f, uniformly convergent on {0,396]7 On R?

0 < y<1} and assume |k(xy)| < 1 for each (xp)e U. Let A:[0,1]] >R be -

29
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. Discuss the uniform continuity of the following.

(@ fx) =% xel-LI[
't (b) fix) = x*,  xe[0,00.
t(c) fx) = e, xe[000f.

' (@) f() = xsin 3),
. X

2

0

30.

%31

132,

33.

034,

¢35,

+ 36.

»37.

v 38.

39,

v40.

0<x<1,f(0)=0

&) f(x) =sin[ln(l + x¥], —-1<x<1,f(-1)=0.

Discuss and prove the statement “Every continuous function on a compact metric
space is uniformly continuous.”

Let a, be a convergent sequence of real numbers, a, — a. Let b, = (a, + *** + a,)/n.
Show b, — a as well.

Discuss and prove the following. Let X and Y be metric spaces and f: X — Y
continuous. Suppose f(X) consists of two distinct points. Then prove X is not
connected.

Let f,:[0,1] — R be a sequence of increasing functions on [0,1] and suppose
f, = 0 pointwise. Must f, converge uniformly? What if f, just converges pointwise
to some limit f?

Find a sequence f,: [0,1] — R of differentiable functions such that f, — Quniformly,
but such that f/(1/2) does not converge to 0.

Let f:R — R be continuous and bijective. Show that f~* is continuous (see

Exercise 7, Chapter 4. For a generalization, see M. Hoffman, Continuity of Inverse
Functions, Mathematica Magazine (not yet published).)

lLet J(x.p) = x*y/(x* + y?). Discuss the behavior of f near (0,0) with regard to the
imits
limit  f(
(a) <,5.y§5“<‘<).o>f (xp),
(b) lim[lim f(x.p)],
x40 "y

{©) Ll_{lg[ilg}) Sxp)].

Suppose f: R — R is continuous and f(1) = 7. Suppose f{x) is rat nal for all x.
Prove f is constant.

Prove 1 + 1/2 + 1/4 4+ 1/8 + -~
converges, but not absolutely.

converges and 1 — 1/2 + 1/3 — 1/4 + S

A function g: [0,1] —+ R is called simple if we can divide up [0,1] into subintervals
on which g is constant, except perhaps at the end points. Let f:[0,1] - R be
continuous and ¢ > 0., Prove there is a simple function g such that |/ — g|| < &.

(a) Define §: %([0,1],R) — R, f — f(0). Prove ¢ is continuous and is linear.

(b) Let g: R — R be continuous. Define F: %([0,1],R) — #([0,1],R) by F(f) =
g o f- Prove that F is continuous; prove that if g is uniformly continuous then
F is uniformly continuous.
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v 41. Show that there is a polynomial p(x) such that |p(x) — [x]*| < 1/10 for
—1000 < x < 1000.

42. Study the possibility of replacing the sequence of Bernstein polynomials in Theorem
11 by a sequence of Lagrange interpolation polynomials (see Exercise 2, Section 5.7
for the definition and properties) to effect the proof of the theorems in Section 5.7.

43. Let @[ — 1,1],R) denote the set of even functions in %([—1,1],R).
(a) Show @, is closed and not dense in %.
(b) Show the even polynomials are dense in €., but not in &.

44. Projects: Examine the possibility of extending the Stone-Weierstrass theorem to

(a) complex valued functions (keep the same hypotheses on % except add ‘e &
implies f'€ #” ~(overbar) denoting the complex conjugate);

(b) non compact domains (consult Simmons, Introduction to Topology and M odern
Analysis);

{c) Use (b} to study the density of the Hermite functions in a suitable space of
continuous functions (the Hermite functions are defined and studied in, for
example, Courant-Hilbert, Methods of Mathematical Physics, I).

45. Let f{t,x) be defined and continuous for a < ¢ < b and x € R". The purpose of
this exercise is to show that the problem dx/dt = f(t,x), x(a) = x, has a solution on
an interval ¢ € [a,c] for some ¢ > a (it is unique only under more stringent condi-
tions). Perform the operations as follows: divide [a,b] intonparts ¢, = a, .. . .1, =
b, and define a continuous function x, by

{x:x([) = fltix, (), 4L <<ty

xa) = Xq .

Put A (1) = xi{f) — f(t.x,(t)) so that

[

x,(8) = Xo +th (5,%,(5)) + Ayfs) ds .
'} -

Use the Arzela-Ascoli theorem to pull out a convergent subsequence of the x,.
This method is called polygonal approximation; compare with Sections 6 and 7.5.

46. (a) Let f,: R” — R? be a sequence of equicontinuous functions on a compact set
K converging pointwise. Prove that the convergence is uniform.
+ (b) Let

x2

[x* + (1 — nx)?]’

Show that f, coniferges pointwise but not uniformly. What can you conclude
from (a)?

0Lx<1.

Julx) =

47. Let f,: K = A — R™ be a sequence of equicontinuous functions. Suppose that f,
converges on a dense subset of 4. Prove that the sequence converges on all of 4.
Does this shed any light on the proof of Theorem 97

« 48. Prove that the norm on %([0,1],R) is not derived from an inner product {,> by
W1 = /LS, as the norm on R is. {An inner product on a vector space § is a
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function ¢,>: S x S - R satisfying the property in Theorem 5, Chapter 1.) [Hint:
Show that the property in Exercise 12a, Chapter 1 fails, and note that this property
follows only from the fact that the norm on R” derives from an inner product satisfy-
ing the properties in Theorem 5, Chapter 1.]

149 LetSbea spt and let & denote the set of a// bounded real valued functions on S ;
endow £ with the sup norm. Prove that 4 is a Banach space.

50. Let f: R —+ R be a uniform limit of polynomials. Prove that [ is a polynomial.
51. Consider a double series '

o

Z Ao wherea,,, e R, m, n = 0,1,2,.

=0

Say that it converges to S if for any ¢ > 0 there is an N such that n,m > N implies

n,n
Z @Gy — S
ki=0

<ég.

Define absolute convergence in the obvious way. Prove "that if a is
=0 %nm
absolntely convergent, then the sum can be rearranged as follows: nn=o

Interpret this result in terms of summing entries in an infinite matrix by rows and
columns.

.+ 52. Can we differentiate the series

AN
ot

k1
Z‘(k k + 1) 0<x

+ 53. Evaluate the following limits:

term by term?

1 —cosx
3 Timit
@ limit =5

(i) limit (1 + sin 2x)*
x=0+
1

(i) limit —— ~ =
x=0+ Sin x X

o 54. Test the following infinite series for convergence or divergence:
\/E log k
) Z K+ 2k+3
e ! 3k
k"
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+ 55. Prove that n/4 = 1 — 1/3 + 1/5 — 1/7 + - - - starting from
L+t =) (-%  |d<1.
k=0

56. Test the folfowing series for absolute and conditional convergence:

(a) Z (=1)'m~", o real
n=1

@ (~1Flogk
4 kloglogk
© =D s,
ok (-1)F
57. Prove that if
(a) fi(x), g{x) continuous, 0€x<®
O <gx), n=123... 0sx<o
(©) fi{x) = f(x) uniformly, 0 < x < R,forany R < oo and
@) [ glx)de <o
then limit [§ f;(x) dx = [ f(x) dx.

(b)

™

k

a8t

58. Prove the following convergence tests (seé, for example, Exercise 49, p. 60).

Uit 1
€] — = — , a>1
@) u, >0, G n nlogn
=> Y i, CONVErges,
b 0 Uyt g > 1 - l — 1
()un'> H u, = n nlogn

=Y u, diverges.

~ 59. (a) Letp > 1 with 1/p + l/g = 1.Fora, b, t > 0 prove that

aftr b
ab € — + —
P q

and that ab is the minimum value of the right side. (One way to prove this is to )

use elementary calculus.)
(b) Prove Holder’s inequality: a, b, 2 0,p > 1, 1/p + I/g = 1

! n n i/p / n Lig
- )"
1 1 '

[I—iint: Imitate the proof of the Cauchy-Schwarz inequality, using part (a).]
(c) ‘Prove Minkowski’s inequality: a,, b, = 0,p > 1

n_ M\1/p " L/p a L/p
e (o) (S B
Hint: Write

Z(ak + bk)p = Z(ak + bk)p_ 1ak + Z (ak + bk)p_ 1bk ’
1 1 1

and use Hélder’s inequality in a clever way.]
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60. The series Z,‘f’: L x*/k converges if |x| < 1. For which complex x with |x| = 1 does
it converge?

- 61.

—

Let " a,x* have radius of convergence R. Show > ax — b)* converges inside the
disc of center b, radius R.

' 62. Find the radis of convergence:

2 xM/(k + 1),

+ 63. (Binomial series.) Consider

> xlog k.

S oo — 1) (o — k + 1) X
5 "
= k!

Assume o is not an integer > 0. Show the radius of convergence is R = 1. (See
Exercise 49, Chapter 2 on the hypergeometric series for behavior of the series at
x = +1)

+ 64, Does 1 + 1/2 + 1/3 + - - - converge (C,1) or {Abel)?

65. Let f(x) be continuous, 0 € x < co. We normally define
© R

j f(x) dx = limit f fx)dx,
0 R+ 0

if the limit exists. By analogy with (C,1) summability, define a notion of “(C,1)
integrability from 0 to c0,” and prove that your method of integrability is regular,
that is, agrees with the usual | if the latter converges.

66. Define ¢, inductively by r; = I,and t,,; = £,/1 + %) where f is fixed, 0 < B <l
Prove that Z:‘; , ta converges. [Hint: Try to show that there is a constant C such
that t, < C/n'%.]

67. Let A = {j/2"e[0,1]|n = 123,...,j=0012...2F and let f: 4 — R satisf
the following condition: there is a sequence &, > 0 with Z::; &, < oo and

()18

Prove that f has a unique extension to a continuous function from [0,1] to R.
[Hint: Show that | f(¢,) — f{t,)] < 2 22y Eniflty — 15 < 1/2" and apply Exercise
24, Chapter 4.]

< g, foralln >0, Jj=1,2,...,2".

68. Let A = R" be compact and let B = ¥(4,R™) be compact. Prove that B is equi-
continuous as follows:
{a) Prove that the map E: ¥(4,R") x 4 — R" (fx) = f(x) is continuous;
(b) use uniform continuity of E restricted to B x 4 to deduce the result.
(This method of proof is due to J, Allen.)




150 UNIFORM CONVERGENCE

APPENDIX TO CHAPTER 5:

When can R" be replaced by ‘‘metric space’’?

by R. Gulliver

In this book we have concentrated much of our attention on concrete metric
spaces, especially R". The question naturally arises, how general are the
results we have obtained? In many exercises we have already asked . the
reader to verify that some results hold in general metric spaces (see for
example p. 100). In the table below are gathered together some of the im-
portant results, (including some not formally stated as theorems in the text).
and the general contexts in which they are valid are stated. The proofs are,
in almost every case, the same as those given in the text. The reader should
pick out some of these theorems and verify that this generalization is indeed

valid.

Theorem

Valid in
Metric spaces?

Chapter 2

Theorem 1: For all ¢ > 0 and x e R", D{x,¢) is open.

Theorem 2: (i) the intersection of.a finite number of
open sets is open; (i) the union of any collection of
open sets is open.

Theorem J: (reverse of Theorem 2 for closed sets).

Theorem 4: A — R" is closed iff all accumulation
points of A4 in R" belong to 4.

Theorem 5: cl(4) consists of A plus all its accumulation
points in R", .

Theorem 6: x € bd(4) iff every neighborhood of x in
R" contains points of 4 and points of R"\4.

Theorem 7: x, — x iff for all ¢ > 0 there exists N such
that if k > N then {x, — x| <e&.

Theorem 8: x,, x € R": x, — x ifl each sequence of
components of x, converges to the corresponding
component of x.

Theorem 9: 4 = R" is closed iff for all sequences {x,},
x, € A which converge in ", the limit is in 4.

Theorem 10: A sequence {x,} in R" converges iff it is
a Cauchy sequence.

Theorem 11: For x, e R": Y x, converges iff for all
& > 0 there exists N such thatif k = Nand p > 0
then x;, + Xgeq + 000+ Xpapl <&

Yes.
Yes.

Yes.

Yes.
Yes.
Yes.

Meaningless in a general
metric space.

Yes.

= Yyes.

<=is the definition of a
complete metric space;

Valid in complete normed
space (= Banach space).
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Theorem

Valid in
Metric spaces?
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Theorem 12: x, e R™: 1f ) |ix,|| converges in R then
Y x, converges in R"
Theorem 13: (iv) If lkiinit [1%s 1/ 1%, ) exists and is <1

then 3" x, converges. (Also (v) is valid).

Baire Category Theorem: The intersection of a
countable number of dense open subsets of R" is
dense in R".

Theorem: [R" has a countable dense subset.

Chapter 3
Theorem 1: The following are equivalent for 4 = R™:
(i) A is closed and bounded.
.{ii) A has the Heine-Borel property.
(iii) 4 has the Bolzano-Weierstrass property.
Theorem 2: {F,} a sequence of non-empty compact
subsets of R" with Fy,; < F,. Then [\ Fy is
non-empty. )
Theorem 3: If A is path-connected then it is connected.
Theorem: If 4 is open = R" and A is connected, then
it is path-connected.
Proposition: A a closed subset of 4, 4 compact = A
is compact.
Proposition: 4 a closed subset of R", x ¢ 4 = there
exists y € A with d(x,y) = inf{d(x,z)| z € 4}

Chapter 4

Theorem 1: For f: 4 —» R™, 4 = R", these are equiv-
alent:
(i) f is continuous on A.
(ii) For each sequence x, — x, x, € 4, x € A, there
holds f(x,) = f(x).
(iif) For all open sets U < R™, f~Y(U) is a relatively
open subset of 4.

{iv) Forallclosed sets K = R™, f~}(K)isa relatively
closed subset of 4.

Valid in Banach space.

Valid in Banach space.

Valid in complete metric
space.

This defines a “‘separable”
metric space; not always
true. However, %(4,R™)
is separable, for 4 =« R"
compact (prove this using
the Stone-Weierstrass
theorem).

No! However, (ii) and (iii)
are equivalent, and each
implies (i). If 4 has (ii),
we call it compact.

Yes (using the above defini-
tion of compact).

Yes.
In a normed linear space.

Yes.

No!

Yes (replace 4 by one met-
ric space, R™ by another
metric space)

(continued)
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Valid in
Theorem Metric spaces?

Theorem 2: A < R"andf: 4 - R" continuous. Then Yes.
{i) If K < A is connected, then f(K) is connected.
(ii) If K = A is compact, then f(K) is compact.

Theorem 3; A<= R, f:A-R" Bc f(4) <R", Yes.
g:B—RP. If f and g are continuous then
gof: A — RF is also continuous.

Theorem 4: Sums and scalar products of continuous In a normed space.
functions are again continuous.

Theorem 5: A = R" compact, f: 4 — R continuous. Yes.
Then f(A) is bounded and contains its sup and inf.

Theorem 6: A = R" connected, f: 4 — R continuous. Yes.
For any x, ye A and ceR with f(x) < ¢ < f(),
there exists z € 4 such that f(z) = c.

Theorem 7 (Heine’s Theorem): A « R* compact, Yes.
[+ A — R" continuous. Then [ is uniformly con-
tinuous on A.

Chapter 5

Theorem 1: f; — f uniformly, f;, f:4 —» R™ 4 < R Yes..
If each f, is continuous then f is continuous.

Theorem 3 (Weierstrass M-test): 4 = R'g,: A — R", A may be any metric space;
Igllsup < M, and 3, M, converges. Then Y gk R™ must be replaced by a
converges uniformly. Banach space.

Theorem 8: For 4 « R", €,(4,R™ is a Banach space. A any metric space; R

must be a Banach space.

Theorem 9 (Arzela-Ascoli): A « R" compact, B A may be any compact
%(A,R™). B is compact iff B is closed, bounded, and metric space, but R™ must
equicontinuous. be R™.

Theorem 12 (Stone-Weierstrass): 4 = R" compact, A may be any compacl *

B < 9(4,R). If B is an algebra which separates metric space.
points and if the constant functions are included in

B, then B is dense.

Further results on metric spaces:

Theorem: If X is a complete metric space, 4 a closed subset of X, then 4 is a complete
metric space.

Definition: A metric space X is totally bounded if for all e > 0 there exists a finite set
{X1,e . oX,} © X such that X < | J_| D(x;.€).

Theorem: Let X be a metric space. X is compact iff X is complete and totally bounded.

Chapter 6

Differentiable
Mappings

In this chapter we shall discuss the notion of a differentiable map from
R"to R™. We shall start right in with the general case since the reader should
have. some familiarity with the derivative for functions of one variable
Pertinent facts from one variable calculus will be brought in as they are:
needed.

Starting with this chapter a certain amount of linear algebra will be used
In part'icular the student should now review the notion of a linear trans:
formg.tlon and its matrix representation.* We shall be defining the derivative
asa .lmear mapping; the connection with partial derivatives will be found in
Section 6.2. After this we will generalize the usual theorems of calculus to
the multivariable case (such as differentiability implies continuity, the chain
rule, mean-value theorem, Taylor’s theorem, tests for extrema, an:i so forth).

6.1 Definition of the Derivative

F'or a function of one variable f: Ja,b[ — R we recall that f is called
differentiable at x, € Ja,b[ if the limit

Sflxo + B) — f(xo)

f'xo) = limit p

exists. We recall that one also writes df /dx for f'(x). Equivalently, we may

* See for example, M, O’Nan, Linear Algebra, Harcourt Brace, Jovanovich, {1971).

1563
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write the above formula as

limit JOxo + 1) — {1 (xo) = J'xok _

that is,
S0 = f0) = Sx)x = %) _

X — X

limit
or, what is the same,
o W6 = flx0) = fOxolx = xo)l _

x~txp X — Xol

We recall that this number f'(x,) represents the slope of the line tangent to
the graph of f at the point (x,,f(x,)). See Figure 6-1.

To generalize this notion to maps f: 4 « R” — R" we make the following
definition.

Amapf: 4 =« R* » R"issaid to be differentiable at
R™ and

Definition 1.
Xo € 4 if there is a linear function, denoted Df(x): R" —

called the derivative of J at x,, such that

L G = Fg) = DFGeolx = xoll _

x—Xo lx — xoll

apphed to the vector x — xo € R", s0 Df(xp)(x — xo) € R™. We
shall often write Df (x,) - A for Df (x,)(h). (In this definition, as usual,

FIGURE 6-1
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¥ =£(x,) + DfOx,) (x = x,) z = f(x,) + Df () (x — %)

f \

X
/ %
. A

(@ f R7R

(b) £ R*>R

FIGURE 6-2 (a) f: R— R. (b) f: R® » R.

we exclude x = x, in taking the limit, since we are dividing by
lx — xoll, and take the limit through those x € 4).

More explicitly, it may be rewritten by saying that for every ¢ > 0 there
isad > Osuchthatxe 4, and llx = xoll_< ¢ implies

M) — Slxo) — Df (xo)(x — %l <

&llx — xo" .

In this formulation we can allow x_= x, since then both sides reduce to zero.

Intuitively, x — f(xo) + Df (xo)(x — Xo) is supposed to be the pest affine
approximation* to f near the point x,. See Figure 6-2. In this ﬁgure we have
indicated the equations of the tangent planes to the graph of f.

If f is differentiable at each point of 4, we just say f is differentiable on A. (
We .expect intuitively (as in Figure 6-2) that there can be only one best linear
approximation. This is in fact true if we assume that A is an open set. If we
compare the definitions of Df (x) and df/dx = f'(x), we see that Df (x)(h) =
f'(x) - h (the product of the numbers f'(x) and h € R). Thus the linear map

Df (x) is just multiplication by df/dx.

{

Theorem 1. Let A be an gpen set in R" and suppose f: 4 — R™ is
differentiable at x,. “Then Df (xo) is uniquely determined by f.

ExampLE 1. Let f: R - R, f(x) = x*. Compute Df(x) and dfjdx.

* An affine mapping is a linear mapping plus a constant.
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Solution: 1In this case we know from elementary calculus (or from rules
developed below) that dx*/dx = 3x2. Thus in this example Df{(x) is the

linear mapping hi-s Df(x) - h = 3x%h

ExaMPLE 2. Show that, in general, Df is not uniquely determined.

Solution: For example, if 4 = {x,} is a single point any Df (x,) will do,
because x € 4, |x — %ol < & holds only when x = X, in which case the

expression 1/(x) = flxo) = Df Gxo)x — %ol
is zero. The definition is then fulfilled in a trivial way.

Note: If the proof of Theorem 1 is examined closely one sees that Df(x)
is unique (assuming it exists) on a wider range of sets than open sets. For
example, the theorem is valid for closed intervals in R or generally for closed
discs in R".

At this point it is convenient to recall some facts about derivatives of
functions of one variable. Specifically, recall the logical steps leading up to the
important mean-value theorem. We shall shortly be generalizing these ideas
to functions of several variables.

Fact 1. If f: Ja,b[ = R is differentiable at c & ]a,b[ and [ has a
maximum (respectively minimum) at c, then f'lc) = 0.
Proof: Let f have a maximum at c. Then for h =0, [f(c + h) —
f(©)]/h <90, and so letting h—0,h>0 we get f(c) < 0. Similarly for
h < 0 we obtain f'(c) > 0. Hence f'(c) = 0. 1§ :

The reader should be familiar with the geometric significance of this result.

Fact 2. (Rolle’s Theorem). If f:[a.b] — R is continuous, f is
differentiable on Ja,b[ and f(b) = f(a) = 0, then there is a number
c € Ja,b[ such that f'(c) = 0.

Proof: If f(x) = 0 for all x € [a,b] we can choose any c. So assume f
is not identically zero. From Chapter 4, we know that there is a point ¢;
where f assumes its maximum and a point ¢, where f assumes its minimun.

By our assumption and the fact that f(a) = f(b) = 0, at least one of ¢y, ¢;

lies in Ja,b[. If ¢; € Ja,b[ we get f'(c,) = O by Fact 1; similarly forc,. §

Fact 3. (Mean-Value Theorem). If f: [a,b] = R is continuous
and differentiable on Jab[, there is a point ce labl such that

f) = f@) = [©)b - a)

Proof: Let o(x) = f(x) — fl@y — x — ALf) — (@) — a) (see
Figure 6-3) and apply Rolle’s theorem.
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ftx) o(x)

|
|
|
|
|
|
|
|
|
{
X

FIGURE 6-3

Corollary. If, in addition, ' = 0 on Ja,b[, then f is constant.

Proof: Applying Fact 3 to f on [ax] we have f(x) — f(a) =
fiefx — a) =0, so f(x) = f(a) for all xe[ab], and therefore f is
constant. '

_ The list of basic theorems continues to include differentiability implies

continuity, sum rule for derivatives, quotient rule, chain rule, and Taylor’s

theorem. These will all be dealt with below in the general case of functions

gf several variables, but the reader may wish to review the one variable case
rst.

ExampLE 3. Let f: Ja,b[ — R be differentiable and | f'(x)} < M . Prove that
If(x) = fO) < M |x — y|forall x, y € Ja,b[.

Solution: By the mean-value theorem,

fx) = fO) = [ = )

for some ¢ € ]x,y[. Taking absolute values gives the result.

Exercises for Section 6.1 !
1. Compute Df(x) for /: R = R, f(x) = xsin x.
2. Prove that D(f + g) = Df + Dg.

3. Let A4 = {(x,y) e R®*|0 < x < 1,y = 0}. Prove that the conclusion of Theorem 1 is
false for this 4. [Hint: Take, for example, f(x,y) = 0 and show that Df{x,y) = 0
and Df(x,p)(h,k) = k both satisfy the definition.]

4, Let f: R* - R™ and suppose there is a constant M such that for x & R", If) <
M ‘ Ilx}2. Prove f is differentiable at x, = 0 and that Df(xo) = 0.
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5. f:R— Rand|f(x)| < |x]|, must Df(0) = 07

6. Does the mean-value theorem apply to f(x) = \/—‘; on [0,1]? Does it apply to
g(x) = /Ix on [—-1,177

6.2 Matrix Representation
In addition to the above, there is another way to differentiate a function f

of several variables. We can write it in component form f(xy,. . ..X,) =
(fi®1sr - X5 + 1o fulX1se - X)) and compute the partial derivatives, df;/0x;

forj=1,...,mand i =1,...,n, where the symbol 9f;/0x; means that
we compute the usual derivative of f; with respect to x; while keeping
the other variables X, . . ., X;— 1, X415 - - - » X, fixed. Explicitly, Definition 2
follows.

Definition 2. 9f;/0x; is given by the following limit, when the latter
exists:

{fj(xl,. coXi By X)) = filXg,. - .,x,,)}
- )

af; .
—a—i—"(xl,. coXp) = I}gi(l)t

In Section 6.1 we saw that Df(x) for f: R — R is just the linear map
multiplication by df/dx. This fact, which was obvious from the definitions,
can be generalized to the following theorem.

Theorem 2. Suppose A = R" is an open set and f: A — R™ is
differentiable. Then the partial derivatives df;/0x; exist, and the matrix
of the linear map Df (x) with respect to the standard bases in R" and
R™ is given by N

-
o o Ui
O0x, 0x, ox,
= Bxy Bxg ox,,
Yo U ... Un
Kaxl axz E ax,,/

where each partial derivative is evaluated at x = (Xy,. . ..%,).
This matrix is called the Jacobian matrix of f.
In doing practical computations one can usually compute the Jacobian

matrix easily and Theorem 2 then gives us Df. In some books, Df is called
the differential or the total derivative of f.

or Vf. Thus for
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One should take special note when m = 1, in which case we have a real-
valued function of n variables. Then Df has the matrix

o o
0x, ox,
and the derivative applied to a vector ¢ = (ay,. . .,a,) is

n a
Df(x)- e =i; a—ial— .

It should be emphasized that Df is a linear mapping at each x € 4 and
the definition of Df(x) is independent of the basis used. If we change the
basis from the standard basis to another one, the matrix elements will of
course change. If one examines the definition of the matrix of a linear trans-
formation* it can be seen that the columns of the matrix relative to the new
basis will be the derivative Df(x) applied to the new basis in R” with this
image vector expressed in the new basis in R™. Of course, the linear map
Df(x) itself does not change from basis to basis. In the case m = 1, Df(x) is,
in the standard basis, a 1 x n matrix. The vector whose components are
the same as those of Df(x) is called the gradient of f, and is denoted grad f -

e (o
fiAc R - R grad f = <6x1" . "6x,,> .
{Sometimes it is said that grad f is just Df with commas inserted!).

An important special case occurs when f = L is already linear. Then
from the definition (see Example 2 below) we see that DL = L, as expected
since the best affine approximation to a linear map is the linear map itself.
Thus the Jacobian matrix of L is the matrix of L itself in this case. Another
case of interest is a constant map. Indeed one sees that a constant map has
derivative zero; zero is the linear map f: R" — R™ such that f(x) = 0 =
©,.. .,0) for all x e R".

ExaMpLE 1. Let f: R2 - R?, f(x,y) = (x2,x%y,x*y?). Compute Df.
Solution: According to Theorem 2, Df(x,y) is the linear map whose
matrix is

/% ¥, N !
Ox Oy 2% 0
o | _| 1.2 3
Ty oy | Ix*y  x
4x3y?  2x*
\ox 0y

where f;(x,y) = x%, f,(x,5) = x%y, f3(x,y) = x*y*.
* Sec M. O’Nan, Linear Algebra, Harcourt Brace Jovanovich, New York, (1971), Chapter 5.
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ExampLE 2. Let L: R" — R™ be a linear map (that is, L(x + y) = L(x) +
L(y) and L(ex) = aL(x)). Show that DL(x) = L.

Solution: Givenx,ande > Owemustfindd > Osuchthdt |x — Xl < 9
implies '
IL(x) — L(x¢) — DL(x) - (x — xo)ll < & lx — %ol .

But with DL(x) = L the left side becomes
IL(x) — L(xo) — L(x — xo)l ,
which is zero since L(x — Xo) = L(x) — L(x,) by linearity of L. Hence
DL(x) = L satisfies the definition (with any d > 0).
ExampLE 3. Let f(x,y,2) = x(sin y)/z. Compute grad f.
Solution: grad f = (9f/0x,0f/dy,0f|0z), and here

of (siny) of _ x(cos y) o _ __x(sin y)
>  z ' 8y oz 0z z2
s0 '
(sin y) x(cos y)  x(sin y)
grad f(x,9.0) = (LS, - )

Exercises for Section 6.2

1. Let f: IRg - R?, f(x,9,2) = (x*y,xe?). Compute Df.

2. Let f: R? = R, (x,5,2) = € *¥**#* Compute Df and grad f.

3. Let L be a linear map of R* - R™, g: R" - R” such that gl < M ||x||?, and let
fix) = L(x) + g(x). Prove Df(0) = Er -

4. Let f(x,y) = (xy,y/x). Compute Df. Compute the matrix of Df{(x,y) with respect to
the basis (1,0}, (1,1) in R%,

5. Discuss the possibility of df:fming Df for f, a mapping from one normed space to
another.

6.3 Continuity of Differentiable Mappings:
Differentiable Paths

The reader might recall from elementary calculus tha? a differentiabl.e map
is continuous. This is appealing intuitively since having a tangent line {(or
plane) to the graph is stronger than having no breaks in the graph.

For real functions of a single variable, we recall the proof: let f: Ja,b[ - R

CONTINUITY OF DIFFERENTIABLE MAPPINGS

be differentiable at x,. Then
limit(/ () — £xo) = nmit(@—-‘—,{-‘i‘“—’) (% = xo)
o x—rxg -~ Xp

= /(o) limit(x — x0) = f'(xg) 0 = 0
S0 lxi»mxit( JS(x) — f(xo)) = 0 which implies f is continuous at x,.

- These ideas are readily generalized to the case of f: 4 = R -+ R™ and
the next theorem follows.

Theorem3. Suppose A = R'isopenandf: A — R™is differentiable
on A. Then fis continuous. In fact, for each x, € A there js a constant
M>0 and a 6o>0 such that |x — x| <, implies
/&) = flxo)l < M ||x — xoll. (This is called the Lipschitz
property.)

Earlier we examined the special case of real-valued functions, f: R* — R.
The case of a function ¢: R - R"™ is also important. Here ¢ represents a
curve or path in R™. In this case Dc(t): R — R™ is represented by the vector
7 dcl\

da

de,

mn

Ldt)

where c{t) = (c({t),. . ..c,(8)). This vector is denoted c'(t) and is called the
tangent vector -or velocity vector to the curve. If we note that c'(t) =
llimét(c(t + h) — c(t)/h and use the fact that [c(t + h) — c(t)]/h is a chord

" which approximates the tangent line to the curve, we see that c'(f) should

represent the exact tangent vector (see Figure 6-4). In terms of a moving
particle, (c{t + k) — c(t))/h is an approximation to the velocity since it is
displacement/time, so c'(f) is the instantaneous velocity.

Strictly speaking we should always represent ¢'(f) as a column vector,
since the matrix of Dc(t) is a 3 x 1 matrix. However this is typographically
awkward, and so we shall write c¢'(t) as a row vector.

ExampLE 1.
entiable at 0.

Prove that f: R — R, x |x] is continuous but not differ-

Solution: f(x) = xforx > Oand f(x) = —xforx < Oso fiscontinuous
on ]0,00[ and ]— 00,0[. Since ligm(i)t f(x) = 0 = f(0), fis also continuous at

161
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)

/

c(t+h) - c(t)

c(t)

c(t+h)

FIGURE 6-4

.

0, so f is continuous at all points. Finally, f is not differentiable at 0, for

if it were, »
timit L0 = SO _ 5 /)
0 X

x=+0 X -

limit
x=0

would exist. But for x > 0, f(x)/x is +1 and for x < 0itis —1. Hence the
limit cannot exist.

ExXAMPLE 2. Must the derivative of a function be continuous?

Solution: The answer is no, but an example is not obvious. Perhaps
the simplest known example is

x? sin(1>, x 0,
Sx) = X

. 0, x=0.
See Figure 6-5.
To demonstrate the differentiability at zero we shall show

16

X

Indeed, |f(x)/x] = |x sin(1/x)| < |x| = 0 as x — 0. Thus f '(0) exists and is
zero. Hence f is differentiable at 0. Now, by elementary calculus,

f(x) = 2x sin(%) - cos(i—), x#0

-0 as x—0.
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¥

FIGURE 6-5

As x — 0 the first term — 0 but the second term oscillates between + 1 and
—1s0 lim(i)t f'(x) does not exist. Thus f* exists but is not continuous.
X~

ExamPLE 3. Let c(t) = (t3,tsint). Find the tangent vector to c(t) at
¢(0) = (0,0,0).

Solution: '(t) = (2t,1,cos t). Setting t = 0, ¢'(0) = (0,1,1) which is the
vector tangent to c(t) at (0,0,0).

Exercises for Section 6.3 ’
1. Let

x2, if x is irrational ,

X} ==
&) {0, if x is rational .

Show f'(0) exists. Is f continuous at 07
2. Is the Lipschitz condition in Theorem 3 enough to guarantee diﬂerentiability?

3, Must the derivative of a continuous function exist at its maximum?

4, Let f(x) = xsin (1/x), x 0 and f(0) = 0. Investigate the continuity and differ-
entiability of f at 0.

5. Find the tangent vector to the curve ¢{f) = (3:2,¢'t + ¥ att = 1.

6.4 Conditions for Differentiability

Since the Jacobian matrix provides an effective computational method, we
should like to know if the existence of the usual partial derivatives implies
that the derivative Df exists. This is, unfortunately, not true in general.




y
fe,»=y
f:l f':l
fx y)=x
X
f:l f= 1
FIGURE 6-6

For example, take f: R? — R defined by f(x,y) = xwheny = 0, f xy) =1y
when x = 0, and f(x,y) = 1 elsewhere. Then df/dx and df/0y exist at (0,0)
and are equal to 1. However, f is not continuous at (0,0) (why?), so the
derivative Df cannot possibly exist at (0,0). See Figure 6-6. (See the Examples
and Exercises for more exotic examples.) . . o

1t is quite simple to understand such behavior. The partial derivatives
depend only on what happens in the directions of the x and y axes, vyhereas
the definition of Df involves the combined behavior of f in a whole neighbor-

hood of a given point. ‘
We can, however, assert the following.

Theorem 4. Let A = R* be an open set and f: A < [R". — R™.
Suppose f = (f1,. . -Juw)- If each of the partials 0f;/0x; exists and
is continuous on A, then f'is differentiable on A.

i . . * .
Let us now discuss the directional derivative.

Definition 3. Let f be real-valued, defined in a neighborhood of
X, € R" and let e € R" be a unit vector. Then
| Flxo + te) — [x0)

t

d .
g/t + )| = limit

is called the directional derivative of f at x, in the direction e.

From this definition, the directional derivative is just the rate of change of
f in the direction e; see Figure 6-7.
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We claim that the directional derivative in the direction of e equals
Df(xo) - e. To see this just look at the definition of Df (x,) with x = X + te;
we get

f(xo + te) — f(xo)
t

— Df(xo)- e < ¢lel foranye > 0

if |¢] is sufficiently small. This proves that if f is differentiable at Xo then the
directional derivatives also exist and are given by
g 0 19 = St

= Df(xo)-e.

In particular, observe that f/dx; is the derivative of f in the direction of
the ith coordinate axis (with e = ¢, = (0,0,. . .,0,1,0,. . .,0)).

Notice that for a function f: R? — R the directional derivatives Df(xo) - e
can be used to determine the plane tangent to the graph of f (compare
Figure 6-2). Namely, the line I, z = f(x,) + Df(x,) -'te is tangent to the
graph of f since, as in Figure 6-7, Df (x,) - e is just the rate of change of f in
the direction e. Thus the tangent plane to the graph of f at (x0,f (o)) may
be described by the equation :

z = f(xg) + Df(xq) * (x — xg),

(see Figure 6-8). Since we have not defined rigorously the notion of the

z

0

/

(%, +te)

slope of £
= tanf

= directional
derivative

FIGURE 6-7 Slope of / = tan § = directional
derivative.
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z=f(x,) + Df0xg) + (x =)

X, = 0% gar 2 %u,0)

X

FIGURE 6-8

tangent plane to a surface, we shall adopt the above equation as a definition
of the tangent plane.

ExaMmpLE 1. Show that the existence of all directional derivatives at a point
does not mply differentiability.

Solution: We consider f: R* - R,

X X2 # —y
Sxy) ={ & +) - ’
0, X2 = —y.
Then if e = {e;,€2),
1 .1 tPeje, te,e,
- f(leg,ley) = — =
Fftente)'= T o e, T Bl + iey

as t — 0 (the case e, = 0, however, gives zero). Thus each directional
derivative exists at (0,0), but f is not continuous at (0,0) since for x?* near
— y with both x, y small, f is very large. (For instance, given 6 and M, choose
(x,y) such that x* = —y + ¢ and [|(x,p)|| < 8. Then f(x,y) = xy/s, which
for ¢ small can be made larger than M. Thus f is not bounded on D((0,0),5)
for any 6 > 0 and so is not continuous at (0,0).) Hence, by Theorem 3, f is
not differentiable at (0,0).

Note: This example shows that existence of all directional derivatives
would not be a convenient definition of differentiability since it would not
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even irr.lply continuity. This is the reason one adopts the more restrictive
notion in Definition 1.

ExampLE 2. Let f(x,y) = x* + y. Compute the equation of the plane
tangent to the graph of fatx = 1,y = 2.

Solution: Here Df(x,y) has matrix

af of
(a:g;) = (2x,1)

so Df(1,2) = (2,1). Thus the equation of the tangent plane becomes

e ‘ x—l —
z-—3+(2,1)(y___2>~3+2(x~1)f(y—2)

that is,
2x +y—z=1.

Exercises for Section 6.4

1. Use Theorem 4 to show that

B 200
foog) = {VF P T
0 () = (00)

is differentiable at (0,0).

2. Investigate the differentiability of

xy

fxy) = ———m .
at (0,0 if f(0,0) = 0.
3. Find the tangent plane to the graph of z = x* + »? at (0,0).
4. Find the equation of the tangent plane toz = x® + y*atx = 1,y = 3.

5. Find a ﬁ.mction /: R? — R which is differentiable at each point, but the partials are
not continuous at (0,0). [Hint: Study Example 2, Section 6.3.]
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‘6.5 The Chain Rule or

Composite Mapping Theorem

One of the most important techniques of differentiation is the chain rule
(“function of a function rule”). For example, to differentiate (3 + 3)° let
y = x® + 3 and first differentiate y°, getting 6y°, then multiply by the
derivative of x® + 3 to obtain the final answer 6(x®> + 3)33x2. There is a
similar process for functions of several variables. For example, if u, v, and f
are real-valued functions of two variables then

9 o You  of v
&f (u(x,y),0(x,y)) = Rt

The general theorem is now given which includes all of these as special cases.

Theorem5. Letf: A — R™ be differentiable on the openset A = R*
and g: B — R? be differentiable on the open set B = R™, and suppose
that f(4) = B. Then the composite g o f is differentiable on A and
D(g o f)xo) = Dg(f (%)) o Df (xo)-

Note that this formula is logical because Df(x,): R - R" and
Dg(f (xo): R™ — RP so their composition is defined.

Recall that the product of two matrices corresponds to the composition
of the corresponding linear maps they represent. Thus from Theorem 5 we
get the i'r'nportant fact that the Jacobian matrix of g o f at x = (x;,. . .,X,)
is the product of the Jacobian matrix of g evaluated at f(x) with the Jacobian
matrix of f evaluated at x (in that order). Thus if h = go f and y = f(x),
then :

(og, .. e \(f ... o)
ayl aym axl ax"
Dh(x) =
\aYI aym/ \axl ax"/

where 9g;/0y; are evaluated at y = f(x) and 8f;/0x; at x. Writing this out,
we obtain, for example,.

dhy o 093 _a_J_

Ox; f=4 0y; 0%, )

This situation occurs when we ““change variables.” For example, suppose
f(x,y) is a real-valued function, and let x = rcos 8,y =r sin 6 for the new
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variables r, § (polar coordinates). We form the function

h(r,0) = f(rcos G,rsin ).

Then
oh _of a .
‘ arwacose-i-é—;sm(},
and
oh of . af
69-——arsm6+5}-rc050.

The reader should derive similar formulas for spherical coordinates
(r,@,0), where x = rcos §sin ¢, y = rsin 0sin ¢, z = r cos ¢ (spherical
coordinates are discussed in detail in Section 9.5). ‘

The chain rule (Theorem 5) is also called the composite function theorem,
since it tells us how to differentiate composite functions.

Another illustration may clarify matters. Suppose we have functions
u(x,y), v(x,y), w(x,y), and f(u,,w), and form the function h(x,y) =
[u(x,y),v(x,y),w(x,y)). Then Theorem 5 yields

oh_ Yo HEv o ow
0x Oudx Ovdx Owox
We can see this formula (as an illustrative case) roughly as follows, write

[h(x + Ax,y) — h(x,y)]
Ax

[flulx + Ax,p)u(x + Ax,y)w(x + Ax,y))
- f(u(xay)av(x + Ax,y),w(x + Ax,y))]
Ax

LS (u(x,y),0(x + Ax,y),wx + Ax,y))
- f(u(x,y),v(x,y),w(x + Ax’y))]
Ax '

+ [f(u(x;Y),U(xa}’),W(x + Ax,.\’)) - f(u(x»)’),v(x,.l’),w(x,}’))]
Ax ;
Now this is approximately (using f(u + Au,v,w) — f(u,v,w) = Au df/u),
Yhu F o Aw
oulx  dvAx = owAx’

-+

So, letting Ax — 0 gives the formula.

ExaMpPLE 1. Verify the chain rule for f(u,0,w) = u*v + wv? and u = xy,
v = sin x, w = &~
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Solution: Here h(x,y) = f(u(x,y),0(x,y),w(x,y)) is given by

h(x,y) = x*y* sin x + €*sin? x
so, directly,

oh .
o 2xy? sin x + x2y? cos x + €*sin® x + €*2sin x cos X .
On the other hand,
ofou ofov  of ow ou o w ,ow
duox Taax Tawar - o Tt Mt

= 2xy? sin x + x%y? cos x -+ 2¢* sin x cos X
+ ¢*sin? x,

which is the same result. The formula for dh/dy can be checked similarly.

ExampLE 2. Let f: R — R and let F: R* — R be given by F(x,y) = f(xy).
Verify oF oF

x—a’;c"—‘-yw.

Solution: By the chain rule,

oF ,
e S'xy)y
and

oF ,

'é; = fi(xy)x,

so the statement is clear.

Exercises for Section 6.5

1. Write out the qhain rule for*
lz(x7y’z) = f(u(x,y7z)’u(x’y)’w(y’z)) .
2. Verify the chain rule for
u(x,y,z) = xe’ ,

v(x,p,z) = (sin x)yz ,
and
flup) = u* + vsinu
with
hx,y.2) = fluCx,p2).0(x,:2)) -

3. Let #(x,p) = f(x* + y*). Show that x(0F/0y) = y(0F/0x).
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4. Write out the chain rule for spherical coordinates, as we did in the text for polar
coordinates.

5. Let fR—R and F:R* - R be differentiable and satisfy F(x,f(x)) = 0 and
dF/ay # 0. Prove that f'(x) = —(8F 10x)/(9F [y) where y = f(x).

6.6 Product Rule and Gradients

Another well-known rule of differential calculus is the product rule or
Leibnitz rule.

be differentiable_functions. Then gf is differentiable and for x € 4,

D(gf)(x): R* — R is" given by D(af)x):e = g(x)Df (x)-e) +
2 (Dg(x) - e)f(x) for all e R". (Note that this makes sense since
- g(x) e R and Dg(x) - e € R). : :

g Theorem 6. Let A — R*beopenandletf: A - R"andg: A - R

We sometimes abbreviate this result by saying that
D(gf) = gDf + (Dg)f ,

but the precise meaning is as stated in the theorem.
The reader is undoubtedly familiar with the product rule from elementary
caloulus. In terms of components, the theorem simply states that

F N\ (@
2w - o ) + ()5

For quotients, we have a similar result. If g # 0, then
D@ _{g-D/ —[-Dg)
= 5 .
g g
In order to prove this formula, it suffices, by Theorem 6, to demonstrate it
for the case 1/g. This reduces it to a problem in elementary calculus with
which the reader should be acquainted, so we shall omit details.*

Other rules of differentiation are encompassed in the statement that D is,
linear; that is, D(f + g) = Df + Dgand D(Af) = ADffor A e R, a constarit,
The reader will be able to supply the proofs without difficulty. |

Let us consider the geometry of gradientsa little further. Let f: 4 \:\ R*— R
be differentiable. Then we have the gradient N

grad f(x) = (%—::, . ,%) .

* (See McAloon-Tromba, Calculus, Harcourt Brace Jovanovich (1972), Section 3.3).
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i grad f(x,)

'(0)

c(t)

1

FIGURE 6-9

Hence the directional derivative in direction 4 is (see Theorem 2 above)

Df(x) - h = {grad f(x);5>

= rate of change of f at the point x in direction & .

Consider now the “surface” § defined by the equation f(x) = constant.
We assert that grad f(x) is orthogonal to this surface (this is intuitive since
we have not been precise about the nature of this surface—see however
Section 7.7). To prove this, consider a curve c(t) in S with its tangent vector
¢'(0) where ¢(0) = x,. We assert that

Cerad f(xo).c(@)) = 0.

Now since c(t) € S, f(c(t)) = constant. Differentiating and using the chain .

rule, we get
. Df(e@®)-c®) =0.

Setting ¢ = 0,‘ and using Df(x)-h = {grad f(x),h), gives the desired
relation. See Figure 6-9.

Note that we may describe the tangent plane to S: f(x) = constant at

- xo by ¢grad f(xg),x — xop = 0, since grad f(x,) is orthogonal to S.
It is also evident from the equation

<grad f(xo).h) = lgrad f(xo)ll cos 8

(where ||| = 1 and 0 is the angle between grad f(x,) and k) that grad f (xo)
is the direction in which f is changing the fastest. It is not unreasonable
because if we suppose that f represents the height function of a mountain,
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then f = constant are the level contours. To climb or descend the mountain
as quickly as possible, we should walk perpendicular to the level contours.
(Figure 6-10).

These facts are actually of value in practical optimal control problems.
In such problems one is given a function f(x,,. . .,x,) and the problem is to
maximize or “optimize” f by some practical scheme. A common method is
to take a trial point x4 and proceed along a straight line in the direction of
the gradient of f to reach a new point at which f will be larger (at least if
we do not go too far), and repeat.

ExampLE 1. Find the normal to the surface x* + y? + 22 = 3 at(1,1,1).

Solution: Here f(x,y,z) = x* + y* + z* has gradient grad =
(2x,2y,22) which, at (1,1,1), is (2,2,2). Normalizing, the unit normal is

U31/3.10/3).°
ExaMpLE 2. Find the direction of greatest rate of increase of f(x,y,z) =
x2y sin z at (3,2,0).

Solution: The direction is that of the gradient vector, which is
{(2xy sin z,x? sin z,x?y cos z) which becomes (0,0,18) at (3,2,0).
ExampLE 3. What is the tangent plane to the surface x% — y% + xz = 2
at (1,0,1)?

Solution: Here grad f(1,0,1) = (3,0,1) so the tangent plane is

C{x — 1L,y,z — 1),3,0,1)> = 0, that is, 3x + z = 4.

polygonal approximation path
for an optimization problem

level contours

a path of steepest ascent

0!

FIGURE 6-10 Direction of steepest
ascent is orthogonal to the level contours.
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Exercises for Section 6.6

1. Prove

d
S o+ k) = Df(xo) - h

(=0
by using the chain rule, where f: R™ — R".
. Find the unit normal to the surface x2 — y* + xyz = 1 at(1,0,1).
. Find the equation of the tangent plane to the surface x* — y* + xyz = 1 at (1,0,1).
. In what direction is f(x,y) = e’y increasing the fastest?
. Let f: R" = R, g: R" — R. Show grad(fy) = fgrad g + g grad /.

. Show that grad f being the normal to the tangent plane is a moré general description
of the tangent plane than the description in Section 6.4.

[« T B

6.7 Mean-Value Theorem

We will now consider two very important theorems. These are the mean-
value theorem and Taylor’s theorem. First, let us turn our attention to the
mean-value theorem. In Fact 3, Section 6.1 we recalled the proof of the
mean-value theorem of elementary calculus, which stated thatif f: [a,b] —» R
is continuous and if f is differentiable on Ja,b[, there exists a point c € Ja,b[
such that f(b) — f(a) = f(c)b — a), where f* = df/dx.

Unfortunately, for f: 4 = R"— R™ this version of the mean-value
theorem simply is not true. For example, consider f: R — R?, defined by
f(x) = (x2,x). Let us try to find a c such that 0 < ¢ < 1and f(1) — f(0) =
Df(c)d — 0). This means that (1,1) — (0,0) = (2¢,3¢?), and thus 2¢ = 1 and
3¢® = 1. It is obvious that there is no c satisfying these equations.

Experience leads us to believe that some restrictive condition might
provide a valid theorem. In this case, for the above version to hold, f must
be real-valued. In order to give the correct theorem let us first make precise
the meaning of “c is between x and y” for ¢, x, y e R".

We say c is on the line segment joining x and y, or is between x and y if
¢ = (1 — A)x + Ay for some 0 < A < 1. See Figure 6-11. .

We are now prepared to state our next theorem.

Theorem 7.

(i) Suppose f: A = R* = R is differentiable on an open set A.
For any x, y € A such that the line segment joining x and y lies
in A (which need not happen for all x, y), there is a point ¢ on
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FIGURE 6-11

that segment such that

fO) = fx) = Df(e)y — %) .

(ii) Suppose f: A = R" — R"™ is differentiable on the open set A.

" Suppose the line segment joining x and y lies in A and f =
(f1+ - -»f,). Then there exist points ¢, . . ., C, on that segment
such that

FO) = f) = Dedy =%,  i=1L...,m.

An important alternative formulation of the mean value theorem is given
in Example 5, at the end of the chapter.

ExXaMPLE1l. Aset A < R"issaid to be convex if for each x, y € A the segment
joining x, y also lies in A. See Figure 6-12. Let A = R" be an open convex
set and let f: 4 - R™ be differentiable. If Df = 0, then show that f is
constant. (Generalizations of this are given in Exercise 9, at the end of the
chapter.)

Solution: For x, y € A 'we have for each component f; a vector ¢; such

that
Jy) = fix) = Dffe)y — x).

Since Df = 0, Df; = 0 for each i (why?), and so fi(y) = fi(x). It follows that
f(y) = f(x), which means that f is constant.

not convex convex

(a) (b)
FIGURE 6-12 (a) Not convex. (b) Convex.
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ExaMpLE 2. Suppose f: [0,00[ — R is continuous, =0, f is.diffen
entiable on ]0,c0[ and f* is non-decreasing. Prove that g(x) = f(x)/x is non-
decreasing for x > 0.

Solution: From the mean-value theorem we see that a function h: R — R
is non-decreasing if h'(x) > 0, because x < y implies that

h(y) — h(x) = K(cy —x) = 0.
Now .

_ D) = ]
= o

g'x)

and

f@) = f(x) = f0) = f1e) x < xf'(x)

since 0 < ¢ < xand f'(x) = f'(c). Thus xf'(x) — f(x) = 0,s0 g = 0which
implies that g is non-decreasing.

Exercises for Section 6.7

1. Iff: R — Ris differentiable and is such that f'(x) > 0, prove f is {strictly) increasing.
Define your terms.

2. Prove I’Hopital's rule: if f', g' exist at xo, §'(Xo) # 0, and if f(xg) = 0 = g(x,), then

timit 262 = L)
==x0 gx)  g'(X0)

3. Use Exercise 2 to evaluate

. . sinx
(a) limit —,
x=0 X
e —1

x .

() limi

4. Which of the following sets are convex?
@ {x»)eR*|y >0}
(b) {xeR"|0 < x| <1},
. (e} R\{0}. .
5. Let /1 A « R" — R be differentiable with 4 convex and suppose jjgrad f(x)] < M

for xe A. Prove |f(x) — f(») < M |x — y|| for x,pe€ A. Do you think this is
true if 4 is not convex?

6. Let f: R — R be differentiable. Assume that forall xe R, 0 < f'(x) < f1 (x): Show
that g(x) = e~*f(x) is decreasing. If f vanishes at some point, conclude that f is zero.

v

P o s

12
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6.8 Taylor's Theorem and Higher Derivatives

Next, we would like to discuss Taylor’s formula for the general case of
functions f: 4 = R" = R™, To be able to do this, we must first discuss
derivatives of higher order. For f: R" — R there is no problem defining
partial derivatives of higher order; we just iterate the process of partial -

differentiation
o _ (0,
0%, 0x, Ox \0x,” )’

and so on. However, regarding the derivative as a linear map needs a little
more care.

The second derivative is obtained by differentiating Df, if it exists, and is
accomplished as follows.

Definition 4. Let L(R",R™ denote the space of linear maps from
R® to R™, (If we choose a basis in R" and R™, then L(R",R™) can be
identified with the m x n matrices and hence with R"™.) Now

' Df: A = L(R",R™); that is, at each x € A we get a linear map Df (x,).
If we differentiate Df at x, we get a linear map from R" to L(R",R™)
by definition of the derivative. We write D(Df(xo)) = D?/(x,).
We define the map B, : R x R* — R™ by setting B, (x;,X;) =
[D%f (xo)(x1)](x2).

This makes sense because D?f(x,): R* — L(R",R™) and so D*f(x,)(x,) €
L(R",R™); therefore it can be applied to x,. The reason we do this is that
B,, avoids the unnecessary use of the conceptually difficult space
L(Rn’Pm) o [an‘

By definition, a bilinear map B: E x F — G, where E, F, G are vector
spaces, is a map which is linear in each variable separately; for example,
in the first variable this means B(ae; + fe,,f) = aBle;,f) + pBles,f),
where e, e, € E, fe F, and , f € R. The map B, defined above is easily
seen to be a bilinear map of R* x R" —» R™,

Now, with a bilinear map B: E x F — R, we can associate a matrix for
each basis e, ..., e, of Eand fy, . . ., f,, of F. Namely let

a; = Ble,f)) .
Then if

X=erei and y=_2y,—fh
i= i=
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we have
B(x.,y) = Z a;; XYy
LI

a1 A \( M1
= (x1:x29' . -3xn)

Ay O\ Im
Note: For the second derivative, we shall by abuse of notation, still
write D2f(x,) for the bilinear map B, obtained by differentiating Df at x,
as described above.

Theorem 8. Letf: A = R" — R be twice differentiable on the open
set A. Then the matrix of D*f(x): R" x R" - R with respect to the
standard basis is given by :

i @f )
5x1 axl axl axn
of ... _%
" \0x,, 6JC1 axn axn/

where each partial derivative is evaluated at the point x = (X 15e « %)

For higher derivatives, proceed in an analogous manner. For example,
D3f gives a trilinear map for each x, D’f(x): R" x R" x R" — R™, We do
not associate a matrix with this map, but rather a quantity labeled by three

indices; which, as above, is just 8°f/(9x, 0x; 0x;) for each component e

(Such quantities are called tensors.)
Before proceeding with Taylor’s theorem, a very important property of
the second derivative shall be given: the matrix in Theorem 8 is symmetric,

that is,
o _ o

0x; 0x;  0x; 0x;

Theorem 9. Let f: A — R be twice differentiable on the open set A
with D2f continuous (that is, the functions 9*f[(dx, 0x;) are con-
tinuous). Then D*f is symmetric; that is,

sz(x)(xx o) = sz(x)(xmxx)

and
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or, in terms of components,

o o

Ox; 0x;  Ox;0x;

From this, it can be proven that all the higher derivatives are symmetric

as well under analagous conditions. The case f: 4 — R™ is handled by
applying the above to the components of f.

The symmetry of second derivatives represents a fundamental property

not encountered in single variable calculus. Let us verify these principles
through an example.

Suppose f(x,y,2) = € sin x + x2y* cos? z,s0 /: R> - R. Then

i) .
5% = e™:cos x + ye*® sin x + 2xy* cos® z ,
) .
g _ xe™ sin x + 4x%y® cos? z,
dy
o . .
f = xe™ cos x + € sin x + xye™ sin x + 8xy> cos? z
dy ox

which is the same as 8%f/dx y.

Theorem 9 is not as obvious intuitively. However, some intuition can be

gained from the proof.

Definition 5. A function is said to be of class C" if the first r deriv-
atives exist and are continuous. (Equivalently, this means that all
partial derivatives up to order r exist and are continuous, see
Theorems 2, 3, and 4). A function is said to be smooth or of class C*
if it is of class C" for all positive integers r. '

Using the formula in Theorem 5 (thé coordinate form is easiest) one can
show that the composite of C" functions is also C" (see Exercise 23).

Taylor’s theorem is as follows:

Theorem 10:  Let f: A =R be of class C” for A < R" an open set.
Let x, y € A and suppose that the segment joining x and y lies in A.
Then there is a point ¢ on that segment such that

r—1

10) = 1) = %, DGy = -y =

-+ %D’f(c)(y Xy o oy = X)
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where D (x)(y — X,. ..,y — x) denotes D*f(x) as a k-linear map
applied to the k-tuple (y — X,. . .,y — x). In coordinates,

DXy — X . Y — X)
n k.
= Z (—*EL“_)(}’Q = %) (Vo — %)

(TP ) | 6xi, e axik
Setting y = x + h, we can write the Taylor formula as
fx+h) =fx)+Dfx) b+ -

R
+ GT’:T)“!D (%) - (hy. . ) + Ro_y(x,h)

where R, _ (x,h) is the remainder. Furthermore,

R,._,(x,h
—W -0 ash— 0.

There are other forms in which the remainder term can be cast which are
given in the proof of the theorem. This theorem is a generalization of the
mean-value theorem (in which case r = 1) and of Taylor’s theorem en-
countered in one variable calculus.®

From Taylor’s theorem we are led to farm the Taylor, series about x,

”

&1
Z ‘ié—‘D,ff(xo)(x - xo,. . .,x - XQ) .
k=0 "

This need not converge to f(x) even if f is C*. If it does so in a neighborhood
of xq, we say f is real analytic at xo. To show-f is real analytic amounts to
showirig that the remainder term (1/r)D'f(c)(x — Xo,. . ..x — Xo) — 0 as

as r — o0. This then is used to establish the usual power series expressions .

for sin x, cos x, and so forth. (See Section 5.9 for a discussion of power
series).

i

ExampLE 1. Verify Theorem 9 for f(x,y) = yx%(cos y?).

Solution:
d* .
g{; = 2xy cosy?, _67% = 2x.cos y? — 4xy?sin y* ;
. 9> .
Z—{’ = x? cos y? — 2y2x% sin y?, axJ;y = 2x cos y* — 4y*x sin y* .

* See McAloon and Tromba, Calculus, Harcourt Brace Jovanovich (1972), Section 10.5.
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ExamrLe2. Iffis C* on R and for every interval [a,b] there is a constant M

such that | f™(x)] < M" for all n and x € [a,b], show that f is analytic at
each x, and

o« {n) X
76 = 3 =y
Solution: The remainder is

AG)

M" [x — xg"
= (x — xo)n < l OI

n!

b

which — 0 as n — oo, since by the ratio test, the corresponding series
converges. Observe that the convergence is uniform on all bounded intervals

(why?).

ExaMpLE 3. Give an‘example of a C® function which is not analytic.
Solution: Let

0, x<0,

e"* x>0.

fx) = {
The only place where smoothness of fis in doubt isat x = 0.But, forx > 0,
1
f,(x) = e—l/x s
X

which — 0 as x — 0+ (by 'Hopital’s rule, for example). Similarly, one sees
f®x) — 0 as x — 0+. Thus using the mean-value theorem we see that f
is C® at 0 and f™(0) = 0. Hence the Taylor series about x = 0 is identically
zero, so f is not equal to its Taylor series about x = 0, and therefore f is
not analytic.

ExampLE 4. Compute the second order Taylor formula for f(x,y) =
sin(x + 2y), around (0,0).

Solution: Here f(0,0) = 0,
g
0x
d
ay

92
7T 00 =0,

(0,0) = cos(0 + 2-0) =1,

0,0) = 2 cos(0 + 2:0) = 2,

%,
7(0,0) =0,



182 DIFEERENTIABLE MAPPINGS

and
o*f
M(O,O) =0,
Thus
fhky=h+ 2k + R,(h.k), (0,0,
where

R2(h:k)a (010)/1(’12’()}2 -0 as (h’k) - (0,0) .

Exercises for Section 6.8

1. Verify Theorem 9 for f{x,y) = (e )yt

2. Use Example 2 to establish the Taylor series and analyticity of €%, sin x, cos x on
all of R.

3. Let

x? sin(%), xel]-L1[,x#0,

0, x=0.

flx) =

Investigate Taylor’s theorem for / about the point x = 0.

4. Find the Taylor series representation about x = 0 for log(l — x), =1 < x < land
show, that it equals log(1 — x) on —1 < x < 1 and also show that it converges
uniformly on closed subintervals of ]—1,1[.

5. Verify that if the conditions in Example 2 are met then we can differentiate the Taylor
series term by term to obtain f(x).

6. Compute the second order Taylor formula for f(x,y) = e* cos y around (0,0).

6.9 Maxima and Minima

There is a very important application of Theorem 10 which provides us
with a method for determining the maxima and minima of functions. As we
might expect [rom our knowledge of functions of one variable the criteria
involves the second derivative. Let us first recall the real variable case..

If f: R —» Rhasalocal maximum or minimum at x,, and f is differentiable
at x,, then f”(x,) = 0. Furthermore if f is twice continuously differentiable
and if f"(xo) < 0, X, is a local maximum and if f"(x) > O, it is a local
minimum.

We want to generalize these facts now to functions f: 4 < R" — R. Let
us begin by giving the relevant definitions.
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Definition 6. Let f: A = R" — R where 4 is open. If there is a
neighborhood of x, € 4 on which f(x,) is a maximum, that is, if
f(xo) = f(x) for all x in the neighborhood, we say f(x,) is a local
maximum for f. Similarly, we can define a local minimum of f.

A point is called extreme if it is either a local minimum or a local
maximum for f. A point x, is a critical point if f is differentiable

at xq and if Df (xe) = 0.

The first basic fact is presented in the next theorem.*

Theorem 11. Iff: A = R" — R is differentiable, A is open, and if
Xo € A is an extreme point of f, then Df (xo) =.0; that is, xo is a
critical point.

The proof is much the same as for elementary calculus. The result is intui-
tively obvious since at an extreme point the graph of f must have a horizontal
tangent plane. However, just being a critical point is not sufficient to
guarantee that the point is also extreme. For example, consider f(x) = x>.
For this function 0 is a critical point, since Df(0) = 0. But x*> > 0 for x > 0
and x3 < 0 for x < 0, so 0 is not extreme. Another example is given by
f(x,y) = y* — x?. Here 0 = (0,0) is a critical point, since of [0x = —2x,
9f/8y = 2y,so Df(0,0) = 0. However, in any neighborhood of 0 we can find
points where f is greater than 0 and points where f is less than 0. A critical
point which is not a local extreme value is called a saddle point. Figure 6-13
shows how this terminology originated.

In the case of /1 A =« R — R we have already mentioned that f(x) is a
local maximum if f'(x) = 0 and f"(x) < 0. Recall that this is geometrically

y ¥y

maximum

minimum

saddle

FIGURE 6-13

* The problem of ‘“‘maximizing” vector funé:tions is important in economics. See S. Smale,
““Global Analysis and Economics,” p. 537 in Dynamical Systems, M. M. Peixoto, ed., Academic
Press, N.Y. (1973).
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clear if we remember that f“(x) < 0 means [ is concave dowx}wards. To
generalize this the concept of the Hessian of a function g at x, 18 introduced.

Definition7. Ifg: B = R" = R,isof class C?, the Hessian of g at xo
is defined to be the bilinear function H,(9): R" x R" = R given
by H,(9)(x,y) = — D?g(x,)(x,y) (note the minus sign)..* Thus the
Hessian is, as a matrix, just the negative of the matrix of second
partials.

A bilinear form, that is, a bilinear mapping, B:R* x R"— Ris
called positive definite if B(x,x) > 0 for all x % 0 in R" and is
called positive semidefinite if B(x,x) > 0 for all xe R". Negative
definite and negative semidefinite bilinear forms are defined

similarly.

Now we can make the following generalization to the multi-variable case.

Theorem 12.

@) Iff: AcR' = Risa C? function defined on an open set Aand
X is a critical point of f such that H,(f) is positive definite,
then f has a local maximum at Xo. .
(ii) If f has a local maximum at Xo, then H,(f) is positive semi-
definite.
The case for minima is covered by changing “positive” to “negative’” in
the above theorem. Note that a minimum of f is a maximum of —f.
As we have noted, the matrix of H,,(f) with respect to the standard basis is

()
Oxy 0%, dx, 0%,
f .. %

o, 0%, 0%, 0%, )

where the partial derivatives are all evaluated at xq.

When we have n = 1, Theorem 12(i) reduces to the one variable test
f"(xo) < 0. Asinthecasen = 1, one can have a maximum or a saddle point
or a minimum if f"(xo) = O (in this case the test fails). For example, f(x) =
—x* has a maximum, x° a saddle point, and x* a minimum at xo = 0,
although f”(0) = 0. For a test in these cases see Exercise 17.

* This minus sign is purely conventional and is not of essential importance. The readerzwho is
so inclined can make the appropriate changes in the text if he desires to set H,, = + D?*g(x).
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It might be helpful to mention a few facts from linear algebra, which will
be helpful in using the above theorem. Let A, be the determinant of the
matrix

/- aZf . aZf ™
0x, 0xy 0%y 0%,
_ o*f L o
\ 5xk axl axk axk J

This is the matrix of the Hessian with the last n — k rows and columns
removed. Then the symmetric matrix H, (f) is positive definite iff 4, > 0
for k = 1, ..., n and positive semidefinite only if A, > Ofork = 1,..., n.
We shall not prove this here in general. In Example 1 below we prove it for
2 x 2 matrices, which will often suffice. There is also a criterion for the
negative definite case given below. Thus if A, > 0 for k=1,...,nthenf .
has a (local) maximum at the critical point x,. This is probably the best way

*to apply Theorem 12. If A, < 0 for any k, f cannot have a maximum at x,.

Similarly, f has a (local) minimum at xq if H.(f) is negative definite. By
changing the sign of H, (f)in the above and using properties of determinants,
it follows that H, (f) is negative definite iff A, < 0 for k odd and A, > 0
for k even, and H, (f) is negative semidefinite only if A, < 0 for k odd and
A, = 0 for k even. Thus f has a minimum at x, if A4, <0 for k odd and
A, > 0 for k even.

If A, > O for some odd k or A, < 0 for some even k, then f cannot have
a minimum value at x,. In fact, if A, < 0 for some even k, f can have neither
2 maximum nor minimum at x,, and x, must be a saddle point of f (see
Exercise 21).

This theorem is also useful in mechanics when f is the potential of a
system, for then a minimum corresponds to stability, and the maxima and
saddle points correspond to instability.*

ExsamPLE 1. Show that the matrix

a b
b d
is positive definite iff @ > 0 and ad — b* > 0.

* See Marsden and Tromba, Vector Calculus, W. H. Freeman Co. (1975), Chapter 4 for details.
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Solution: Positive definite means that
a blix
[x.y] >0 if(xy) # 00,
' b dily

thatis,ax> + 2bxy + dy* > 0.First,suppose thisis true forall (x,y) # (0,0).
Setting y = 0, x = 1 we get a > 0. Setting y = 1 we have ax* + 2bx -+
d > 0 for all x. This function is a parabola with a minimum (since a > 0)
at 2ax -+ 2b = 0O, thatis, x = —bja. Hence

2
a(--b-> + 2b<—2> +d>0
a a

that is, ad — b* > 0. The converse may be proved in the same way.

ExaMPLE 2. Investigate the nature of the critical point (0,0) of
fxy) = x2 —xy + y*.
Solution: Here
of o, Y # _,
- T 5;3*2: dx Oy ! ’

so the Hessian is
-2 1
1 —2|

Here A, = —2<0and A, =4 - 1= 3 > 0 so the Hessian is negative
definite. Thus we have a local minimum.

Exercises for Section 6.9

L

is negative definite iff @ < 0 and ad — b > 0.

1. Prove

2. Investigate the nature of the critical point (0,0) of f(x,9) = x* + 2xy + y? + 6.
3. Investigate the nature of the critical point (0,0,0) of f(x,y,2) = x* + y* + 22% + xyz.

4, (This exercise assumes a good knowledge of linear algebra.) Let A be a symmetric
matrix. Show that if A4 is positive definite the eigenvalues of A (which exist and are
real since A4 is symmetric) are positive.

5. Determine the nature of the critical point (0,0) of B2 =y x4+ 3+
y* + 10.
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Theorem Proofs for Chapter 6

Theorem 1. Let A be an open set in R" and suppose f: A = R" is differentiable at x,.
Then Df(x,) is uniquely determined by f.

Proof: Let L, and L, be two linear mappings satisfying conditions of Definition 1.
We must show that L, = L,. Fix eeR", lle] = 1, and let x = xo -+ de for 1eR.
Then note that .

Ly - Ae — Ly Je]

A =lx—xl and <|Lyce~Lyell = H

Since A is open, x € 4 for 4 sufficiently small. By the triangle inequality

JLy{x = xq) = Lypfx — Xo)l

R R

Ix — xol
o IS) = Slxo) = Lylx = xo)l
h Ix = xol - =i
+ | S(x) — flxo) — Lylx — x| ~~ o
I = ol e

" As A — 0 these two terms each — 0,50 L, * ¢ = L, - e. Our selection of e was arbitrary,

except that [le]l = 1. But for any ye R", y/lly| = ¢ has length 1 and, by linearity, if
Ly(e) = Lj(e), then L(p) = Ly(y).

Theorem 2. Suppose A = R" is an open set and [ A — R" is differentiable. Then the
partial derivatives 9f;/0x; exist, and the matrix of the linear map Df{(x) with respect 1o
the standard bases in R" and R™ is given by

(ap

YA )
0x; 0Ox, 0x,
o oh ... O
ox,; 0x, ox,
o U
\axt x4 ax, P,

where each partial derivative is evaluated at x = (Xy,. . . %,)-

Proof: By definition of the matrix of a linear mapping, the jith matrix element of
Df(x) is given by the jth component of the vector Df(x)¢; = Df(x) applied to the ith
standard basis vector, e, Call this component a;. Now let y = x + he, for he R and




188 DIFFERENTIABLE MAPPINGS

note that '
1) — J(x) = Df(x) - & — 9l
T

- "f(xls' CaXg fye o i) — f(xl" . wxu) - th(x) '.ei“
Al '

Since this — 0 as i — 0, then so does the jth component of the numerator, which means
thatas h — 0,

e, X + h,.. .,x;,,)l—- S o oX) = hay 0.
1

Therefore, we have

a_]“ = llmlt [j}(xla- e + /1,. N nxn) - ./;(xl:' B -vxn)] — _(_7_/_] k H
0 h 0x;

Theorem 3. Suppose A = R" is open and f: A — R™ is differentiable on-A. Then fis
continuous. In fact, for each xo € A there is a constanl M > 0 and a 8, > 0 such that
Ix — xoll < 8o implies | fx) — flxol € Mix — xgll. (This is called the Lipschitz

property.)

For the proof we need to recall that if L: R* — R™is a linear transformation, there is
a constant M such that |Lx|| < M, x| for all x e R" (see Example 4 at the end of
Chapter 4). Here we shall be taking L = Df(x,)-

Proof: To prove continuity, it suffices to prove the stated Lipschitz property,
for given & >"0 we can choose § = min(Jo,e/M). To do this, let ¢ = 1 in Definition 1.
Then there is a J, so that [x — X}l < &, implies

1) = fxg) — Df(xolx = Xl < flx — Xoll
which in turn gives

176 — Sl < 1Df(xo)x — Xo)l ¥ llx — xol

(here we use the triangle inequality in the form |y — Iz} < lly — zl, which follows by -

writing y = (» — 2) + z and applying the usual form of the triangle inequality). Let
M = My + 1 and use the fact that |Df(xo)(x — xo)ll < M, lx — x| to give the
result. B

Tlxeorem'4. Let A c Ribeanopensetand f1A < R — R™. Suppose [ = {(f1, - «ofu)-
If each of the df,/0x; exists and is continuous on A, then f is differentiable on A.

Proof: 1f Df{x)is to exist, its matrix representation must be the J acobian matrix by
Theorem 2. Thus we need to show that with x € 4 fixed, for any ¢ > O thereisa d > 0
such that |y — x| < 8, y € 4 implies

1/) = f&) = D)y — 9l < elly — x| -

To do this, it suffices to prove this for each component of f separately (why?).
Therefore we can suppose m = 1.
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We can write f()) — f(x) = f(P1o o o) = S¥0P20e o ooda) + SX Y20 opi) —
f(xthrer' . 'yyu) + f(xth:ySv N '7yn) - f(-‘:l»-‘:z»xs,.hv . ')yn) +ot f(xl:' v '\1‘
¥ = f(x4,. . x,). Now we use the mean-value theorem which enables us to’v:r}tlé
f(yl7‘ . -3y") - f(xhy2:' . "y") = f7f/a-\'1(u1v}’2v- . "yn)(yl - xl) for some Uy between
x; and y; (¥4,. . .y, are fixed). We write similar expressions for the other terms and get

Ay 9
f(}’) - f(x) = (’a“x—l'(ul»yb' . '9yn))(yl - xl) + <_f(xhu2:y3r . "yll))(yz - -\'2) +oee

0x,

of
-+ (E (xlyx2,~ . .,x,,_l,u,,))()’n - x") .

n

Therefore, since Df(x)(y — x) = Z = (X X = XD

&4 0x
- _ : aof 2
1f) = ) = DX — 2 < {la‘;(uhyl:- CoPa) — b?c[:(x“' T
of
+ a'__\_"(xl,- . .,xu-liuu) - E’;(xl" . .,.‘C")} ﬂy —_ _x“

using the triangle inequality and the fact that |p; — x| < |y — x|. But since the terms
f?f Jox, are'contmuous, and u; lies between y; and x;, thereis a § > 0 such that the term
in braces is less than ¢ for [y — xJ} < &. This estimate proves the assertion. §

T‘Ixeorenf 5. Letf: A — R" be differentiable on the open set A < R" and g: B — R he
dzjfergnlzfzble on the open set B < R™, and suppose that f(A) = B. Then the composite
ge [ is differentiable on A and D{(g o [Yxo) = Dg(f(xo)) » Df(x,).

Proof: To show D(g o f)(xo) - ¥y = Dg(f(xg)) - (Df(x,) - »), we want to show that
llgo Jx) = go Jxo) = Dg{flxo)) - (Df(xo)lx — x| _

lx — xof

limit

X=*Xp

0.
To do this, estimate the numerator as follows:
lge f(x) = g ° flxo) — Dg(flxo)) (DS (xo)x — X))
= llg(f(x)) ~ g(fxo)) — Dglf(xal)(f(x) — f(x0)) + Dg(f(xa))f(x) — S(xo)
— Df{xo)(x — xo)l
< [gf(x) = glf{xo)) — Dglf el f(x) — flxoMll + IDg{f (oS (x) — f(xo)
= Df(xo)(x = X))

by the triangle inequality. Since f is differentiable, there is a §, and M > 0 such that
Iflx) — f(xo.)[l < M ||x — x,| whenever |x — x| < 8o. by Theorem 3. Now given
&> 0, there is, by the definition of the derivative, a d, > Osuch that |y — f(xp)ll < &

implies g " ’ l

lg(») = g{f(xo)) = Dg(f(xally — Sixo)ll < <§i7) Iy — flxoll -
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Thus ||x — xol] < 8, = min{dy,8,} implies

lg(/(x) — g/ (x0)) = DU/ x) — SCoDl _ &

flx = xol 2

Since Dg(f(xo)) is a linear map, we know that there is a constant M such that
I1Dg(fxa))P < M- |yl for all y e R, where it can be assurmed .M ;é 0. Now by
definition of the derivative there is §; > 0 such that [lx — Xoll < &5 implies

I/() = Sro) — DS ollx — xolll _ &

Ilx — Xoll 2M°

Then [jx — Xl < 8, implies

I1Dg(f (xo)(f () — S(xo) — Df (xo)lx — Xo)l

fix — ol

M) = fxg) = DfGeollx = Xoll

€
= Ix — xoll 2
Let & = min{8,,63}. Thus |x — Xof < & implies

lg o f(x) — g ° f(%0) — Da(f(xo)) - DI (o)l ~ Xo)l

flx — xol
< lg(f () — g(fxe)) — Dglf o))/ (x) — J EM
. h Ix — Xol
+ 1Dg(f(xo)(f(x) = f(x0) — Df(xo)ix — Xo))l <Ey LA ,
flx — ol 2 2

which proves the formula. fi

Theorem 6. Let A = R" be open and let f: A — R’ and g: A — R be z.lwfer.entiable
functions. Then gf is differentiable and for x € 4, D(gf¥x): R" — R" is given by
Digf)(x) " e = g(x)Df(x) * ¢) + (Dglx)- e)f(x) forallee R".

Proof: Given e > 0 and xg € 4, choose § > 0 such that |x — Xoll < & implies
@) lgta)l < lglxoll + 1 =M;
¢

(i) 1/6) = o) = DfGxollx — ol < 577 Ilx — Xoll;

&
(iii) llgtx) — glxo) — Dglxollx — o)l < Tl Ix — xoll5

(iv) lgl) — glxall < .3.%4.

where |[Df (xo)yll < M |l¥]l, ((iii) and (iv) are needed only if f(x,) # 0 and Df{(xo) # 0).
Why is the choice of § possible?
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Then we have for |x — xoll < &, using the triangle inequality,
l9(x)f(x) — glxo)f(x0) — glxo)Df(xo)(x ~ Xo) — [Dglxolx — xo)]/(xo)l

< 106965 = g0 o) = gGIBI(x)x — xo)]

+ llgf o) =-gxof o) = [Dglera)lx = o) (o)l

L SN Lk
< MO g M ol S L)

=elx—xof. H

Theorem 7. .

(i) Suppose f: A = R" = R is differentiable on the open set A. For any x,y € 4 such
that the line segment joining x and y lies in A there is a point ¢ on that segment such that

JO) = J(x) = Df(e)y = x) .

(i1) Suppose f: A = R* —» R™ is differentiable on the open set A. Suppose the line segment
Jjoining x and y lies in 4 and [ = (fy,. . . Ju). Then there exist points ¢y,. . .,C,, on
that segment such that

SO) = Jx) = Dfile)y — x), i=1,...,m.

Proof: (i) Consider the function /4: [0,1] — R defined by i(t) = f((1 — f)x + ).
The function 4 is differentiable in £ on ]0,1[. Thereis a to & ]0,1[ such that A1) — #(0) =
I(t)(1 — 0) by the ordinary mean-value theorem. Now A(1) = f(y) and A(0) = f(x).
Differentiating using the chain rule, we obtain /'(¢p) = Df((1 — to)x + L))y — X),
since the derivative of (1 — f)x + ty with respect to ¢ is y — x (explain). Hence we can
take ¢ = (1 — fo)x + oy,

(ii) This follows by applying (i) to each component of f separately. §

Theorem 8. Let f: A = R" — R be twice differentiable on the open set A. Then the
matrix of D*f(x): R" x R" — R with respect to the standard basis is given by

i R ,
Ox, 0x, dx, Ox,
A |
\ 0x, 0x, 0x, 0%, )

where each partial derivative is evaluated at the point X = (x,,. . .,X,).
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Proof: The matrix representation of Dft A — R" is given by the row vector
(@f0xy,. . -Of [0x,) so that by Theorem 2, in a version suitable for row vectors
D*f: A — R" is given by

y .
e

dx, dx; Ox; 0x3 dx, 0x,
*f or

\Bx, ox, 0x, 0% o, 0%, )

Regarding D% as a bilinear map will not change the matrix representation as a con-
sideration of the definitions shows. §

Theorem 9. Let 1 A — R be twice differentiable on-the open set A with D*f continuous
(that is, the functions 8%f/ax, dx; are continuous). Then D*f is symmetric, that is,

DY (x)(x,.%2) = D (¥)(x25%1)
or, in terms of components,
8
dx;0x;, 0x,0x;
Progf: We want to show D (x) - (y,2) = D¥(x) - (z,); that is,
? oy

a.\:i a.xj N axl 5:(‘ )

By holding all other variables fixed, we are reduced to the two-dimensional case. Thus
we can assume f is of class C> on 4 = R? and is real-valued.
Consider, for fixed (x,y) € 4 and small &, k, the quantity (see Figure 6-14)

Sup = [fix + by + k) — fley + 0] = [fle + hy) = Sl

Let us define the function g, by giu) = flw,y + k) — f{u,y), and observe that the
formula for S, can be written'

S = gilx + h) — gilx) .

Thus, by the mean-value theorem, Sy = gi(cy,s) * h for some Cip lying between x and

x + h. Hence
i) af
Spp = {5% (Copy + K} — F (Ck.ln)I)} h

oy
dy dx

(Cra i) ik

for some dj,, lying between y and y + k.
Now Sy, is “symmetrical” in /1, k and x, y. By interchanging the two middle terms
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¥
(x,y+ k) (x+h y+k)
(x, ») x+hy)
X
FIGURE 6-14

in S, ,, we can derive (in the same way) that

2

f (E'l,k!d-;l.k) chk .

Sy = ——
hik dx ay

Equating these two formulas for Sy, cancelling h, k, and letting & — 0, k — 0 (using '

. continuity of D¥f) gives the result. §

Note: A refinement is this result: if fis C' and 9%(/dx dy exists and is continuous,
then 92f/dy dx exists and these are equal. This requires more work than the above,
but the idea is the same (Exercise 24).

Theorem 10. Let /2 A — R be of class C" for A < R" an open set. Let x, ye A and
suppose that the segment joining x and y lies in 4. Then there is a point ¢ on that segment
such that

ret 1 1
JO) = f) = 3, DYy = 5oy = 3) o+ DAY = ey = )

Progf: 1l we remember that

d
;Ef(x + thy = Df{x + th)* h

)
=y —f—(x + thhy

=1 0x,
from the chain rule, then we can integrate* both sides from t = Otot = ! to obtain

1o a

flx + h) — fix) =J Z —-L(x + thh dt .

o 1 0%

We now want to integrate the expression on the right-hand side by parts. Remember

* We assume the reader is familiar with the fundamental theorem of calculus. A detailed dis-
cussion of integration, including this theorem, is given in Chapter 8.
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the general formula, _ };;

tody 1 dy !
—dt = v —dt + uv
Ludl _[ dt

4]

0

In our case, we let u = (3f/dx)(x + thhandlet v =1 ~ 1. Therefore,

i laf n J‘l alf
— thh, dt — 1=
l=zl L ipd e i.RZ;l o( dx

since

il
(x + thyhy dt + ;i — / (x)
f 6. Xy a Xy

du o

— + thiih
dt 61c¢6*c,‘(Y W

from the chain rule, and

H aj‘ 1 aj‘
= — 1) — , = 2 (W .
uv| = (t — 1) o, (x + thiiy ll=0 o ()

o

Thus we have proved the identity
fox+ - Z b-f~ x)+ by + Ry(hx),

where

[ FS_(x + iy d
h,x) = 1 -1 X -+ thiyn at .
Ry(h,x) "kzﬂ r’( )axl o, i

Since Ji} < |4ll, we have

s Pt a*f
lRl(h,xO)I < Hh"z{ Z JO (1 - t) ‘ 5x‘ atk

Lk=

(%o + t/z)‘ dt} .

If we integrate R,(,x,) by parts again with
2

(x + th)iyhy,
0x; 0xy,

and
b= —(t— 12,

i

we get
1e— 17 #f 1 8y
= O Tl (x o+ thhydl + ) o (R
Rylb) i'zj';(J‘o 2 0x; 0x, 6xk( hib ; 2 0x; 9x;
Thus we have proved that
1 hhy 8
=1 2 5xi 6:(1

flx + )= flx)+ i Iy %(x) (x) + Ralhx),

where . . &
(t—1)
= D L A— thih by dt .
Ry(hyx) = ZL T G aw, (x + thhih

Lk

Now the integrand in the last formulaisa continuous function and is therefore bounded
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on a small neighborhood of x (remember it has to be close to the value of the function
at x). Thus for a constant M > 0 we get, for /1] small,

IRy(hx)| < Ih|* M

In particular note that Ry(hxo)/|lh)12 < || M — 0 as h — 0. The formulas stated
in the theorem for the remainder (Lagrange’s form of the remainder) is obtained by
applying the second mean-value theorem for integrals. Recall that this states that*

b b
ff (x)g(x) dx = f1 (C)j glx) dx

provided f and g are continuous and g

= 0 on [a,b]; here ¢ is some number between
a and b. Thus we obtain ’

1 2
J t-19 s (x + thihhy dt
1 Jo Ox; Ox,

Ry(hxo) = ),
ik=
= f l(1 — OD?f(x + th)(h,h) dt

= 5 D3f(ah)

where ¢ lies somewhere on the line joining x toy = x + h.
Similarly,

n (t _ 1) a3f
R,(h,xg) = J‘ ——————(x + th)hhy, dt
o) = O | T e o iy

J ¢ e D3f(x - .th) - (h,h,h) dt
0 T2

1
== —3.? DBf(C) * (h7hih)

where c lies somewhere on thelinejoining xtoy = x -+ h. Onecan proceed by induction
using the same method to get the general result. §

Remarks:
if fis C", then

1. Actually, with more effort one can prove a stronger theorem. Namely

fx +h) = fix) + Z D"f(x) (hy. . B) + R(xh)

where R(x,h)/|h]]" — 0 as h — 0, h ¢ R". We leave the investigation of this point to the
interested reader.

2. There is another proof of Theorem 10 which uses Taylor’s formula from one
variable calculus as follows. Let g(t) = f{x + t(y — x)) for x e [0,1]. Applying Taylor’s
formula on R we know there is some f € [0,1] such that

r—1

oh) = 90) = 3. 76°0) + 00

* See McAloon and Tromba, Calculus, Harcourt Brace Jovanovich (1972), p. 280.
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Note that g(1) = f() and g(0) = f(x). Let p(t) = x + t{y — x). Then g = fop and
Dp(t)(1) = y — x for all x, so by Exercise 6b,
g%(e) = D*g(e)(L,. . .,1) = DA (p(O)Dp()(1),. . ..Dp(e)1)
‘ = D(x + tly = XN = Xy = %)

Substituting, we get
J0) = ) = 2, 1 DAy = % = )
Dy = A = ey =
which completes the proof, with ¢ = x + iy — x).

Theorem 11. Iff: A = R" = R is differentiable, A is open, and if x4 € A is an extreme
point of [ then Df(xo) = 0, that is, x, is a critical point.

Proof: 1f Df{(xg) # 0, we can find an x € R" such that Df(xg)x = ¢ # 0,say,¢ > 0.

Then we can find a § > 0 such that
c
Il < 8 = 1/ (xq + k) = flxo) — Df(xohll < 200 Al

Pick A>0 such that AQx| <d. Then {f{xo + Ax) — flxo) — Df(xg)ix|l < ¢
A llxB/2 Ixll = cA/2. Now Df{(xo)ix = Ac. Therefore we must. ha\'/e f (xo + Ax) —
J(xo) > 0. Similarly, || f(xq — Ax) — f(xq) + Df(xo)Ax]| < cA/2 implies [{xo — 4x) -
f(xo) < 0. Since f(xq + Ax) > flxo) and f(xo — Ax) < f(xq), we see that f(x,) is
not a local extreme value. That is, we can find points y arbitrarily close to xg such
that f(y) > f(xo). and similarly, there are points y arbitrarily close to x4 such that

) < flxo) B

Theorem 12. ' o .
() Iff: 4 = R* = Ris a C* function defined on an open set A and x, is a critical point

of f such that H, (f) is positive definite, then f has a local maximum at Xg.
(i) If [ has a local maximum at X, then H,([) is positive semidefinite.

Proof: (i) Ho(/)x,x) > 0 for all x # 0 in R" implies D*(xg)(x,x) < O for all

x # 0 in R". By Example 5, Chapter 4 we know that a bilinear function is continuous. -

Hence D?f(x,)(x,x) is a continuous function of x. Moreover, § = {x & R" [lxl = 1}
is compaé{:(sg)t(herg is some point % € § such that 0 > D?f(x)(%,%) > D?f(xo)(x,x) for all
xeS. Now let 6 = —D?f(xo)(%,%). Then D2f(x)(x,x) = x| D2/ (xa)(x/ %], x/Ix[)) <
—g x| for any x # 0 in R". Since D?f is continuous, there is a 6.> 0 such that
Iy — %ol < & implies |D*f(y) — D*f(xo)ll < &2 and we may also' pick our & such
that D(x,,8) = A.Ify € D(x,8), Taylor’s theorem may be used to obtain f(y) — f(xg) =
Df(xody — Xo) + (12D Ny — X0,y — Xg), where ¢ € D(xq,0). Thus

1D2/(c) = D (xolll < &/2

WORKED EXAMPLES FOR CHAPTER 6 197
implies
D(c)y — X0,y — Xo) € DX(xg)y — x0.) — Xo)
+ ”DZ./.(('J(J’ - Xgo} — Xg) — sz(xo)()’ — Xg.y = Xo)ll
< =&y — xol* + (&/2y = xolf?

—(&/2)ly — xoll* .

Remember that Df(x,) = 0, since X, is a critical point. Thus Taylor's theorem gives
f() = flxo) = (D f(eNy — X0,y — x0) < (1/2)(—6/2 Iy = x0)?) < 0.

Hence f(y) < f{x,) for all y € D(x,8), y # x, and so f has a local maximum at x,.

(ii) To prove this part of the theorem we argue by contradiction. Let f have a local
maximum at x, and suppose D*f(xo)(x,x) > 0 for some x € R". Now consider g(t) =
—f{xq + tx). Since [ is defined in a neighborhood of x,, g is defined in a neighborhood
of 0. We have D2g{0)(1,1) = —D?f(x,)(x,x) < 0. Using the proof of (i), there is a § such
that [¢f < J, t 5 0 implies g(t) < g(0). Thus || < & implies f(xy + tx) > f(%o), s0
does not have a local maximum at x,. This contradiction implies that D?f(x,)(x,x) < 0
for all x e R", Hence H, (f)(x,x) = OforallxeR". J

Worked Examples for Chapter 6

i

. Let fiBc R"— R where B = {xeR"||x| < I} be continuous and Iet [ be

differentiable on int(B). Suppose f(x) = 0 on bd(B). Show that there is a point
X, € int(B) for which Df{x,) = 0.
Solution: This is the multidimensiona! version of Rolle's theorem. If [ is identically
zero, the theorem is trivial. Therefore, suppose f(x) # 0 for some x ¢ int(B). Then
f attains a maximum, or minimum, at some interior point. since B is compact.
Thus there is an extreme point x¢ & int(B) and hence by Theorem 11, Df{x,) = 0.

2. Show that for a bilinear map f:R" x R" — R*, we have Df{(xg.y,)(x.») =

J{x0,y) + f(x,y0). (The map f{x,p) is called bilinear when it is linear in each of x
and y separately; see Example 5, Chapter 4.)
Solution: We know that f is differentiable because from its matrix representation,
we see that the partial derivatives exist and are continuous. Since f(x,),) is a linear
function of x, the derivative in direction (x,0) is Df{xq,50)(%,0) = f{x,y0), ds in
Example 2, Section 6.2. Similarly, Df{(xo,54)(0.) = f{x,,). Thus, since Df(x,,5,)
is linear, and (x,y) = (x,0) + (0,y), we have Df(xq,y0)(x,y) = f{xg.0) + f(x,30).

3. Find.the Jacobian of f(x,¥) = (sin(x sin y).{x + »)¥); /1 R? > R2,
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Solution: We have

d . . .,
g‘— = _6_ (sin(x sin »)) = cos(x sin y)— (x sin y} = sin y cos(x sin s
ox Ox . ox
% g = 2x + ¥);
-é;——2(x+y)ax(x+y) (x +)

~af-‘ = cos{x sin y) —a~ (x sin y) = cos(x sin y)x €os y;
dy oy

U _ 2Ax + ¥
dy

Thus by Theorem 2, the Jacobian matrix (where x = x and y = x,)is
sin y cos(x sin y) xcosy cos(x sin y)

20x + ) 2Ax + )

Jacobian matrices generally are not symmetric and indeed need not be square. .

Symmetry is only a property of the second derivative of a function f: R" - R.

. Find the critical points of f(x,y) = x* — 3x? + y? and determ%r{e whet'her fhasa
(local) maximum, (local) minimum, or saddle at each of these critical points.

Solution: ‘The critical points are precisely those points (x,y) for which
_6_{ = 3x* - 6x=0
0x
and "
of
= =2y=0.
3 Y

Solving for x, we see that x = 0 or x = 2. Therefore the critical points of f are (0,0)
and (2,0). The matrix of the Hessian at (x,»)is  _

2 2
_oer 9 —6x+6 0
Ox 0x ox 0y _
2
@y 0 »
ay 0x dy Oy

At{0,0) the matrix of the Hessian is
0
-2

6
0

o o

and A, = +6, 4,
of the Hessian is

I

0
-2

0
and A, = —6,A, = 12 and s0 1 has a local minimum.

—12. Hence [ has a saddle point at (0,0). At (2,0) the matrix
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5. Let A be an open convex set in R" and let f: R" — R™ be differentiable with a con-

tinuous derivative. Suppose [|Df(x)y]l < M ||y| for all xe 4, y e R". Prove the
mean-value inequality:

1fGx) = Sl < M {ix; — X2

Solution: For n = 1,m = 1 this follows directly from the mean-value theorem.
To get the general case we can proceed as follows. By the chain rule, we have
(dld)f(ex, + (1 — Ox,) = Df{tx, + (I — )x,) * (x; — X,). Integrate both sides in ¢
from ¢ = Otot = 1to obtain f{x,) — f{x) = [§ Dfiexy + (1 — £)x;)" ey — x5) de.
The integral here is defined as the integral of the component functions. Taking
absolute values and using the hypothesis on Df now gives the result desired. We
used the fact that the absolute value of an integral is less than or equal to the integral
of the absolute value, a fact which will be reviewed in Chapter 8 (the case of vector
functions is similar—Exercise 2 at the end of Chapter 8.)

Exercises for Chapter 6

1.If:4 <R — R"and g: B =« R* — R" are differentiable functions on the (open)
sets A and B, and «, f§ are constants, prove that af + fg: AN B R"—» R"is
differentiable and D{of 4 Bg)(x) = aDf{(x) + BDg(x).

—2. Show that for f: 4 = R — R™, if df/dx exists for i = 1, ..., m, then Df exists.

—3. Let f:[0,00[ — R be continuous and let f be differentiable on ]0,00[. Assume
f(0) = 0 and f(x) = 0 as x — -+ oo, Show that there is a ¢ & ]0,00[ such that
fe)=0.

4. If f: A = R" — R™is a constant function, then show that Df(x) = O for all x e 4.

--. 5. Calculate the Jacobians of the following functions.

(a) flx,p) = sin(x? + y3). (b) f(x,,2) = (z sin x,z sin p).
) fx.y) = x. (d) flx,p,2) = x* + y%

(@) f(x,») = (sin(xp),cos(xy),x%y?). ) flx.pz) = X%

(&) flx.y.2) = xyz. (h) fGx.p,2) = (27 x% tan(xpz)).

6. (@) Iff: 4 = R" —» R"and g: B « R™ — R are twice differentiable and f(4) = B:
then for xo € 4, x, y € R?, show that
D2(g o f(xo))(x,y) = D*glxo)(DSf (o) * x,Df(x,) * )
+ Dg(f(xo)) * D*f(xo)(x,)) -

(b) If p: R" > R" is a linear map plus some constant and 14 < R” = R° is
k-times differentiable, prove that

DM(f 0 pYxo)(X1 - %) = DA(p(xo)(DP(Xo)Xy)s- - -DPOONXL) -
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7.

10.
11.

12. A function f: R" — R is called homogeneous of degree m if f(tx) = "f{x) for all ..

- 13

Find the critical points of the following functions and determine whether they are
local maxima, local minima, or saddle points.

(a) fixp) = x* + 6x* + 3p* — 12xy + 9x.

(b) flx.)) = sinx + y* — 2 + L.

() f(x,p,2) = cos 2x -sin y + z%..

@ flx.p,2) = (x +y + 2%

. Show that if f: 4 = R* — R has a critical point xo € 4 and

02/‘ aZI ( aZf )2

= Ox, 0%, Gx; 0%,  \0x; 0x,
at x,, then
o*f . .
(a) A > Oand > 0 imply / has a local minimum at Xo.
dx, 0x,
2
(b) A > Oand < 0 imply f has a local maximum at Xo.

0x, Ox,
(c) A< 0implies x, is a saddle point of f.

_Let X = R"be an open set with either of the following (non-equivalent) properties.

(1) For some x¢ € X, each x € X can be joined to x, by a straight line.

(2) For some x, € X, each x € X can be joined to X, by a differentiable path.

Give some examples of such sets which are not convex. If f1 X - Rwith Df = 0,
then prove that f is constant. Argue that for X open the following are equivalent:
(a) Condition (2) above,

(b) path-connectedness,

(c) connectedness.

[Hint: See Exercise 11, Chapter 3 for (b) <> (c). It is easy to show that (a) = (b).
For (b) = (a), show first that any two'points can be joined by a finite collection of
line segments and then “smooth out” the corners.]

Prove the analogue of Theorem 12 for minima. [Hint: Apply Theorem 12 to — /]

Prove the analogue of Theorem 5, Chapter 5 for [iAcR =R

xe R, r e R If [ is differentiable, show that for x & R,
‘ Df(x)x = mf(x),

that is,

Zx,g—f— = mf(x).

i=1  0X

[Hint: Let g(r) = f(rx) and compute ¢'(1) using the chain rule.] Show that maps‘

multilinear in k variables (see Examples 5, Chapter 4) are homogeneous of degree k.
Give other examples.

Use the chain rule to find derivatives of the following, where Sfley.z) = x2 + yz,
glx,p) = y* + xp, and fi(x} = sin(x).

(a) Fx,y.2) = f(h(x).9(xy):2)-

(b) G(x.p,2) = h(f(x.y,2)9(x.y))-

(©) H(x,y,2) = g(f(x,p,h(x)).g(z.y))-

Also find general formulas for the derivatives of F, G, H.

14.

15.

16.

17,

- 18

19.

20.

- 21,

23.

24,

25.
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(a) Extend Example 2 to multilinear maps.

(b) By applying the result in (a) to the case of the determinant map det: R =
R* x «++ x R" = R, show that A € R" is a critical point of det ifl 4 has rank
n— 2.

Let f: R — Rbedifferentiable. Assume thereis no x € Rsuch that f(x) = 0. = f'(x).
Show that § = {x|0 < x < 1,f(x) = 0} is finite.

If f: R* — R" is differentiable and Df is constant, then show that f is linear plus
a constant and that the linear part of f is the constant value of Df.

If /14 < R = Ris of class C" and Df(xq) = 0, D*f(xg) = 0, ..., D" f(x5) = 0
but DT (xo)x,. . .,x) < Oforallx € R",x # 0, then prove that fhas a local maximum
at x (use Taylor’s formula).

Prove that the qquation x* 4 bx + ¢ = 0 where b > 0 has exactly one solution
x € R. [Hint: Use Rolle’s theorem. ]

In each of the following problems, determine the second-order Taylor formula
for the given function about the given point (x4,)g).

(@) f(x,p) = (x + ). x0 = 0,y = 0.

(b) f(X,y) = ex+y’ Xg = O:yO = 0.

) flxy) = peam g

d) fle,p) = e " cosfxy), xg = 0, o = 0.
(e) flx,y) = sin{xy) + cos(xy), x¢ = 0, yo = 0.
0 fx,y) = eV cos p, xg = 1,95 = 0.

Xg = O,yo = 0,

Let L:R" — R™ be a linear map. Define |L] = inf{M] ILx|]| € M |x| for all
x € R"}. Show that ||*|| is a norm on the space of linear maps of R" to R™.

(a) If, for /14 = R"— R, at X,, 8, > 0 for k odd. or 4, < 0 for k even, then
show that f cannot have a (local) minimum at x,.
(b) If A, < 0 for k even, prove that f has a saddle point at x,,.

. Give an examplc of a continuous map f: J0,I[ — R whose graph is not closed.

Can this happen for f: 4 = R — R where 4 is closed?
Write down the first four terms in the Taylor expansion of log(cos x) about x = 0.

Let f(x,y) be a real-valued function on R?. Use the proof of Theorem 9 to show t‘hat
if f is of class C! and 9%f/éx 9y exists and is continuous, then 9%//dy dx exists, and

oy _of

axay  ayox
{this is weaker than saying that [ is of class C?), Generalize,

Let f: R* ~ Rand suppose 8f/dx;,i = 1, ..., nexistand df/dx; i = 1, ..
are continuous. Then prove that f is differentiable.

,n—1
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27.

28.

29,

—-30.

31
32

33.

34,

- 35.

- 26.

(a) If f:R— R and /" exists on a neighborhood of x = a and limi+t Sx)y =1,
then prove that f'(a) = . [Hint: Use the mean-value theorem.]

1, x<0, - .
(b) Can f(x) = ; 0 S be the derivative of any function?

Let f: A = R be continuous, 4 < R’ open. Assume that all directional derivatives
exist and define at each x, € A, a linear map Df(x,). Must 1 be differentiable?
[Hint: Consider [(x,y) = x2p./x% + y*[(x* + ¥*), a function suggested by
F. Weisler.]

Let [ be differentiable on [a,b]. Verify that f’(x) satisfies the conclusion of the
intermediate-value theorem (remember f’ need not be continuous) [Hint: If we
seek x, such that f'(xo) = ¢, consider g(x) = f(x) — cx and inf g(x}].

Let f,(x) = xe ™, xe [0, n=10,1,2,... .

(a) Show f(x) = Z:;O f(x) exists. Compute [ explicitly.
(b) Is f continuous?

(c) Find a suitable set on which the convergence is uniform.
(d) May we differentiate term by term?

Suppose f: R — R is bounded and has a continuous derivative. What is right and
what is wrong in the following string of conclusions?

We want to prove that the set T of all points at which f assumes its (absolute)
maximum is closed. Since f is differentiable it is continuous. Hence it assumes its
maximuim, that is, Tis not empty. Denote by S the set of points at which f'(x) = 0.
Then T < S. On the other hand, if x € S, then f'(x) = 0, hence [ either achieves
4 maximim or a minimum there. If it achieves a maximum, we must have f(x) = 0.
Hence T = S A {x| f(x) = 0}. {x|/(x) = 0} is closed and so is §; therefore T is
closed.

Is T really closed or not?

‘Let 4 = R" be compact and construct the normed space %(A,R) as in Chapter 5.

Define, for x, € 4, 8,,: G(4,R) = R; fi— f(x). Prove 8, is continuous.

Let f: R? = R, f(x,p) = (xp(x? — p)(* + p?) il (xv.p) # (0.0) and f(0,0) = 0.
Show 9%f/0x Ay and 3%f/0y dx exist at (0,0) But are not equal.

Use Taylor’s theorem to préve the binomial theorem

(a + x)n = Z(';)akxn—k .
P <

=0
Consider the sequence of real numbers (a continued fraction)
1 1 1
22 F 22+ Y2+ 127
Show that it is convergent and find the limit [Hint: Prove that the even terms and
the odd terms are monotone.]

Let f:Jab[ — R be twice differentiable. Suppose f vanishes at three distinct
points. Prove there is a ¢ & Ja,b[ such that f*(c) = 0.

36.

37.

38.

39.

40.
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Suppose f:[0,1] = R is continuous, [ is differentiable on 10,1, and f(0) = 0.
Assume | f'(x)] < |f(x),0 < x < 1. Prove f(x) = O for all x[0,1].

Let f: R? — Rbe C2. fis called harmonicif 82f/0x* + 8%f/dy* = 0. Assume (xo,y;)
is a strict local maximum and f is harmonic. Prove that all second derivatives of f
vanish at (xq,)0)-

Find the equation of the plane tangent to the following surfaces at the indicated
points. .

(@ z=x>+y* (00

by z=x-y"+x (1,0

©z=K+p" (2.

Analyze the behavior of the following functions at the indicated points.

(a) z=x% — y2 + 3-"}” (030);
(b) z = Ax? = By + Cxp, (0.

Find the equation of the tangent plane to the surface § given by the graph of
@) Sxp) =/ + 7P+ (2 +y) at(1,0.2);
) fe) = /¥ + 2%y — P+ 1 at(L1/3).




Chaptef 7

The Inverse and
Implicit Function Theorems

and Related Topics

g V ¢ know from linear algebra that a system of linear equations

»

apxy + 0+ QieXe = Y1

anlxl + ot BXy = In
can be solved uniquely for x;, . . . , X, if the matrix A = (a;;) is non-singular,

that is, if det(4) # 0, where det(4) denotes the determinant of 4. What about
functional equations? When can we solve a system of the form

fl(xla- . 'axn) = Ji

f;l(xli‘ . 'sxn) = Yu

for xy, . . . » x,? The object which generalizes the determinant is the Jacobian
determinant defined by Jf(x) = det(Df(x)), where x = (xq,...x,) and

204
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S = (1, . ,f;). Written out in coordinates, at x = (x,,. . .,X,),

o ... W
(3x1 ax"
Jf(x) =
o ..
ox, ~  0x,
Sometimes one writes
a(flv' . :f;:)
X g5« s%y)
instead of Jf and
a(flr LR n)
B - oriy) )

-instead of Jf(x). If Jf(x) # 0, one might expect to be able to solve f(x) = y

for x. The theorem which justifies such results is the main subject of Section
7.1. We shall also consider the case when we wish to solve f{(x,y) = 0 for y
(implicit function theorem). In the latter sections we shall apply some similar
existence theorems to ordinary differential equations and an important
theoretical result called the “Morse lemma.” The final section is concerned
with extremum problems in the presence of constraints.

7.1 Inverse Function Theorem

Notice that Jf(x) # 0 implies that Df(x): R" — R" is a linear isomorphism
{that is, its matrix is invertible). Thus, from the fact that the best linear
approximation is invertible, we want to conclude that the function itself
is invertible.

There are, however, some restrictions. To appreciate these, examine the
case /1 R — R. It is true that if f is C* and if f'(x,) # O, then f is invertible
(one-to-one) in a neighborhood of x,. Geometrically this is quite clear, for
f'(xo) # 0 means f has a non-zero slope at, and consequently near, x,
(see Figure 7-1).

Thus our main concern will be with local invertibility, that is, with in-
vertibility of f(x) for x near x, and y near yg = f(x,).

It is easy to compute the derivative of the inverse function f~(y) from
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FIGURE 7-1

the chain rule: from f~X(f(x)) = x, we get (df ~'/dy) - f'(x) = 1,s0

df”! _
dy ly=re0 df [dx

To actually check that /™% is differentiable requiFes a little more care.

If f'(xo) = O, then f may or may not be im.'ertlbl.e near Xo; in Figure 7-1,
f is not invertible near x;, but f(x) = x? is invertible near xo = 0. In the
case where f'(xo) = O, then, no conclusion can be drawn (some further
analysis would be required). In general, f'(xo) # 0 does not guarantee that
we can solve f(x) = y forall y. For example, there is no x5 such that f (x3.) =
y, for y, as in Figure 7-1. Also, from the same ﬁgur.e we see ghat solunc.ms
are generally not unique, for f(xo) = f(5). There will 'be a unique solution
only if our attention is restricted to a suitably small neighborhood of x,.

Therefore, all we can expect is that f is invertible near f(xo). That is, ..

for y close to f(x,) we can solve uniquely for some x near Xo such t'hat
f(x) = y. The question of “how near?” is a subtle one requiring detailed
analysis of the proof. Fortunately, for many purposes, this is not 1mportar.1t.

Theorem 1 includes the single variable situation just described as a special

case.

Theovem 1. Let A < R" be an open set and let fiA <R — R be
of class C* (that is, Df exists and is continuous). Let Xq & A and
suppose Jf(xo) # 0. Then there is a neighborhood U of xq in A and
an open neighborhood W of f (xo) such that f(U) = Wland [ has a
C! inverse f~1: W — U. Moreover, for y € W, x = f~X(y), we have

Df~'(y) = [Df)]™"
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the inverse of Df(x) meaning the inverse as a linear mapping (corre-
sponding to the inverse matrix). If f is of class C?, p = 1, then 50 is

frix

Saying that f has an inverse f~' means exactly that we can uniquely
solve f(x) = yforx e U given any y e W.

The proof of the theorem depends on a certain existence argument. That
is, for y near y, we need to prove the existence of an x such that f(x) = y.
The basic technical tool which is used is the contraction mapping principle;
see Section 5.6. In Section 5.6 we saw how that result could be used to prove
the existence of solutions to some simple integral equations. In Section 7.5
we shall use these same sorts of arguments to solve differential equations as
well,

ExXAMPLE 1. Cons{der the equations (x* + y*)/x = u(x,y), sinx + cos y =
v(,y). Near which points (x,y) can we solve for x, y in terms of u, v?

Solution: Here the functions are u(x,y) = fi(x,y) = (x* + y*)/x and
u(x,y) = fo(x,y) = sin x + cos y. We want to know the points near which .
we can solve for x, y as functions of u and v and to compute 0x/0u, and so
forth. According to the inverse function theorem we must first compute

3(f1,f2)/0(x,y). Observe that for f = (fi,f,) we take its domain to be
A = {(x,y) e R*| x # 0}. Now

g&- _a;f_l_ 3x4 — y4 4)’3

Aff) _|0x | | X x
axy)  |of, of,| .
-a—x 5—; COS X —8im y
3 3
= (SLzy)(y"' — 3x%) — %—-cosx .

X

Therefore, at points where this does not vanish we can solve for x, y in
terms of u and v. In other words, we can solve for x, y near those x, y for
which x 5 0 and (sin y)(y* — 3x*) # 4xy® cos x. Such conditions generally
cannot be solved explicitly. For example, if x; = n/2, y¢ = n/2, we can
solve for x, y near xq, y,, because there, d(f;,3)/0(x,y) # 0.

The derivatives 0x/0u, etc., are obtained according to Theorem 1 by
inverting the Jacobian matrix. In the 2 x 2 case this comes down to the

*If f: 4 = R" — R™is C! and Df{x,) is one-to-one, then f is also locally one-to-one near x,.
Similarly if Df(x,) is onto, then f is onto some neighborhood of f(x,). These more general

results follow from Theorem 1 by the methods of Section 7.2; see Exercise 11 at the end of this
chapter.
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following:
ox 1 o ?j _ __—_1-_ _6_:_1_ i
. Jfxy) oy’ dv Jf(xy) oy’
dy -1 ov dy 1 ou

o W v Jfl) ox
(see Example 2, at the end of the chapter for more details).
In this example,

ox —(x? sin y) ‘
du {(sin y)y* — 3x*) — 4y*x cos x}

Notice that the answer is expressed in terms of x and y and not u, v. Thus
dx/du is evaluated at the point u(x,y), v(x,y).

The inverse function theorem is useful because it tells us that then? are
solutions to equations and it explains how to differentiate the solutions,
although it may be impossible to solve the equations explicitly.

ExampLE 2. Let u(x,y) = e* cos y, v(x,y) = € sin y. Show that (x,y) —
(u(x,y),0(x,)) is locally invertible, but is not invertible.

Solution: Here

) fﬂ QE efcosy —e*siny

a(u,v) _ 0x ay _ -

o) o e*siny e*cosy
dx dy

= @?*(cos?y + sin?y) = e2* # 0.

Hence by the inverse function theorem the map is locally invertible. It is ‘

not (globally) one-to-one, however, because
u(x,y + 2m) = u(x,y),  vlxy + 2m) = v(x,)) .

Notice that for f: R — R if f is differentiable and if f'(x) # 0 for all x,
then f'(x)is either >0 or <0since f' satisfies the intermediate value theorexp
(see Exercise 28, Chapter 6), hence f must be (globally) one-to-one as fis
always increasing or decreasing. The example above shows that this need

not be the case in R?.
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Exercises for Section 7.1

Let u(x,y) = x* — »*, v(x,y) = 2xp. Show that the map (x,p)+> (u,v) is locally
invertible at all points (x,») # (0,0).

ox 0x oy oy, .
. ey T 1.
2. Compute 50 39" 30’ 3o in Exercise
~3. Let f(x) = x + 2x%sin(l/x), x # 0, f(0) = 0. Show that f*(0) s 0 but that f is
not locally invertible near 0. Why does this not contradict Theorem 17

4, Let L: R" — R" be a linear isomorphism, and f(x) = L(x) + g(x), where g(x)| <
M ||x|? and fis C!. Show f is locally invertible near 0.

--5. Investigate whether the system
u(x,y,z) = X + xyz ;

oxp,z) =y + xy;
w(x,p,z) = z + 2x + 322

can be solved for x, y, z in terms of u, v, w near (0,0,0).

7.2 Implicit Function Theorem

In studying the implicit function theorem we are again interested in the
existence and differentiability of certain functions. Undoubtedly, the student
has worked with functions defined implicitly before; however, he or she
may not know why the manipulations are justified. Possible questions we
would like to ask will be more obvious after looking at some examples.

Suppose we consider those x and y related by an equation F(x,y) = 0.
We would like to say that this defines a function y = f(x) (one says that
y = f(x) is defined implicitly), and we would like to compute dy/dx. As in
the previous section, given such an F, one generally cannot solve for y
explicitly, so it is important to know that such a function does indeed exist
without having to solve for it.

To motivate the next result, consider the function F(x,y) = x* + y% — 1.
We are interested in those x and y related by F(x,y) = 0, which is just the
unit circle. A function f{(x) is a “solution” iff F(x,f(x)) = 0 for all x in the
domain of f. Clearly, f must be given by f(x} = +./1 — x?, and either of
these is a solution. We note therefore that f need not be unique. Given (x,,y,)
such that F(xq,y0) = 0, we would like to know if we can find f(x) such that
F(x,f(x)) = 0 and [ is differentiable and unique near (xq,y,). If xo # +1,
this is true if f is taken to be the appropriate square root. The given y,
determines which square root must be selected. See Figure 7-2. The points

- X%g = %1 are exceptional for several reasons. First, f is not differentiable
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¥y

Fx, yk 3
A

FIGURE 7-2

there and second, near x, = 1, f could be either square root, so it is not
uniquely determined. These exceptional points are exactly the places where
dF/dy = 0. Thus, in general, we want some condition like 6F/dy # 0 to
guarantee that, locally at least, we can find a unique differentiable f such
that F(x,f(x)) = 0.

In the generali case we shall have a function F: R" x R" — R™, and

consider the relation F(x,y) = 0, or written out,

Fy(x1 o xXmYise + oY) = 0

Fm(xh' . -,xn:yli‘ . '»ym) = 0 b

and we want to solve for these m unknowns y,, . . . , y,, from the m equations
interms of Xy, . .., X,.
The theorem is as follows.

Theorem 2. (Implicit Function theorem). Let A =« R* x R" be an
open set and let F: A — R™ be a function of class C7 (that is F has p
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continuous derivatives where p is a positive integer). Suppose (xo,yo) €
A and F(xg,y,) = 0. Form

ayl aym
A =

OF, . OF,

oy OYm

-evaluated at (xq,y0), where F = (F,,.. .,F,). Suppose that A # 0.
Then there is ari open neighborhood U = R" of x4 and a neighborhood
V of yo in R™ and a unique function f: U — V such that

Fx,f(x)) =0

for all x € U. Furthermore, f is of class C?.

Actually, we shall see that this theorem follows fairly easily from the
inverse function theorem. The intuitive reason for the validity of the theorem
and the necessity for the restriction A 5 0 should be clear from the above
example. From the equation F(x,f(x)) = 0 one can determine Df using the
chain rule. First, take the case m = 1. Then, by the chain rule,

3 _OF  OF of
0= 'a‘;iF(x:f(x)) = % + 2y o,

So we get the important equation (notice the minus sign):

af OF [0x;

ox,  0Fjay

The reader is especially warned that in

(OF |0x;)
(0F [3y)

it is incorrect to “‘cancel” the 8F’s to obtain dy/dx;. Thus, while such memory
devices are sometimes useful, they do have limitations.
We can formulate the general solution analogous to the above.
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Corollary 1. In Theorem 2, 8f;/0x; are given by

cof . ok (BFy . OFTYOR O
axl : axn ay 1 ay m ax 1 axn
La)ﬂ axu J ay 1 aym ¥ \axl axn J

where ~! denotes the inverse matrix.

The proof is similar to the case m = 1 given above and will be left as an
exercise.
ExampLE 1. Consider the system of equations
xu + yv? =0,
x4+ yut =0.
Are they uniquely solvable for u, v in terms of x and y near x = 0,y=1,
u = 0,y = 07 Compute du/dx at x = 0, y = 1if it exists.

Solution: Here we have F(x,y,u,v) = 0 where F stands for the left-hand
sides of the given equations. We want to see if we can solve for u(x,y), v(x,y).
Thus we form

oF, OF,
Bu oo x 2w
A=lor, or,|”
0F, OF, 2,5 3y
Fli 6y“u”" 3xv

which, at the given point is equal to 0. Thus the implicit function theorem

states that we cannot expect to uniquely solve for u, v in terms of x and y.
To actually determine solvdbility would require a direct analysis not provided
by the implicit function theorem.

Exercises for Section 7.2

1. Check directly where we can solve the equation F(x,)) = V+y+3x+1=0
for y in terms of x.

- 2. Check that your answer in Exercise 1 agrees with the answer you expect from the

implicit function theorem. Compute dy/dx.

. x* -y Xy , ; 9
3. Consider (x,y) > m’ m . Does this have a local inverse near (0,1)?
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~4. Discuss the solvability in the system

I+ 2+ +utrP=0;
dx+3p+z+u +o+w+2=0;
X+z+w+ut+2=0,
foru,u,wintermsofx,y,znearx=y=z=0,u=v=0,w= -2.
5. Discuss the solvability of
y+x+u=20;
uxy +v=20,

for u, v in terms of x, y near x = y = « = v = 0 and check directly.

7.3 Straightening-Out Theorem

We now give another consequence of the implicit function theorem which
1 an important technical tool in the study of surfaces. This result states
rg\}ghly speaking, that if f: 4 « R* — R has a non-zero derivative at e;
point x,, then in a neighborhood of x,, f can be “straightened out”; in fact
f can be deformed into the map which is the projection onto the coordinate’
axis x, by composing it with a “coordinate change,” which means (by
definition) a smooth function which has a smooth inverse. See Figure 7-3
where the coordinate change is denoted h, and in which h straightens out’

the surfaces of constant f to be planes. The exact result is stated in the next
theorem.

i X

feh = constant

FIGURE 7-3
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=

f = constant

Z

7

- X

2

(7

FIGURE 7-4

Theorem 3. Let A = R" be an open set and let f: A - R be a
function of class C¥, p > 1. Let Xo€ A and suppose Df(xo) # 0.
Then there is an open set U, an open set V containing Xo, and a
function h: U - V of class C”, with inverse h™*: V — U of class
CP?, such that
. f(h(xh' . "xn)) = Xy .
This theorem has a generalization to functions f: 4 = R" — R®,m < n,
given in Exercise 3 at the end of the chapter. ‘
The plausibility of the theorem is seen from Figure 7-3. The function of A
is to twist things in a way so that the level surfaces of f become planes of
dimension n — 1. The condition Df(x,) # 0 comes in to guarantee that

the surfaces f = constant are “non-degenerate” or intuitively, have

dimension n — 1. An example will clarify this point.

ExampLE 1. Let f(x,y) = x2 + y?. Can we “straighten out” f near (0,0)?

Solution: No, not necessarily, because Df(0,0) = 0. Indeed, this is cl.ear
intuitively because the surfaces of constant f degenerate at (0,0) from being
circles to being a point (Figure 7-4). Clearly, there is no way we can deform
the surfaces f = constant near (0,0) to planes. But we can do this at any

point (x0s¥0) # (0,0).

EXAMPLE 2. Let f(x,y) = x> + x + y. Can f be “straightened out’ near
(0,0)?

Solution: Yes, for Df(0,0) = (1,1) # 0.
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Exercises for Section 7.3
1. At what (x,y) can f(x,y) = x? — y? be “straightened out”?

2. Sketch the graphs of f'= constant in Exercise 1 and explain your answer
geometrically.

3. Can f(x,y) = x + y? + 1 be straightened out near (0,0)? Near (0,1)?

7.4 Further Consequences of the
implicit Function Theorem

Theorem 3 says that we can find a function h which “straightens out” the
domain of f so that f o h is simply a projection. Analogous to this we can
look for a function g which “straightens out” the range of f so that go f
looks like a projection. .

Theoremd4. Let A = RP beanopensetandf: A — R afunction of
class C" and p < n. Let x, € A and suppose the rank* of Df(x,) is p.
Then there are open sets U and V in R with f(x,) € U and a function
g: U = V of class C" with inverse g~*: V — U also of class C" such
that g o f(xy,. . . X,) = (X150« X0, . 0) for all (x4,. . . x,) € A.

The intuition is given in Figure 7-5, which should be compared to Figure
7-3. In the present case the function g flattens out the image of f. Notice
that this is intuitively correct; we expect the range of f to be a p-dimensional
“surface’ so it should be possible to flatten it to a piece of R”. Note that the
range of a linear map of rank p is a linear subspace of dimension exactly p,
so this result expresses, in a sense, a generalization of the linear case.

To use Theorems 3 {or 4) we must have the rank of Df equal to the dimension
of its image space (or the domain space). However, we can use the inverse
function theorem again to tell us that if Df(x) has constant rank m in a
neighborhood of x,, we can_straighten out the domain_of_f.with.some
invertible function h such that f o h depends.only on x;, . .., X,,. Then we

can also apply Theorem 4. This is the essence of the following theorem and

its corollary. Roughly speaking, the theorem says that if Df has rank m on
R", then n — m variables are redundant and can be eliminated. For example,
if f(x,y) =x —y, f: R? > R*, Df has rank 1, and so we can express f
using just one variable, namely, let A(x,y) = (x + y,y)sothat o h(x,y) = x,
which depends only on x.

* Recall that the rank of a linear map is the dimension of its image. Equivalently, by lincar

algebra, the rank is the size of the largest square submatrix with non-zero determinant (see
any linear algebra text, such as O'Nan, Linear Algebra for details).
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x, %

FIGURE 7-5

Theorem 5. Let f: A = R" — RY (where A is open z:n R" be [:1 cr
function such that Df(x) has rank m for all xdm a nelgr;lh‘:)eotrl;/ocz: H(;_):
i R" and an ope
A. Then there is an open set U < en set ¥ < |
fvgtz xo€V and a function h: U = V of class C" with inverse
Rt Vo-+ U of class C" such that f o h depends only on x{, . .é x(,,:,;
Thut is fo h(X1ye o XpoXmet 15+« o%n) = FGyy o X)) for som

function f. See Figure 7-6.
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FIGURE 7-6
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Corollary 2. Let f: 4 « R* —» RN (where A is open in R") be a
Junction of class C" such that Df(x) hasrank m for all x in a neighbor-
hood of xy € A. Then there is an open set Uy < R*, an open set
U, = R with xye U,, an open set Vi around f(x,), an open set
V, < R¥, and functions h: Uy - U,andg: V, - V, of class C* with
inverses of class C* such that gofoh(xy,. .. x,) = (%150 + sXp,0,. . .,0).

Some further applications of the implicit function theorem to surface
theory and Lagrange multipliers (extremum problems with constraints) are
given in Section 7.7. Also, in the sections below some (optional) topics are
treated by these same or similar methods. '

ExampLE 1. Let f: R? —» R?, (x,) (x + y*xy,y + y?). Can the range
of f be “straightened out’ near 0,0)?

Solution: Here we employ Theorem 4. First, we compute the Jacobian
matrix:

1 3y
y x
0 14 2y
wﬁich, at (0,0), is
00
0 1
This matrix has rank 2 (since there is a 2 x 2 submatrix with. non-zero

determinant). Hence Theorem 4 applies, so we can straighten out the range.
It will be, intuitively, a two-dimensional surface near (0,0). '

ExamPLE 2. Let f: R? » R, S@x,y) = x% + y. Can f be expressed as a
function of only one variable near 0,0)? )

Solution: Yes, since (by Theorem 5), Df(0,0) = (0,1) # 0. Note that
this can also be answered by using Theorem 3.

Exercises for Section 7.4

L Let f1R? = R, (xp) > (x + »*xpy*). Can the range be straightened out near
(0,0)? Near (0,1)7

2. What does Theorem 5 say about f: R? — R?, (x,3,2) > (x* + 2p2 2% + 3xp) near
{0,0,0)? Near (0,1,0)7
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3. What does Corollary 2 say about f:R®— R, (x,,2)— (x + 2y,6x + 12y,
x + y* + 2% near (0,0,0)?

4. Examine the statement of Corollary 2 in the case where f is a linear mapping.

7.5 An Existence Theorem for
Ordinary Differential Equations

In calculus we learn how to solve simple linear differential equations;
for example, one learns that the solution to d?x/dt* + k?x = 0 is x(t) =
A cos(kt — ) for constants 4 and . It is interesting to investigate whether
or not general differential equations always have solutions. This will be
the main concern here. The methods one uses are constructive and suitable
for numerical computation; that is, a definite sequence of approximating
solutions is constructed.
An example may clarify matters.

ExaMpLE 1. Consider the non-linear equation dx/dt = x?%, x(0) = 1. Can
we compute x(1)?

Solution: In this case we can solve the equation explicitly: we have
dx/x? = dt, so integrating, —1/x =t + C, that is, x = —1/¢t + C). At
t=0,x=1,s0C= —1 Thus x = 1/(1 — ¢) is our solution. This is the
only solufion starting at ¢ = 0, with x(0) = 1. At t = 1 the solution x(t)
blows up. Thus x(1) is not defined. Note that we cannot find a differentiable
solution x(t) defined for all ¢ > 0. (Figure 7-7).

This example points out the important fact that in general our solutions
x(t) may be defined and differentiable only for a small t-interval.

x()

x(t)
1=x(0) ¢

e cmoee. e o e o i S o e s

-
n
[

FIGURE 7-7
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Angther statement is important here. If we allow vector differential
equations, then higher order equations may be reduced to first-order ones.

Example 2 will illustrate this.
ExampLE 2. Reduce d*x/dt? + kx = 0 to a first-order equation.

Solution: Welet y = dx/dt and write:

which is first orde_.r in thé vector (x,y), and is equivalent to the original
equation.

The main existence and uniqueness theorem will now be given. In the
theorem, we write D(x,,r) for the closed ball of radius r about x,, so

D(xo) = {yeR"| Ixo — ¥l < 1}.

Theorem 6. Let f: [—a,a] x D(xq,) — R" be a given continuous
mapping. Let C = sup{|| f(t.x)ll | (t,x) € [—a,a] x D(xo,r)}. Suppose
there is a constant K such that

Ifx) — fe I < K llx — yl

for all te[~a,al, x,y e D(xo,sr). Let b < min{a,r/C,1/K}. Then
there is a unique continuously differentiable map x: [—bb] —
D(xq,r) = R" such that

x(0) = x4

d
= = flex(e).

(initial condition) ,

The main condition on f is this Lipschitz condition: .

I/tx) — fENl < Klx =yl -

Here K is called the Lipschitz constant and we say f is Lipschitz in the
variable x. To verify this condition one often uses the following device.

Device: If D_f(t,x) denotes the derivative of f for fixed t, and
ID.f(t, %)yl < K |y| forally € R" then f'is Lipschitz with Lipschitz constant
K. For example, if n = 1 this holds if |8f(t,x)/0x| < K on —a <t < a,
—r< X —Xg ST
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One sees this by using the chain rule as follows:
d
Gy + s —y) = D.f(t,y + s(x — ) (x — ¥,

so, integrating between s = Oand s = 1,
1

f(tsx) - f(t,.)’) =\[

ODxf(t,y +5(x —y)(x—yds.

Taking absolute values then yields the result. The device is the method we
normally would use to determine K. Note thatif fis C ! such a K will always
exist (why?).

Often f is independent of ¢, in which case we say we have an autonomous
system. If f is merely continuous, the existence (but not uniqueness) of x(t)
in Theorem 6 is true; see Exercise 45 at the end of Chapter 5.

The idea of the proof of Theorem 6 is to use successive approximations;

start with
xl(t) = xO:
and write

%(0) = %o +J‘f(s,x1(s» ds
1]

%5(6) = %o + f lsxale) ds

t
xn(t) = xO +j f(s,x,,~ I(S)),ds .
1]
Then one wants to prove x,(t) converges to a solution x(t) which will satisfy
t
x(t) = Xo +J J(s.x(s)) ds
0

(this equation is equivalent to the differential equation plus the initial
condition).

If we compare this with Chapter 5, Section 6, we see that what is really
going on is the search for a fixed point of the map of one function to another

given by
W) xg +j S(s,y(s)) ds
0

and we might expect that we can use the contraction mapping principle.
We can indeed and this is how the actual proof goes.
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(1+n?

FIGURE 7-8

ExampLE 3. Compute b for Example 1.

Solution: Heredx/dt = x*,x(0) = 1is ourequation. Let, for the moment
a, r be undetermined. Now ’

C = sup{|f(tx)] | —a < ¢
sup{x?| —r < x — 1
' =(r+ 1)
(see Figure 7-8). Thus r/C = r/(r + 1)*. Also, 8f/0x = 2x, so
K =sup{2x|| -r<x—1<r}
= 2(r + 1).

]

a»'“"SX—ISr}

r}

<
<

Singe a is not involved we can just choose a large enough so that it does
not interfere, say, a = 100. Then, by the theorem, we must choose

b < min{—r_,_—i_} .
(r+ 1220 + 1)

'Irhis will \.zvork for any choice of r. For example, if we let r = 1 we get a
time gf existence b < 1/4. This is not as good as we found directly (a time
of existence <1) but one can reapply the theorem to get a new time of:

exigtence at t = 1/4 and gradually work out to any t < 1. But we could
never go past ¢t = 1.

Exercises for Section 7.5

L. Solve dx/dt = 1 + x%, x(0) = 0 by the method of successi imati
" 20 detinns for il 5 01 ive approximations. Is

2. Compute b from Theorem 6 for Exercise 1.
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3. Show that dx/dt = \/);, x(0) = 0 has two solutions:
0, 1<0,

x(t)=10 and x(1) =< 42
* t>0.

|

Does this contradict Theorem 67

4. Consider the equation dx/dt = te** sin x, x(0) = 1. Obtain an estimate on how
long we can define the solution x(¢).

5. Let A be an n x n matrix and consider the linear system

dx

AL I UL

" (a) Show that a solution is
t4 B & B
() = ¢4x(0),  wheree® =), o
n=0 N

{b) The time of existence here extends for all ¢; can this fact also be derived from
Theorem 67

7.6 The Morse Lemma

In Chapter 6, Section 9 we saw that the Hessian of a function f: R* — R at
a critical point determined the local behavior of f near this point. The
Morse lemma carries this result one step further. It states that if, for example,
f has a local minimum at x,, not only does [.look like a paraboloid but
that we can change the coordinates (as in Sections 7.3 and 7.4) so that
f really “is” a paraboloid in the new coordinates. The “lemma” (it really is
a “theorem”) also applies to saddle surfaces.

The Morse lemma is fupdamental in more advanced work in topology
and analysis, but even here it helps us understand the shape of functions
near a critical point.

Theorem 7. Let A = R" be open and f: A — R a smooth (that is,
f is infinitely differentiable) function. Suppose Df(x,) = 0 and the
Hessian of f at x, is non-singular. Then there is a neighborhood U
of x, and a neighborhood V of 0 in R and a smoothmap g: V —» U
with a smooth inverse such that f o g = h has the form

Ky) = fxo) — [y% + y3 + -+ ¥3] + Dher + - + 0]

where J is some fixed integer between 0 and n.
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One calls g a change of coordinates and we speak of y = g~ '(x) as the
new coordinates.

A critical point at which the Hessian matrix A = —8%f [ox; 0x; is non-
singular is called a non-degenerate critical point. Thus Theorem 7 gives a
rather complete description of functions in the neighborhood of a non-
degenerate critical point. The number A is called the index of the critical
point. Figure 7-9 illustrates the graphs of the quadratic forms —y? — -+ —
y2 + y2., 4+ -+ -+ y? for various indices in R?.

For functions of two variables it is easy to determine the index; namely,
if A is positive definite (see Section 6.9) the index is 2; if Ais negative definite
the index is zero and otherwise it is one. (Note how this ties together with
Theorem 12 of Chapter 6.)

In general, to find the index one needs to know a little more linear algebra.
The knowledgable reader can check that the index is exactly the number of
positive eigenvalues of A.

ExampLE 1. What is the shape of the surface z = x2 + 2xy +29% + y?
near (0,0)?

Solution: We have a critical point at (0,0) and the Hessian is

oy -2 -2
o= 15 )

which is negative definite since —2 < 0, and det(A) = (—2)(—4) —
(=2)(—2) > 0. Thus the index is 0 and near (0,0) the surface is approximately
a paraboloid and in some other coordinate system it is exactly a paraboloid.

ExaMPLE 2. Compute the index of x> — 3xy + y* + 8xy® + 6 at (0,0).

V3

index = 1 index =2

index =0

FIGURE 7-9 (a) Index = 0. (b) Index = 1. (c) Index = 2.
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Solution: -(0,0) is a critical point and the Hessian is

S

which is neither positive definite nor negative definite. Thus we have index 1
and hence a saddle point at (0,0).

Exercises for Section 7.6
1. Compute the index of 2x? + 6xy — y* + y* at (0,0).

2. What is the shape of the surface x? + 3xy — y* at (0,0)?
3. Does Theorem 7 apply to x* — 2xy + y*? What happens?
4

. Let f(x.0) = x* + y* + 3p° + 8x* + x%¢*sin x + 6. Show that there exist new
coordinates &, 1, where )
¢ =¢xy),  n=nlxy)
for which
fey) =8 +n*+6
in a whole neighborhood of (0,0).

5. (a) If / has a non-degenerate critical point at x, € R" show that there is a neighbor-
hood of x, containing no other critical points.
(b) What are the critical points of the function f(xy) = x*??
”

7.7 Constrained Extrema and
Lagrange Multipliers -

In some problems we want to maximize a function subject to certain

constraints or side conditions. Such situations arise, for example, in economics. .

Suppose you are selling two kinds of goods, say, Iand II; let x and y represent
the quantity of each sold. Then let f(x,y) represent the profit we earn when
x amount of I and y amount of II is sold. But our production is limited by
our capital, so we are constrained to work subject to a relation, say, g(x,y) =
Thus we.want to maximize f(x,y) among those x, y satisfying g(x,y) == 0.
The condition g(x,y) = 0 is called the constraint in the problem.

The purpose of this section is to briefly discuss some methods which will
enable us to handle this and similar situations. Theorem 8 is the main result.

Theorem 8. Letf: U c R* - Rand g: U = R" — R be given C*
functions. Let xq € U, g(xo) = co and let S = g ~Ycy), the level set
for g with value cy. Assume Vg(xo) # 0. If f | S, which denotes f
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restricted to S (that is, to those x € U satisfying g(x) = c;) has a
maximum or minimum at xq, then there is a real number A such that

Vi(x0) = 4 Vg(xo) .

The idea of the proof is as follows. Recall that the e tangent space to S at
xg is defined as the space orthogonal to Vg(x,) (see Section 6. .6). Wemotivated
this definition by considering tangents to paths c(¢) which lie in S, as follows:
if ¢(t) is a path in S, ¢(0) = x,, then ¢'(0) is a tangent vector to § at x, since

d d
Zzg(c(t)) = Zl‘ico =0

and, on the other hand, by the chain rule,

d
Zg(el))| = Valxo) - c(0),
t=0
so ¢'(0) is orthogonal to Vg(xo) A N R 5 TPy IO A
“Nowif /S s a maximum at x,, then certainly fi (c(t)) has a maximum
att = 0. Hence,

v

d
0 =2 flel) o Vi (%0) - ¢'(0) .

v

Thus Vf(x,) is also perpendicular to the tangent space to S at xo and so "=

V[! ) an and _Vg(x,) are paraliel. Since Vg(x) # 0 it follows that Vf (x0)
isa multlple of Vg(x,), which is exactly the conclusion of the theorem.

Let us extract from this proof the geometry of the situation and formulate
a corollary as follows.

Corollary 3. If f, when constrained to a surface S, has a maximum
or minimum at Xo, then Vf(xy) is perpendicular to S at x,
(see Figure 7-10).

These results tell us that to find the constrained extrema of f we must

look among those x, satisfying the conclusions of the thedfem or the,

corollary. We shall give several illustrations of how to use each.

When the method in Theorem 8 is used we must look for a point x, and
a constant A, called a Lagrange multiplier, such that Vf(x,) = 4 Vg(x,).
This method is more analytical in nature while the method of Corollary 3
is more geometrical.

Unfortunately, for constrained problems there is no simple test to dis-
tinguish maxima from minima as there was in Section 6.9 for unconstrained
extrema. Therefore one must examine each x, separately using the given
data or other geometric arguments.

S
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Z
grad f(xg, ¥gs Z) = VI(x,. %55 %)

tangent plane to §

FIGURE7-10 Thegeometry
of constrained extrema.

ExampLE 1. Let S c R2 be a line through (—1,0) inclined at 45°, and let
f:R? = R, (x,t) = x? + t*. Find the minimum of f on §.

Solution: Here S = {(x,y)|» — x — 1 = 0} so we choose glx,y) =
y — x — 1. The relative extrema of f | $ must be found among the points
at which Vf is orthogonal to S, that is, is inclined at —45°. But Vf1 (x,t) =
(2x,2t) and. has the desired slope whenever x = —t, 0r (x,t) lies in the line L,
through the origin inclined at —45°. This can occur for a point (x,t) lying
in the set S only for the single point at which L and S intersect (see Figure
7-11). Reference to the level curves of f indicates that this point, (—1/2,1/2),
is a relative minimum of /| S (but not of f).

ExampLE 2. Let f: R? = R: (x,p) x? — y?, and S be the circle around
the origin of radius 1. Find the critical points of fon S.

Solution: Here S = g=!(1), where g: R* > R, (x,y) > x* + y?. The
level curves, tangent spaces, and gradients are shown in Figure 7-12. Clearly,
the gradient of f is orthogonal to S at the four points (0,4 1), (£1,0), which
are relative minima and maxima, respectively, of f |S.

This problem can be performed analytically by the method of Lagrange
multipliers. Clearly,

e = (LL) = -2

and
Vg(x,y) = (2x,2y) .

Thus, according to Theorem 1, we seek to find a A such that
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FIGURE 7-11 Locating the
critical points of f restricted to S.

D
F )
1 Fae)
(-1,0) (1,0
S
(©,-1)
FIGURE 7-12
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(2x3_2y) = A(ZX:Z,V)
orx* +yt=1.

(x.9) €S,

These are three equations which can be solved for the three unknowns x, y,
and A. From 2x = A2x we conclude either x = 0 or A= 1.1If x = 0 then
y = +land -2y = A2yimplies A = —1.If4 = 1,theny = Qandx = *1.
Thus we get the same points (0,£1), (£ 1,0) as before. As we have mentioned,
the method only locates potential extrema; whether they are maxima or
minima or neither must be determined by other means.

If the surface S is defined by a number of constraints,

gl(xh' . '1xn) = Cy

gZ(xI!' . ’sxn) = €3

GilXgse X)) = Gk

(above we just had one g), then Theorem 8 may be generalized as follows.
If f has a maximum or minimum at xo on S, there must exist constants

Aiye -4 Such that
) Vf(xo) = Ay Vgi(xo) + - + A Vagilxo) -

This may be proved by generalizing the method used to prove Theorem 8.
This argument is left to the interested reader. Let us now give an example of
how this more general formulation may be used.

ExaMPLE 3. Find the extreme points of f(x,y,2) = x +y + 2 subject to
the conditions x* + y? = 2,and x + z = L.
Solution: Here there are two constraints,
91(36,)’,2) = x2 + y2 -2=0

and
g'z(xsy’z) =x+2z—-1=0.

Thus we must find x, y, z and A, and 1, such that
Vi (x,p52) = Ay Vg3 (6.9:2) + A3 Vga(x,9,2)
and
gi(x,,2) = 0
{gz(x,y,Z) =0,
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that is,
(1=24,-2x + 4,1
1=2A-2y+ 4,0
1l=4,-0+ 4,1
and
x4yt =2
(x+z=1.

These are five equations for x, y, z, 4;, and 4,. From the third, 1, = 1 and
so 2xA; = 0, 2yA; = 1. Since the second implies 4, # 0, we have x = 0.

Thus y = iﬁ and z = 1. Hence our points are (O,iﬁ,l). By inspection
one can show that (O,ﬁ,l) gives a maximum, (0, -—-ﬁ,l) gives a minimum.

ExampLE 4. Maximize f(x,y,2z) = x + z subject to the constraint
x2+y P+ 22 =1

Solution: Here we use Theorem 1. We seek A and (x,y,z) such that

1= 2x4
0= 2yd
1 = 224

and-
x24+yP+z22=1.

Since A # 0, we get y = 0. From the first and third equations, x = z and
4)2x? — 432722 = 0; from the fourth, 44%x? + 44%z% = 41%, which together
imply 84%x2 = 442 and so x = il/\/i = z. Hence our points are
(1 /\/5,0,1/\/5) and(—1 /\/5,0, -1 /ﬁ). Clearly, the first yields the maximum
of f, the second the minimum. Since § is compact, f must achieve a maximum
and a minimum on S.

ExampLE 5. Find the largest volume a rectangular box can have subject to
the constraint that the surface area be fixed at 10 square meters.

Solution: Here, if x, y, z are the lengths of the sides, the volume is
f(x,9,2) = xyz. The constraint is that 2(xy + xz + yz) = 10, that is,
xy + xz + yz = 5. Thus our conditions are

yz = Ay + 2)
Xz = Mx + 2)
xy = Ay + x)

xy+xz+yz=5,

i
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First of all, x # 0, for x = 0 implies yz = 5and 0 = 1z,50 4 = 0 and
yz = 0. Similarly, y # 0,z # 0,and x + y # 0, and so forth. Elimination
of A from the first two equations gives yz/(y + z) = xz/(x + z), which
gives x = y. Similarly, y = z. Using the last equation, 3x* = 5, that is,

x = /5/3. Thus x = y = z = /5/3, and so xyz = (5/3)*?. This is the
solution. It should be geometrically clear that the maximum occurs when
X =y =2z

Exercises for Section 7.7
In Exercises 1-5 find the extrema of f subject to the stated constraints.

I fepp)=x—yp+z x*+y +22=2

2. fxp)=x—p, x*—y =2

3. flxy) =z, X*+ 2 =3

4, flxy) =3x+2, 2x*+3* =3

5. fepg)=x+y+z, -y =1 2x+z=1

Theorem Proofs for Chapter 7

Theorem 1. Let 4 = R" be an open set and let f: A = R" — R" be of class C! Let
Xo € A and suppose Jf(xp) # 0. Then there is a neighborhood U of x4 in A and an open
neighborhood W of f(xo) such that f(U) = W and f has a C! inverse f~1: W — U.
Moreover, for y € W, x = [~!(p), we have :

A Df Yy = D]}
If [is of class CP,p = 1, then sois f™*. .

The proof of the inverse function theorem is not especially easy in its technical

details, but this theorem represents one of the most important cornerstones of analysis -

so should be mastered. A proof will be given based on the contraction lemma (see
Section 5.6). This technique is,useful as it is applicable to many situations.

We begin by recalling the contraction lemma. Here we use the special case of a closed
subset of R".

Lemma 1. Let M be a closed subset of R", and d the distance function on R". Let fbea
mapping of M into M. Assume there exists a constant K, where0 < K < 1, such' that
for any two points x and y in M we have d(f(x), () < Kd(x,y). ’I‘her‘z there exists a
unique x € M such that f(x) = x (x is called a fixed point of f).

Before beginning the proof of the inverse function theorem, it is helpful to have a
technical lemma about the set of invertible linear maps (or equivalently, the set of
invertible matrices). Now an m x n matrix (or a linear map from R" — R") is simply an
mn-tuple of real numbers, since a matrix A with entries {g;)) can be regarded as an
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mi-tuple (@), . @ypla g5« by . o). 1t makes sense then, to say that a certain
subset of the set of all matrices is open or that a map from the set of m x r matrices to
the set of p x ¢ matrices is differentiable. Let L(R",R") denote the set of all n x n
matrices (or linear maps from R" to R") and let GL(R",R") denote the set of all invertible
matrices (or invertible linear maps from R” to R"), which is called the general linear
group. Thus GL(R"R") = {4 e L(R",R") |det 4 5 0}. Let £~ !: GL(R",R") — GL{R",R")
denote the map which takes an invertible matrix A4 to its inverse 4~ !, The lemma that
we need is Lemma 2.

Lemma 2.
(i) GL(R",R") is an open subset of L{R",R").
(i) L lisaC™ mapping.

Proof:* (i) The determinant mapping det: R" x -+- x R" (n times) — R is an
n-linear map. (Recall that the determinant is linear in the rows.) Hence by Example 5,
Chapter 4, which shows that a multilinear map from R x - x R™ to R™ is con-
tinuous, the determinant mapping is continuous, and, by Example 2, or Exercise 14
at the end of Chapter 6, it is differentiable. Because the set consisting of zero {0} is
closed, we have that det™'({0}) is closed (by Theorem 1, Chapter 4). Hence
L(R",R"\det~'({0}) is open. But L(R",R"\det™*({0}) is the set of all those n x n-
matrices with non-zero determinant, and these are exactly all the invertible matrices
GL(R",R").

(ii) It is easy to see, from the explicit expression for the inverse of a matrix, that
#~' is C*. Indeed, the expression for the inverse of the matrix 4 is 4A~! =
(det 4)~" adj A, where adj 4 is a matrix such that (adj A4); = (—1)"*/ det 4(j | i),
where det A(j | i) denotes the determinant of the matrix obtained from A by deleting
the jth row and ith column. As (det 4)~! is a real differentiable function of 4, we only
need to show that the mapping adj: L(R",R") - L(R",R", which takes a matrix to its
adjoint, is C*. Regarded as a function from R™ to R™, the adjoint is simply an n*-tuple
of functions like (adj A4);; = (—1)'*/det 4(j | i). Now as we have mentioned a multi-
linear map from R™ x -+ x R" to R™is C*. Thus each of the n? component functions
of adj is C*. Hence the adj map is C*°. §

Proof of Theorem 1: For the sake of clarity we will now break up the proof of
Theorem 1 into a number of steps.

Step 1: Simplification to a special case.
We will prove the theorem below for the case when Df{(x,) is the identity transforma-
tion. Here we show that this is indeed sufficient to prove the general case. ’
Let 2 = Df(x,); then 1~ ! exists, and by the chain rule

DA™t o f)(xg) = DA™Y S(x0) o Dfixg) = A7 o Df(xo) = identity transformation .

Now if the theorem is true for 7! o f; then the theorem is also true for f. Indeed, if
g is an inverse for 17! o f, the inverse for f will be g o A1,

We can make one further simplifying assumption, namely, that x, = Oand f(x¢) = 0.
To see this, let us suppose we have proven the theorem for the special case x; = 0 and

* For a more “intrinsic” proofl see Dieudonné, Foundations of Modern Analysis, p. 179.
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f(xy) = 0. We want to see how to prove the general case from this. Let #(x) =
flx + xo) — f(xo). Then #(0) = 0 and DA(0) = Df (x,), so DH(0) is invertible. Then if /
has an inverse near x = 0, the required inverse for f near x, is given by

T\ =0y — flxo) + %o

In summary, Step 1 demonstrates that it is sufficient to prove the theorem under the
assumptions xo = 0, f(xq) = 0 and Df(0) is the identity. This will be assumed in the
remainder of the discussion.

Step 2:  Application of the contraction lemma to get a local inverse.

If we bear the preceding remarks in mind, it follows that what we would like is two
neighborhoods of 0 such that given any y from the first neighborhood of O there is a
unique x from the second neighborhood such that f(x) = y. To do this, consider the
function g, defined by g(x) =y + x — f(x). If for some closed neighborhood of
zero this is a contracting mapping, then it has a unique fixed point, say x, and so
x =y + x — f(x) or x is the unique point belonging to the neighborhood such that
f(x) = y. Now construct this neighborhood: define g(x) = x — f(x); then Dg(0) = 0.
Assume g to be of class C7, with p > 1. This means in particular that Dg is a continuous
function, and so by continuity at 0 there exists an r > 0 such that {x|| < r implies
1Dgx)| < 1/2n, where g = (gy,. . -4, BY the mean-value theorem, given x € D(0,r)
there are points ¢y, ¢z, - . . G, in D(0,r) such that gix) = gdx) — 9{0) = Dg{cx — 0) =
Dg/c))x). Therefore

lol <3, la@l = 3 1Daico <3, Datet 141 <15 < 5
=1 i= =

using the C’B.S. inequality.

This establishes that g maps the closed r-ball D(0,r) into the closed r/2-ball
D(0,r/2). Now let y be any member of D(0,r/2). The mapping g, takes D(0,r) into D(0,r);
for || y|| < r/2 and x e D(0,r) implies

-
lg,l = 1y + gl < Wyl + gl <5 +5=r-

Let x, and x, be any two points in D(0,r). Then |lg,(x) — gy(x)l = llg(x,) — glx)ls

and by the mean-value theorem as above, lgxy) = glx)l < (1/2) llx, — x|, and so

g, is a contracting map (with constant K = 1/2). Now we apply the contraction lemma,

which implies that there is a unique fixed point x e D(0,r) for g,, and as we observed

before, this implies f(x) = y. This means that f has an inverse U DOr2) € R =

Do, = R

Step 3: " The inverse is continuous.
Let x, and x, € D(0,r); then recalling the definition of g, we get

e, = %zl < 1 Ge)) = SOl + lglxy) = glell < 1FGxa) = SGl + (1/2) 130 = %3l

and hence [x; — X, < 2 |f(x,) — f(x5)|l. Therefore if y; and y, e D(0,1/2), we get
1/ ~Xyy) = S @l < 2 11py — pell, 50 f 7 is continuous.

Step 4:  For suitubly small v, the inverse is differentiable on D(0, r/2).
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We were given that Df(0) is invertible, that Df: 4 <« R" — R™ is continuous, and we
have shown that GL(R",R") is open in L(R",R"). Together, these facts show that for all
x in some neighborhood around 0, [Dg(x)]~" exists. If this neighborhood does not
contain D(0,r/2), r is restricted further until this is the case. Hence we can assume
[Df(x)] ™! exists for all x € D(0,r/2). Moreover, we can assume IDre] il < Myl
for all x & D(0,r/2) and y € R" by continuity of Df (x)~! (see Example 4, Chapter 4).

Now, for yy, y, € DO/2), x; = [~ Yy,)and x, = Sy

1/~ ) = £ 2) — [ (0 — 22l
Ilye = »all
_ %, — x5 — [Df(x)]™" - (f(xy) = SExI
./ Ger) = S ' ,
- [ Hxx'_ EA ]“{[Df(xz)]_l}{Df(xz)(M - X3) ~ (fCey) — f("z))}"
§fGey) = Sl lxy — x2l '
_Using %, — x50l < 21/ (x0) = f(x)ll and [ Df(x)" 'yll < M | y|l gives that the above
’ DS o)y = 3) = (fs2) = /Ol

lxy — X2l

< 2M

The last expression has a limit zero as ||x; — x| = 0, by the differentiability of /" at

" x,. This shows that f~! is differentiable at y, with derivative [Df(x,)]"* =

/(D]
In the theorem we set W = D(0,r/2) and U = /'~ !(W), both open sets.

Step 5: f~': D(0,;/2) — R" is of class C7.

From Step 4 it follows that f~': D(0,r/2) = R" is differentiable on D(0,r/2) and that
Df~'(y) = [DF(S~(»)]~!. We have shown that f -1 p(0,r/2) — R" is continuous;
Df is continuous by assumption; and the inversion mapping from GL(R",R") (the in-
vertible linear maps from R" to R") to GL(R",R") is continuous and, in fact, C® by Lemma
2. This implies that Df ! is a continuous map from D(0,r/2) into L{R",R"). Hence -1
is of class C!. Again look at Df ~'(y) = [Df(f ~*(»)]* and observe that since [ tis
of class C*, Df is of class C*~! and since inversion is C=, Df ~!is of class C'. Hence
[~ 1is of class C*. Continuing in this way by induction we finally conclude that /'~ Lis
of class C?.

Theorem 2. (Implicit Function theorem) Let A = R" x R™ be an open set and let
F: A — R" be a function of class C*. Suppose that (x0.¥o) € A and F(xy,y,) = 0. Forin

oF,  OF,
ay, Y
A =
oF,  OF,
ay 1 ay m
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evaluated at (xg,po), where F = (Fy,. . . F,,), and suppose that A # 0. Then there is an

open neighborhood U = R’ of xg, and a neighborhood V of yo in R”, and a unigue

function {2 U — V such that
: Fix,f(x) =0

for all x € U. Furthermore, f is of class C*.

Proof: Define the function G: 4 = R* x R* -+ R* x R™ by G(xy) = (x,Flxy)-
Since F is of class C? and the identity mapping is of class C*, it follows that G is of class
C?. The matrix of partial derivatives of G (Jacobian matrix) is

(1 0. 0 0 0 )
0 1
0 s 1 0 e 0
oF, R, oF, | OF
3xl axn a}’; aym
\ oF,, oF, OF,  OF,
kaxl axn ayl aym J

The determinant of this matrix evaluated at (xo.p) is equal to

oF,  9F|-

dy, 0P
A:

9F,  OF,

My OV

evaluated at (xg,yo). Therefore, by hypothesis, JG(xo,¥o) # 0 and thus by the inverse
function theorem, there is an open set W containing (xo,0) and an open set § containing
{xo.y0) such that G(S) = W and G has a CP-inverse G~': W — S, From the definition
of an open set we see that there are open sets U = R" and ¥V = R™ with xo € U and
yo€ Vsuch that U x V = S (sce Exercise 24, Chapter 2).Let GU x V) =Y W
Thus G: U x ¥V — Y is a CP-diffeomorphism {this means that G is of class C” and has
inverse G-1: Y — U x V also of class C”). Now G™! is of the form G™'(x,w) =

(x,H(x,w)), where Hisa C” function from Y to ¥, since G is of this form, as is easy to sce.
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Let 7: R* x R™ — R" be defined by n{x,p) = », so F(x,H{x,w)) = 7 o G(x,H(x,w)) =
n0Go G }x,w) = w. Also observe that because G™' is of the form G Yxw) =
(x,H(x,w), if (x,w)€Y, then xe U. Define /1 U —V by f(x) = H(x,0). Then, as
Fx,H(x,w)) = w, we get F(x,f(x)) = 0. Also, as H is of class C, / must also be of class
C?. By Theorem 1, H(x,w) is uniquely determined. Since / must be given by H(x,0), f
is seen to be unique as well. §

Theovem 3. Let A = R" be an open set and let f: A — R be a function of class C”,
p > 1. Let xo € A and suppose f(xo) = 0 and Df(xo) # 0. Then there is an open set U,
an open set V containing xq, and a function h: U — V of class C?, with inverse hhVv-U
of class C?, such that

f f(h(xlv' . -,X,,)) =X, .

Proof: Since Df(x,) # 0, there must exist some i such that (3f/0x)(x,) # 0. Define
g:R"— R by (xy,. . X)) (X e+ o2 Xim 1o X Xig oo + -2 Xa—1,%). The permutation map
* g is linear and hence C* and because [ is C” we have by the chain rule that fogisof
class CP. So (8(f e g)/ox,)g~ (%) = 8f(xo)/0x; # 0, which implies that feog is a
function of the type described in the hypotheses of Theorem 2, with m = 1. Hence,
just as in the proof of Theorem 2, if we define G: 4 « R"”! x R— R"! x R by
Glx,y) = (x,f o g(x,)), there are open sets W < R" and U < R* with x5 e W and
(x},. . x4~ 1,0)e U (where Xo = (Xp, . »Xp)) such that G:W - U has an inverse
G~': U — W of class C". Now, (fog)e G X1y - %X,) = (0 G) o G™HXps o X)) =
. X,, where R*~! x R — Ris the projection on the last coordinate. Define V = g(W)
and h: U= ¥V by h = go G™'. Then / is a CP function with C? inverse, since both g
and G~ have this property; and f(h(x;,. . ,x,)) = X,. 1

it is possible to prove a theorem that is more general than the one above, using a
similar technique. That is,if /1 4 = R" — Rrefi = ) n, and Df(x,) as a linear map has
rank m, then f can locally be made to look li](’é a projection on the last m factors by
composing it after a smooth function with smooth inverse. In Exercise 3, we state this
exactly and give a hint as to the proof. Note that here the range has dimension less than
or equal to that of the domain. In the following theorem the opposite is the case.

e e e e e e R T —

Theovem 4. Let A = R be an open set and f: A — R" a function of class C" an {é\n.
Let x, € A and suppose the rank of Df(xo) is p. Then there are open sets U and V-in'R"
with f(xo) € U and a function g: U — V of class C" with inverse g~V - Ugfelass C
such that g o [(xy,. . oX,) = (X150 « %0, - L0) for all (xy,. . x,) € A.

Proof: Since Df{(x,) has rank p, some p X p submatrix of Df{x,) has non-zero
determinant. By relabeling, if necessary, we may assume )

gt o

dxy ox,
%0:

ox, ox,
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-where f = (f*,..../"). Define ¢: 4 x R - R" by (x,9) = f(x) + (0,). Then the
matrix of Dy is

" art 1 A
b A o0
x4 dx,
14 P
if_ a_f__’ 0,...0
0xy ax,
pt+l p+1
gt AT 0
0x, dx,
" . é[., 0,...1
\0.7&'1 5x,, Y,
and
ot Ly
0x, ox,
. Jo(xe0) = | - | #0.
or A
0x, dx,

‘Q‘xo, a
Hence by the inverse. function theorem there is an opén set U around [ (,), an open
set ¥V around (xo,0), and a function g: U = ¥ of class C' such that g = ¢~'. Then

g(f(x) = g(f(x) + (0,0)) = (x,0) as desired. B

Theorem 5. Let [1 A = R* —,RY (where A is open in R" be a C" function such that
Df(x) has rank m for-all x in a neighborhood of xqe A. Then there is an open ajet
U = R" and an open set V < R withxge V and a function h: U — V of class C with
inverse h=1: V — U of class C" such that [ o h depends only on Xy, ..., X That is,
SohXp,e . XX goe - %) = F(X1s - Xy) Jor some C* function J.

Proof: Let N be the kernel of Df{xo); that is, let Ny = {y € R"| Df(xo) -y = 0}
{a subspace of R" of dimension n — m) and let M be an m-dimensional complement of
N, in R", thatis, M n Ny = {0} and {x +y|xeMyeNo} = R.Letcy,... ’(“,'"be
a basis for M and C,.q, - - - » C, b & basis for No. Now each x € R" can be written
uniquely as x = f(x)ey + - + W(x)c,’ Define G(x) = (0,.. O 4 10X, (X))
Then G is linear and hence smooth, Now Df{x,) has rank m, so Df{xo)(R") is an m-
dimensional subspace P of RY. Moreover, the set {dy=Dfxo)e |1 < i< m} is a

TREEE
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basis for P. Any x € RY may be written uniquely as
X = (Pl(x) dt + o+ (P,"(x) dm + (pm-!'l(x) dm-H. + o+ (Pn(x) dN H
where d,, . . ., dy is a basis for RY, with &y, . . . , d,, the basis for P given above. Define
H:RY = R" by H(x) = (@1(x), . @,(x),0,. . .,0).
Now let g(x) = H{f(x)) + G(x). Then g maps R" to R, and as H and G are linear, we

have Dg(xo) - s = DH(f(xo)) o Df(xo)(s) + DGlxo)s) = H(Df(xo)s)) + G(s). i we write
the matrix of the linear transformation Dg(x,) in terms of the bases ¢y, . . . , ¢, and the

. standard basis, we get the identity matrix. Hence Dg(x,) is invertible. We may use the

inverse function theorem to find an open set U around H{f(x,)) + G(xo) and an open
set ¥ around x, and a smooth inverse function g~':U — V. Now for each xeV,
Dg(x) is invertible. That is, Dg(x) must be a one-to-one linear map of R" onto R". We
may assume rank {Df(x)} = m for all x € 4 (otherwise restrict f to an even smaller
neighborhood of xy). For x € 4, Df(x)(R") is an m-dimensional subspace, say, P, of
RY. Now if s e M, Dg(x) - s = H(Df(x) " 5) + G(s) = H(Df(x) - 5). Thus if x e V, Df(x)
restricted to M must be a one-to-one linear map of M onto P,. That the mapping is

_ onto follows from the fact that M and P, both have dimension m. Similarly, H must be a

one-to-one linear map of P, onto R™. Denote the.inverse of this map by L.: R — P,.

Let = g~': U = V; we shall show that fo h(x,,. ..Xx,) does not depend on
Xpsts -+ » X,- To do this we may assume that U is a ball. It suffices to show that
D,f, = 0, where D, f; is the derivative of f; = f o h restricted to {0} x R"™™, that is,
we are showing 8f,/0x; = 0,i = m + 1,..., n. It of course follows that f is constant
with respect t0 X1, -+« , X, NOW [ = fy 09,50

Df(x)-y = Dfi(g(x))* Dg(x) y = D1 fy(g(x)) - H(Df(x) " y) + Do filglx)) - G(y) . (1)

Since G is a mapping of R" onto {0} x R"~™, it suffices to show that D, f(g(x))o G(y) = 0
for y € R". Returning to Bq. 1 and using L, o H = identity, we obtain

D, fi(g(x) o G(y) = Ly o HDf(x) * ) — D1fi(g(x)) o H(Df(x) " )
= (L. = D fi(g(x)) o HDS(x) - y)

forall y & R*. Now L, — D, f,(g(x)) is defined on R™ x {0} and H o Df(x) maps M onto
R" x {0}. Hence to show L, — D, fi{g(x)) = 0, it suffices to show

(Lx = Dufilgx)) o HDf(x) ) = 0

for y € M. But this follows because for y € M, G(y) = 0, and so D, f(g(x))o G(y) = 0.
Therefore L, — D, fi(g(x)) is identically zero and thus D, fi(g(x})) = 0. B

@

Corollary 2. Letf: A = R" — R" (where A is open in R") be a function of class C" such
that Df(x) has rank m for all x in a neighborhood of xq € A. Then there is an open set
U, < R", an open set U, <\R" with xq € U,, an open set V, around f(xo), an open set
V, = RY, and functions h: U, — U, and g: Vy — V, of class C" with inverses of class C"
such that g o f o h(xy,. . . .%,) = (X150« Xp0,0 0 0)

Proof: By Theorem 5 there is a C" function hi: U -+ ¥ with C" inverse, such that

o
Foh(Xiae o o XXt 1oe » o%n) = S Xim)
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for some f: W < R™ — RY. Now Df has rank m (since A is invertible), so by Theorem 4,
there is an invertible C” function go such that
o o J(ga + oXm) = (Xpoe o+ X0se 0.

Define g on R" by glx,,. . . X, = (GolXp- + s X)X 1o+ 2% Then g is also C" and
invertible and we have
gofohvh”w&3=(xhﬂ-xwm‘np% l

Theorem 6. Let f:[—aa] x D(xg,y) = R be a given continuous mapping. Let
C = sup{|l ft. )}l | —a<t<a xe D(xo,r)}. Suppose there exists a K € R such that

forallte[~aalandx,ye D(xq,t),
1/(tx) = Sl < Klix =2l
and that b < min{a,r/C1/K}. Then there is a unigue continuously differentiable map
x: [—b,b] = Dlxy,r) such that
dx
x(0) = x¢ and i St.x(0) .

Proof: 'The differential equation and the initial condition x(0) = x, is clearly
equivalent to the condition

x() = xo +J‘f (s, x(s)) ds .
]

Consider %([ —b,b],R") which we know (from Chapter 5, Section 4) is a complete
metric space. Let
A = {p e @[ —bbLR) | @(0) = xo and o(t) € D(xo.n)} .
Then 4 = €([—b,b],R") is closed (why?) and therefore 4 is also a complete metri.c
space. We will apply the contraction mapping principle proved in Section 5.6 to this

space A4.
Define F: A4 — A by*

Fle)i) = %o +£f(s,¢(s)) ds.

First we must show F(p) e 4. Clearly, F(p) e €([—b,b],R"). Also, F(@)(0) = x,, and
for ali t e [—b.b]; !

IF(p)0) — xoll = Mf (s,p(s)) ds
0

sﬂﬂs,cp(s»u ds<b-C<r
4]

since b < r/C. Thus F(p)(t) € D(xo,r), s0 F(p) € A.

* {4 f(s.0(s) ds is obtained by integrating each component of f; the result is a vector. The
inequality

< J Ifis.pls)] ds
[+

j'f(s,q»(s» ds
[+

is analogous to the similar result for the case of real functions—we accept it here; sece Chapter 8
for a detailed discussion.

" then
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Next, for ¢, f € 4,
|F(@) — F)N = sup [Fp)t) — FEIII

~bstsh

= sup J(f (5:00(s) — S(sW(s))) ds
—bst<bllvo

< sup_ 1/ (s,p(s)) — Sls (s ds
—-bstsbhJO

< sup | K llols) — ¥(s)l ds
-b<1gb JO

t
< sup Kf lo — Wl ds < Kb flp — ¥
~b<t<h Jo

where Kb < 1.

Therefore if we let k = b+ K < 1, d(F(p),F()) < kd(p, ) and so F is a contraction
and thus has a unique fixed point: x = F(x). This fixed point x(¢) is the unique solution
we were seeking. 1

The iteration scheme mentioned in the text comes about because, as we saw in the
proof of the contraction mapping theorem, the unique fixed point is the limit F"(¢p) as
n — oo for any ¢ € A. We chose ¢(f) = x,.

Theorem 7. Let 4 < R" be open and f: A — R a smooth function. Suppose Df (xp) = 0
and A = [~ ox; 0x]] is non-singular. Then there is a neighborhood U of xq and a
neighborhood V of 0 in R" and a smooth map g: V — U with smooth inverse such that
Jogy) = fxo) = [P+ + y3] + e+ + 0]
forallye V. Here A is a fixed integer 0 < 1 < n.
Proof* 1t is easy to see that we lose no generality if we assume x, = 0 and

Sxo) = 0.
Write

[t dflxg, - ix)
Sy, . 0x,) -L T 4{

in a
= Z.\-,.——f-(txx,. L utx)dt .
oi=1 0%

Thus we see that if we set

gi(xl!' . '?xn) =J

[

1 af
— X, ..
ax,(x“ Jx,) de

n

JGgse o X =) XK1 %) -

i=1

Since x, = 0 is a critical point, 8f/dx;(0) = g{(0) = 0. Also, g, are smooth functions—
one only needs to justify differentiating under the integral sign—you may accept itnow,

‘or refer ahead to Example 2 at the end of Chapter 9 for detailed justification.

* The proofl makes use of some facts on quadratic forms; see O’Nan, Linear Algebra, Chapter 7.
An alternative, perhaps simpler proof, kindly supplied by A. Tromba, is given in Exercise 33.
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Since g,(0) = 0 we can apply the same procedure as above to write
Gi(X s %n) ==Jilxjh,,(x1,‘ < o)
for certain smooth functions f;;, and therefore
Sxyy X =”Z"_:lxix]hu{xl,. R
We can assume Ji; = hy; by replacing hu‘by Tl,j = 1/2(hy; + hy) il necessary, whigh does
not alter the expression for f. Note that at zero 82)0x, 8x; = 2M(0), so /y{0) is non-

singular. ‘ '
Now [ is written in a way analogous to a quadratic form. What we want to do is to

“diagonalize” it. Proceed by induction. Suppose there exist coordinates uy, . . ., Uy in
a neighborhood U, of 0 such that
= b ke E W)+ 2wy k) )

ijzr
on U, where r > | and H,; are symmetric. We have this as above for r = 1 (Co-
ordinates u,, . . . , U, means, as in the text, that (u,,. . .,u,) are invertible functions of

(%10 - %)) . , ‘
We can make a linear coordinate change in 4, .. ., %, 10 order to diagonalize
> uHy(0) .
Lhizr

In particular, since H{0) is non-singular the diagonal term§ are non-zero. Thus'we can
assume H,(0) # 0. Let gluy,. . o) = |H (uy,e .zu,,)l"z; in some smaller neighbor-
hood U, = U, of 0, g will be a C* non-zero function. Define

L I/‘ = U i # r
u;H,,(u,,. . -7u")

o0 =l R il

The Jacobian at 0 is

@)

1 0 e 0)
0 1
1 0
______._..a(V"' V) = a_I{'. s (0) s 5_V1
tdgye + s ly) 0x, ox,
1
0 0
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which is non-singular. Therefore, by the inverse-function theorem (uy,...u,)+—
(Vise - V) is a C™ map with a C” inverse on some smaller neighborhood U; of 0. In
other words, (V.. . .,¥,) will serve as coordinates.
Now consider .
ururHrr(ulv . -:uu) + 2 Z u]urer(uh- . -;un) ’ (3)
j=r+t

which are the terms in Eq. 1 with either i or j = r. Here we have used symmetry of H;.
Comparing Eq. 1 with Eq. 2 we see that Eq. 3 equals

1 2
+ VrVr =T [Z u(Iilr(ul:- . -:un)] B
Hrr i>r
the plus or minus coming about because H,, = +g°, where we use + il H,, is positive
and — if H,, is negative.
From this we see that Eq. 1 becomes
J=2 & WP+ 2 WVHV,. . W)
isr ij>r

for new symmetric H ;- Thus we have inductively gone from r to r + 1 in Eq. 1. Hence
it is true for r = n + 1, which proves the theorem.* i

Theorem 8. Let [1Uc R >R and g: U = R* = R be given C' functions. Let
xo€ U, glx,) = ¢, and let S = g~'(co) the level set for g with value c,. Assume
Vgl(xo) # 0. If f| S has a maximum or minimum at x, then there is a real number A such

that
Vf(xq) = 4 Vglxo)

Proof: 'The only thing not complete about the sketch of the proof given in Section
7.7 is that we need to know that if v L Vg(x,) then v = ¢'(0) for a C* curve c(f) in S, with
¢(0) = x,.

This can be established as follows. By Theorem 3 there is a change of coordinates /1
such that g(h(x,,. . ..x,) = x,. Thus /™ '(S) is the coordinate plane x, = co. Let
w = Dh™'(x) - v. We claim that the last coordinate of w is zero, that is, w lies in the
plane x, = ¢ Indeed let e, = (0,0,. . .,1). We shall show that {w,e,> = 0. But from the
chain rule, g(i(x,,. . .,x,)) = X, implies

(Vg(x0):Dh(yg) - w) = {w.en)

where h{yo) = xo. But the left side is {(Vg(xy),v) = 0. Now let c(t) = h(y, + tw).
This lies in S, ¢(0) = x,, and from the chain rule, ¢'(0) = v.
The proof may now be completed as in the text.

1

Worked Examples for Chapter 7

1. (Product rule for Jacobians.) Let /1 4 « R" - R%, g: B <« R" — R", and f(4) < B.
Then show that for x e 4,

. Jyoplx) = L) - Tx)
(product of real numbers).

* Although the applications of this theorem to topology are fairly advanced, the reader interested
in this material may consult J. Milnor, Morse Theory, Princeton University Press, 1963.
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Solution: By the chain rule,
D(g » f)(x) = Dg(f(x)) e Df(x) ,

which may be interpreted either as composition of linear maps, or as a matrix
product, Since the determinant of a matrix product is the product of the determinants
we immediately get the required result.

2. Consider equations u = fy(x,y) and v = f2(x.). Show that they are invertible near
(o) iff
oo, 9L

does not vanish at (xg,pp). If x(u,0), y(u,v) are the solutions, show that

ox 1ov ox 1 du

. Ay’ oy Ady’

dy 1ov dy 1du

u Adx’ oy Adx’
Solution: This is just a special case of Theorem 1 for n = 2. Here A is exactly the

Jacobian determinant. The matrix of derivatives of the solutions is, by Theorem 1,
the inverse of the matrix of derivatives of f;, f,. Since the inverse of the matrix

E Z} is 1/13(_‘1c

3, LetA = R*beanopensetand f: A = R" — R'a one-to-one continuously differenti-
able function such that Jf(x) = det(Df{x)} # 0 for all x e 4. Show that f(4) is an
open set and [ ~1; f(d) » A is differentiable.

Solution: Let y € f(4) and suppose y = f{x). Since f is continuously differentiable
and Df(x) has non-zero determinant, the inverse function theorem tells us that there

—b
. } , where A ==ad — bec, we get the stated result.

exist open neighborhoods U of x and V of y such that f | U (the restriction of fto ..

U)isa C* diffeomorphism (that is, it hasa C ! inverse) of U onto V. Hence ¥ < f(A),
so f(A) is open. Now (f{U)™" =" |f(U) and (f| U)™" is differentiable at y,
and so f~! i$ differentiable at y. Hence, / -1 s differentiable on f(4).

4. Consider the following equations:

x?—yu=20,
xy +uv=0.

Using the implicit function theorem describe under what conditions these equations
can be solved for u and v. Then solve the equations directly and check these

conditions.

Solution: Define fi: R* » R by fi{xpyup) = x* — yu and define f: R* = R by
folxyup) = xy + uv. Let f:R* = R? be defined by f = (f,,f2); then fisa smooth
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function. The matrix

o o
ou Ov -y 0
% % —{v u}
du Ov

has .deter‘minant —yu. I (xg,90,4q,00) is such that pgu, # 0, then the hypotheses of
the implicit-function theorem are satisfied, and so there are neighborhoods 4 of
(x0,0) and B of (ug,0,) and a unique continuously differentiable function ’g: A - B
such that f{x,yg(xy)) = 0 for all (xy)e 4. If we let u = g, and v = g, (where
g = (g1,92)), then u and v are the solutions to the simultaneous equations. Thus
these equations can be solved uniquely for u and v in neighborhoods around
(xo,%)o) and (u,,vy) satisfying the equations provided that yyu, # 0, which is
equivalent to requiring x, and y, # 0 since f{(Xg,¥p,4q0) = 0, Or X§ — yotte =0
and x,y, + Ugyp = 0. ’ o

By direct computation, the solutions are # = x%/y and v = — y*/x, which are
valid except when x4 = Oor y, = 0. : ,

5, (Functional dependence.) Let 4 = R" be an open set and let the functions fj, . . .
fmd-R Pe smooth. The functions fj, . . ., f, are said to be functionally dep;nden;

_atxe A if there is a neighborhood U of the point (fi(x,),. . ./{(xo) € R" and a
smcc;oth function F: U — Rsuch that DF s 0 on a neighborhood of (f;(xg),. . .. £i(xo)),
an

F(fi(x),. - ofifx)) = 0

for all x in some neighborhood of x,.

(i) Show thatif fy, ..., f, are functionally dependent at x,, then
a(fl" >, u)
a(xh' . .,I,,) =0at Yo
(i) If
(f1se oy
ool Lo g Mmoo _
X 1se v s Xy—1) xy,e - %)
on a neighborhood of .y, then show that fi, . . ., f, are functionally dependent

and further,

Jo =Gy - wfi-t) )
for some G.
Solution: Let f = (fi,.. ..f,)
(i) Wehave Fo f = 0, 50 bF(f(*c)) Df(x) = 0. Now if Jf{(x;)
‘ . _ ), X)) o Df(x) = 0. xo) # 0, Df(x) would b
mverFIble in a neighborhood of x4, implying DF( f(x)(; = 0, B§( tile invers:
function theorem, this implies DF(y) = 0 on a whole neighborhood of f{x,).

(ii) The conditions of (ii) imply that Df has rank n — 1. H
— 1. Hence by C
are functions g, A such that y Corollary 2 there

gofohlx,,... . %)= (X1, . sXu-1,0) .
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Let F be the last component of g. Then

F(fise -

Since g is invertible, DF # 0.

1t follows from the implicit-function theorem that f, = G(/},....f,—,), that

is, we can locally solve

if;:) =0

F(fl:' [y n) =0

for f, = G(fi .« -Ju—1)» provided we can show A = 0F/dy, # 0. Now, as we

saw above,

DF(f(x)}* Df(x) = 0,

or, in components, if y = f(x),

<6F OF)
oy, "oy,

If 8F/dy, = 0, we would have

<6F oF )
ayl" . ',ayn-—l

or

(o
0x,

o,

&

(o

ox

Y1

- Ox
. 1

oF

@

ox n

n
ax,,)

o )
axn =1

0x, - Y

| (?L.__.) —o,
9y, -y

since the square matrix is invertible by the assumption that

a Sy -

O(xqse « s Xn—1)

This implies DF = 0, which is not true. Hence dF/dy, # 0, and we have the

desired result.

The reader should note the analogy between linear dependence and functional
dependence, where rank or determinant conditions are replaced by the analogous

conditions on the Jacobian matrix.

afu=1)

#0.

i i
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Exercises for Chapter 7

—-1. Write an expression for df/dx if f(x,y) = g(x,h(x,y)) where g, h: R* —» R.
2. Consider the following set of p equations in # + p unknowns.

@yXy o F Xy F Qe Xeer 0 G pXaep = 0

aplxl R apnxn + ap,n-t— 1%+ 1 - + ap,n+pxn+p =0

What does the implicit function theorem say about the solution of these equations
for the unknowns X,.y, . . ., X,4,7 Does it reduce to a theorem you know from
linear algebra?

3. Prove the following generalization of Theorem 3. Let 4 = R" be an open set and
fi4 < R"— R™, m < n, a function of class C”. Let x; € 4 and suppose f{xy) = 0
and rank Df{x;) = m. Then there is an open set U, an open set ¥ containing x,,
and a function 4: U — V of class C?, with inverse #~!: V - U of class CP (that is, a
Cr-differeomorphism), such that f{fi(x,. . X)) = Ky 10 - -X,). [Hint: I Df (x)
has rank m there must exist ji, . . . , j,, such that the matrix (D, f), | < i,k < m,is
invertible. Define the permutation map g: R* — R" by

GXpe X)) = (Xpae v oX)y o 15X 15X 4 Lo o s X gy LXKt 100+ X maXfyoe + 0%,
and make appropriate modifications to the proof of Theorem 3.]

—4. Let f:R" — R" and g: R" — R" be functions of class C!. Define h: R" — R" by
h(x) = fg,(x1)s - GulXs)), Where g = (gy,. . .¢,) and x = (xy,...,x,). Show that

g1(x)) 0

Dh(x) = Df(gl(xl)v . ':gn(xu))

0 gulx.)
5. (a) Define x: R* — R by x(r,)) = r cos U and define y: R? — Rby y(r,0) = rsin 0. ,
Show that o)
X,
2-0) {ro.00) = rg -

(b) When can we form a smooth inverse function r(x,p), 6(x,y)7 Check directly and
with the inverse function theorem.
(c) Consider the following transformations for spherical coordinates:

x(rp,0) = rsingcos 8 ;
Wrp,0) = rsinegsing ;
2(rp,8) = rcos ¢ .
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Show that
A(x.y2)
a(rp.0)

(d) When can we solve for (r,,0) in terms of (x.y,2)?

=rtsing.

. Let f satisfy the conditions of the inverse-function theorem and let g be the local

inverseg = f: W U.Letxo € U and let y, = f(xo). Consider the case 1 = 3

and show that
di1 D, fyx0) D, f3(xo)

Jf(xo)Dlgx()’o)= 1,2 D, f5(xq) Dy f3(xo) |
33 Dafz(xo) D, f3(x0)

where §;; = 1ifi = J and 0if i # j. From this deduce the following expression for

Dig.:
: D,g, = A S, f2)100x2,%3)
S A AT FIE NN

Also, obtain expressions for the other eight partial derivatives D g;.

. Determine whether the “curve” described by the equation x% 4+ y + sin(xy) = 0

can be written in the form y = f(x)ina neighborhood of (0,0). Does the implicit
function theorem allow you to say whether the equation can be written in the form
x = h(y)ina neighborhood of (0,0)?

. Let &xg,Vo.Zo) be a point of the locus defined by z* 4 xy—a =0,

224+ x2—-yt—b=0.

(a) Under what sufficient conditions may the part of the locus near (xg,Y0+20) bE
represented in the form x = fz),y = g(&)?

(b) Compute '(z) and g'(z).

Let f,, f2» f» be continuously differentiable functions from R* to R. Give sufficient
conditions so that the equations

fl(x’yvz’t) =0, fz(x,y,zﬁ) =0,

can be solved for x, y, zin terms of ¢.

f3(XJ,Z,l) =0

_10. (a) Let f: R* - R* be smooth and suppose that

6_%  h_ %
ax  dy’ ay  ox’
(These equations are called the Cauchy-Riemann Equations and arise naturally
in complex variable theory.*) Show that Jf(x,y) = 0iff Df{x,y) = 0; hence fis
locally invertible iff Df(x,y) # 0. Prove that the inverse function also satisfies
the Cauchy-Riemann equations. :
(b) Show that the conclusion of (a) is false (by giving an example) if f does not
satisfy the Cauchy-Riemann equations.

* See for example, J. Marsden, Basic Complex Analysis, W. H. Freeman Co. (1973).

- 15

12.
<13,
14.

15.

- 16.
17,

- 18.

19.

20.

21.
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(a) Suppose t11a§ f:R® — R™is of class C* and Df{(x,) has rank m. This means that
Df{x,) as a linear map is onto. Then show that there is a whole neighborhood
of f{x,) lying in the image of /.

{b) Suppose f: R" — R™ js C' and Df(x,) is one-to-one. Show [ is one-to-one on a
neighborhood of x,.

Show that the implicit function theorem implies the inverse function theorem.
Prove Corollary 1.

(Baser:i on Example 5.) Prove that if f, . . ., f; are functionally independent on R*
(that is, Df has rank k for f = (fy,.. ./i k < nyand g, fy, ..., f are functionally
dependent, then locally we can write g = F(fy,. . .f)-

,;Cogsider the map £~ ': GL(R",R") — GL(R"R"), 4 +— A~!, taking a matrix to
its inverse. Show that the derivative of this map is given by

DL YA)-B= —A"'oBoA™!

{consult Lemma 2 in the prool of Theorem 1). [Hint: Differentiate the relation
2~ Y4) o A = identity with respect to 4.]

Does the function 4 in Theorem 3 have to be unique? Discuss.
Give a direct proof of the Morse lemma for functions f: R — R. Does it apply to
(@) fx) = x*,  or ) fx) =x sin<£> ?
X

Let f: R* — R? be F(x,pu,0) = (4* + vx + yup + v* — x). At what points can
we solve for F(x,y,u,0) = 0 for u, v in terms of x, y? Compute du/dx.
Let /1R -+ RbeC!and

u = flx),

v= —y+ xf{x).

}’f f'(xo) # 0 show that this transformation is invertible near (x,,) and has the
orm

x ="',
y= v,
Show that the equations
X =y -+ +4=0
2y + ¥y —2ut+ 3" +8=0
determine functions u(x,y), v{x,y) near x = 2, y = —1 such that u(2,~1) = 2,
1(2,—1) = 1. Compute du/0x.

“If f(x,p,2) = O then dz/dy - 8y/dx - 8x/0z = —1.” What do you think this really
means.* )

* Thermodynamics books are notorious for such mystifying statements.
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22.

—~23.

24.

15,

26.

27.

28.

-29.

30.

-~31.

--32.

33.
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Let f(x,y) = (xp(x? — yN(x* + »?) for (x,y) # (0,0) and f(0,0) = 0. Is [ of class

C27 [Hint: See Exercise 32 at the end of Chapter 6.]

Let C = R be a closed subset such that xe C = axe C fora = 0.

(a) Discuss what C “looks like.”

(b) Let f: C - R" be continuous and f(ox) = af(x) for xe C, « > 0. Show that
there is an M such that

I/l < M x|

forall x e C.

Let f(x,,2) = x* — ypz — sin(xz) and g(x,7,2) = (x cos y,x sin y cos z,x sin y sin z).
Compute the derivative of f o g.

Let D(0,) = {xe R"| x| < r}. Let f: D(0,r) - R" be a map with

@ 1) — SO < 1/3 1x = »lls (b) 1SN < 2/3r.

Prove that there is a unique x € D(0,r) such that f(x) = x.

Show that there exist positive numbers p > 0, ¢ > 0 such that there are unique
functions u, v from ]—1 — p,—1 + p[into J1 = q,1 + g[ for which

xe'® 4 y(x)e"™ = 0 = xe*™ + v(x)e"™
forallxe]—1—p,—1 +planduy(—1) = 1= o(—1).

Obtain an estimate on the length of time the solution of dx/d! = 2x3e™, x(0) = 1
exists.

Let A = R" be compact and let B = %(4,R) be compact (see Section 5.5). Show
that thefe is an fy € B and an x, € 4 such that g(x) < fylxo) for all ge B and
xed.

Let a, > a,+; = 0 and a, — 0. Let fix) =
tinuous on [ —1,0].

=0

Is it possible to solve
xy? + xzu + y? =3

wyz + 2xv — utp? = 2
for u(x,y,2), v(x,p,z) near (x,y,z) = (1,1,1), (u,v) = (1,1)7 Compute du/dy.

Consider the equation dx/dt = 1 + tx, x(0) = 0. Examine the iteration scheme
given in the text to obtain a power series expression for the solution. Examine the
radius of convergence.

Compute the index of the function x* + y* — 7x — 8y + xy + 16 + (x - 2)°
at its critical point x = 2,y = 3. Discuss the nature of the function near this point.

Give another proof of Theorem 7 as follows. Assume xo = 0 and f(x,) = 0. Use
Taylors theorem to write f(x) = 1/2D* (@) - (x,x) + 1/2R{x,x) = 1/2{ A, x,x) s0
that for each x, 4, is a symmetric linear transformation of R". By assumption, A,
is an isomorphism. By Lemma 2, p. 231, 4, is an isomorphism if x is near to 0.
Let 0, = AoA; ! so that Qg = I. Using a power series, we can define the square
root T, of Q, for x close to 0, thatis, T2 = Q. Show that @4, = A QF, where T

© g x" Show that f(x) is con-.
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means the transpose matrix, and using the power series for T, show that the same
equation holds for T,. Let S, = T;! and conclude that A, = S,4,S%. Let
h(x) = STx and show that Di(0) = I; now apply the inverse function theorem to
conclude that 4 is locally invertible. Let g = /™!, Show that

fx) = (1/2)<Aoh(x)(x))

and' deduce that f o g(x) = (1/2)D2%f(0)(x,x). Finally, use a linear change of co-
ordinates to diagonalize the quadratic form (1/2)D%f.

Find the relative extrema of /| S in Exercises 34-37: use both Theorem 8 and
Corollary 3.

4. iR 5 R, (x )= X2 + 2, S ={(x2)|xeR}.
35. 1 R% = R, () > X2 + y2, S = {(x,3) ]| x* — y* = 1}.
36. f1 R? = R, (x,p) = x* — %, § = {(xcos x)|xeR}.

. 1R = R, (xp2) x> + y2 + 2%, S={(xy2)|z2 -2+ x* + y*}.

38.
39.

40.

A rectangular box with no top is to have a surface area of 16 square meters. Find
the dimensions that maximize the volume.

Design a cylindrical can to contain 1 liter of water, but uses the minimum amount
of metal.

Let f, be monotone increasing continuous functions on [0,1]. Suppose [(x) =
2=, fulx) converges for each x & [0,1]. Prove that F is continuous.



Chaﬁter 8

Integration

The reader is undoubtedly familiar with the integration process
for functions of one variable and how to apply this to practical problems
involving area, volume, arc length, and so on. Some familiarity with simple
situations involving multiple integrals would be useful but is not essential.
The purpose of the next two chapters is to review, solidify, and extend this
knowledge. In this chapter we will formulate the basic definitions for a
general theory of ‘integration. The connection with the usual method of
evaluating integrals by antiderivatives is made by the fundamental theorem
of calculus.

The powerful computational theorems for multiple integrals will be given
in the next chapter. These are Fubini’s theorem, which enables us to reduce
a multiple integral to iterated single integrals, and the change of variables
formula, which enables us to change to a more convenient system of co-
ordinates such as polar or spherical coordinates. To obtain a satisfactory
theory of multiple integrals, even for continuous functions, it is convenient
to introduce the notion of a set of “measure zero.” We shall see that one of
the main theorems states that a function is integrable iff its discontinuities
form a set of measure zero. As a result, a function with a finite or countable
number of discontinuities will be integrable.

Although the manipulations which are required for integration in dimen-
sions larger than one are considerably more complicated, the basic idea of
integration remains the same. We begin by recalling these ideas in one and

two dimensions.
250
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8.1 Review of Integration in R and R?

First, let us look briefly at the basic ideas involved in integration in one and
two dimensions. These cases provide the clues on how to generalize to
functions of several variables. In our discussion, let f be a non-negative
real-valued bounded function defined on some bounded subset 4 = R.
When we say that we want to integrate the function f over the set 4 we
mean that we would like to find the area under the graph of f (see Figure 8-1).
To do this, note first, as A4 is bounded, that there is a closed interval [a,b] o A.
We consider f to be defined over the whole interval [a,b] by letting f be zero

on [a,b]\A. Next, partition [a,b], which means that we pick points x, = *

@y Xyy .3 Xyo1, X, = binsuchawaythata = xp < x; <" <X <
x, = b. Denote such a partition by P, that is, P = {xo,. . .x,}- Then,
form the two sum$

U(P) = Z [sup{f() | x € [Xeoxss 11} 1ies — %)

and

n=

L(f.P) = Zl [inf{f(x) | x € [xexie 3 1¥ier — %) Weoal

i=0

called the upper and lower sums, respectively. The first sum is the sum over
all intervals [x;,x;..,] of the maximum (= sup) of f in that interval times the
length of the interval and has value equal to the area of the shaded region
shown in Figure 8-1. Since f is assumed to be bounded, the sup exists in

FIGURE 8-1
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A

[x

o X XDy ]

FIGURE 8-2

each interval. The second sum is the sum over all intervals [x:%:4 1] of the
minimum or inf of f in that interval times the length of the interval and is
the hatched region shown in Figure 8-1. The boundedness of the functions
again guarantees that the inf exists.

Since f is bounded, say, —M < f < M, we see that —(® — a)M <
L(f,P) < U(f,P).< (b — a)M for any partition P of [a,b]. Let

S = inf{U(f,P)| P is any partition}
and
. s = sup{L(f,P)| P is any partition} .

If we again look at Figure 8-1, it seems reasonable to expect that as the
size of the intervals in P get smaller, U(f,P) decreases while L(f,P) increases,
and in the limit of decreasing size of the intervals of P, the numbers U(f,P)
and L(f,P) should converge to acommon value. This leads us to the following
definition.

Definition 1. We say that f is Riemann integrable (or just integrable
or the integral exists, for short) if s = S. The common value s = §

is denoted by [ f or by [, f(x) dx.

It should be noted that integrability does not really involve smoothness

or continuity properties of f. In fact, some badly discontinuous functions
, can still be integrable.

Now suppose f: 4 < R? — R is a bounded non-negative function (see
Figure 8-2), where A is a bounded set.

The graph of the function fis a surface in R, and the integration process
is used to find the volume under this surface. We enclose 4 in some rectangle
[ay,b,] * [a,,b,] and extend [ to the whole rectangle by defining it to be
zero outside of A. Then we divide [a;,b,] x [a,b,] into smaller rectangles
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by partitioning [a,,b,] by, for example, a, = x; < x; < * < X,_{ <
b, = x, and partitioning [a,,6,] by, say, a; =y, <y, < - < y""1 <
by = Vs Fhus forming mn rectangles [x;,x;,,] X [7;¥;+]- Then w'g_f:)rm
volumes inf{f(2) | z € [x;,%;4,] x Dpdierd}  (iay = )00 — ») (the
shaded block of Figure 8-2) and sup{f(z)|ze [x;%;:;] X [y.,yj. e
(:c.H_1 — X)¥j+1 — ;) (the shaded block plus the cross-hatched Jblgz:ic of
flgure 8-2). Next, we sum these volumes over all i and j (that is, all the mn

subrectangles” of the rectangle [a,,b,] x [a,,6,]), and get two values
P( f,P) an.d‘ U(f,P), where P stands for the partitioning. Again, if sup{L(f,P)| P
is a partition} = inf{U(f,P) | P is a partition}, we say f is (Riemann) inte-
grable over A and define the (Riemann) integral of f over the set A, written
jflf’ Of_fAff(‘C,)’)d’Cd)’,by '

[ 1= supteinpy = ooy
One thing about this procedure may seem puzzling. Why do we insist that

mf{U(f,P)} = sup{L{f,P)}? At first, we might think that this relation will
always hold. However, this is not always the case, as the next example shows.

"Exampre 1. Consider inf{U(f,P)} and sup{L(f,P)} for the following

function
fi[01]<«R->R

1, X irrational,
Sx) = { )
0, x rational .

_ defined by

o

It is not difficult to see that inf{ U(f,P)} = 1 and sup{L(f,P)} = 0 (b;cause
on any i}lterval fis always one at some points and zero at others, so the inf
on any interval is zero and the sup is one). Therefore, the integral of this
function over the set [0,1] does not exist for our purposes. In more
advanced work the integral of such a pathological function can be defined

bu.t :ve shall be dealing mostly with “decent functions” for which the integrai
eXists.

}SEIJ](:‘I:VM}IEEféC.) dpscugpg.se f:[a,b] - R is (Riemann) integrable and f > 0.

Solution: By definition, the integral is the infimum of sums of the form

i ( ‘sup f(x)) Xy — X))

i=0 \xe[x;.x1+1]
over all partitions. But each of these sums U(f,P) is non-negative since f > 0.

Hence the integral is > 0 since the inf of a set of non-negative numbers is
also non-negative.
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Exercises for Section 8.1
{1: Show directly from the definition that {odx = (b — a).

2. If f and g are in{egrable on [a,b] and if f=gonfabl,show s f=>[ig.

3. Show that for f: ta,b] — R and P any partition of [a,b], U(f,P) = L(/.P).

4. Let f: [a,b] = R — Rbe integrable and f < M. Prove that L) dx < (b — a)M.

' 8.2 Integrable Functions

In essence we have already introduced all the ideas needed for a theory of
integration of bounded functions over bounded sets for arbitrary dimensions.
Most of what remains is to formalize the statements for the case R".

Let f: 4 = R" — R be a bounded function with domain a bounded set 4.
Let [a;,b;] x *** x [a,,b,] be a rectangle which encloses 4. Furthermore,
let f be defined over the whole rectangle by setting it equal to 0 at points not
contained in A. Let P be a partition of [a;,6,] x -+ x [a,b,] obtained by
dividing each [a;,b;] by points xf, - .., x!, and forming the mym, - --m,
rectangles

[xboxd o] % oor x [ eq], where0 < jy <omy.

Define the volume of the rectangle B = [a;,b;] x -+ x [a,.b,] by v(B) =
(by — a)b, — a;) -~ (b, — a,). Let L(f,P) denote the lower sum of f for
P, defined by

CL(f,P) = Y, [inf{f(x) | x € R}]u(R) ,

ReP

the sum being over all subrectangles R of the partition P, and let U(f,P)
denote the upper sum for P; U(f,P) = Y rer [sUp{Sf ()| x € R}Ju(R). Now
we observe some properties of L(f,P) and U( f,P). From the definition we
see that for any partition P, L(f,P) < U(f,P). Now suppose P’ is any partition
which is a refinement of ot is finer than P; this means that each subrectangle
belonging to P’ is containedina subrectangle belonging to P. Then we see that
L(f,P) < L(f,P'). Indeed, we can observe that the minimum of f on a
rectangle is less than or equal to the minimum on any rectangle contained
in it. Similarly, U(f,P") < U(f,P). This has the following consequence. If P’
and P" are any two partitions of [a;,by] X =+ X [a,b,], then L{(f,P) <
U(f,P"). To clarify this, let P be a partition of the rectangle which refines
both P’ and P”, which we can always arrange by using all the subdivision
points of P’ and P"; then L(f,P) < L(f,P) < U(/,P) < U(f,P").

As before, the set {L(f,P)| P is any partition} is bounded from above and
thus has a sup. The set {U(f,P) | P is any partition} is bounded from below
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and thus has an inf Let s == sup{L( f,P)|P is a partition} and § =

inf{U(f,P)| P is a partition}; then s < S. With this notation we can make
another definition.

Definition 2. Let [, f = S, called the upper integral of f and let
j 4+ J = s,called the lower integral of . If s = §, we say [ is Riemann
integrable (from now on we will just use the word integrable) and de-
fine the integral of f over the set 4 by '

L f = sup{L(f,P) | Pisa partition} = inf{U(f,P) | Pisa partition} .

‘ Instead of [, f, the notation [, f(x) dx or [ [, f(xy,....x,) dx; - - - dx,
is fr;qucntly employed. If f: [a,b] — R, the notation [% f or [} f(x) dx is also
used.

There is an important equivalent characterization of the Riemann integral
as presented in the next theorem.

Theorem 1 (Darboux’s Theorem). Let A = R" be bounded and lie
in some rectangle S. Let f: A — R be bounded and be extended to S
by defining f = 0 outside A. Then fis integrable with integral I iff for
anye > Qthereisad > 0such that if Pis any partition into rectangles
Sis . Sy withsides <§andifx; €Sy, ..., %xy€ Sy, we have

N
__Zlf(xi)v(si) -Il<e.
We call 37—, f(x;)v(S) a Riemann sum.

This theorem is an important tool for proving many properties of the
integral. In Example 1 the theorem was rewritten for the special case n = 1
in order to gain some insight into the meaning of the theorem. There it is
shown why the theorem is intuitively plausible. '

A condition closely related to Theorem 1 follows.

Riemann’s condition: fis integrable iff for any € > O there is a
partition P of S such that 0 < U(f,P,) — L(f,P,) < &.

The proof of Riemann’s condition will be given along with the proof of
Theorem 1 at the end of the chapter.

Notice that if f is continuous we can realize the upper and lower sums as
special Riemann sums since f assumes its maximum and minimum at some
point of the interval. If f is continuous on the whole rectangle S (= interval
if n = 1) then it follows easily from uniform continuity of f (see Section 4.6)
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¥y

FIGURE 8-3 v it

and Riemann’s condition that f is integrable. We shall, in fact, prove a more
general result in Theorem 3 below.

ExaMmpLE 1. Interpret the Riemann sums geometrically, for f: [a,b] — R.

Solution: Let Pia= xy < X, <--* < x, = b be a partition and let
¢; € [x,%14. ] By definition the Riemann sum is

n—1
R ='Zof(ci)(xi+l - X)),

”

which is the total area of the rectangles represented in Figure 8-3, with the
area of rectangles below the x-axis counted with a negative sign. We observe
that L(f,P) < R < U(/,P), so the result in Theorem 1 is plausible.

ExampLE 2. Show [§ x dx = 1/2 using the definition of the integral. Com-
pare with a geometrical computation.

Solution: Break up [0,1] into n equal parts

G|

Using this as a partition, note that on [i/n,(i + 1)/n], f(x) = x has inf = i/n
and sup, = (i + 1)/n. Thus, calling this partition P,

=1 1
oun =55 )

1 1
=S 2+ )==50+2+ " +n
n =9 n
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area = -é— (base) X (height) = %—

) FIGURE 8-4
and
=St to g 1
s)_i=on'n_nz(+ + +(n_ ))
11
= F-?:(n - 1)(n)

where, werecall, 1 + 2 + - + k = %k(k + 1). Thus

U(f,P)=%(1+%> and L(f,P)=%<1—%),

. These both converge to 1/2 as n — co. Thus from Riemann’s condition (or

Darboux’s theorem) we see that f is integrable with integral = 1/2. This
is also geometrically obvious from Figure 8-4.

Exercises for Section 8.2 L
@ Give a formal proof that if R is any Riemann sum for a function f and partition P,
then L(f,P) < R < U(f,P). )
(\"2;\, Let f:[0,1] = R,
) Jx)=0 ifx#1/2;
Ju/2)=1.
Prove f is integrable and [} f(x) dx = 0.
3.Let 1 [02] » R, f(x) = 0,0 € x < 1,and f{x) = 1, 1 < x'< 2. Compute, using
the definition, {3 f(x) dx.

4. Let A = R"and let f(x) = 1 for x € 4. What do you think [, fshould be?
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5. Evaluate {} (3x + 4) dx using the definition and compare the answer with a geo-
metrical computation of area.

6. Let f: [a,b] — R be continuous. Use Riemann’s condition and uniform continuity
of f to prove that f is integrable.

8.3 Volume and Sets of Measure Zero

On the real line one usually integrates over intervals. However, in R” we
wish to integrate over more complicated sets. We must be sure that the sets
we are dealing with are restricted in such a way that the partitioning in the
definition of integrability is reasonable. Here, “reasonable” means, roughly
speaking, that the boundary of the set is not too complicated. Our immediate
goal is to develop enough machinery so that we can make these ideas precise.
First, let us define the volume of a set.

Definition3. IfA = R",define the characteristic function 1, of A by
1, xed,
0, x¢A.

We say that A has volume if 1, is integrable, and the volume of A is
the number

1/1: IR" had R: lA(x) = {

J 1,4(x)dx = v(4) .
4

(If 4 is a bounded set, it makes sense to talk about integrability of
14) .

This definition is natural because the region under the graph of 1, is just

“cylindrical” with height one and base 4 (Figure 8-5). We shall also use the
phrase “4 has content” to mean the same as “A has volume.” Sometimes a
set which has volume is called Jordan measurable.

‘Notice that in the case of n = 1 when 4 = R, we speak of v(4) as the
length of A and when 4 = R?, we use the term area of 4 for v(4).

We say A has volume zero (or content zero) if v(4) = 0. From the definition
of the integral this is equivalent to the statement that for every & > 0 there
is a finite covering of A by rectangles, say, S;, ..., S,, such that the total
volume is <sg; that is,

m

Z U(Sl') <&,

i=1
where u(S;) is computed for rectangles as before. (The details are worked
out in Example 1 at the end of the chapter.)
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It is useful tg allow countable coverings as well as finite ones. These ideas
were systematically introduced for the first time by Henri Lebesgue around
1900.

Definitiond. AsetA = R"(notnecessarily bounded)is said to have
measure zero if for every ¢ > 0 there is a covering of 4, say, §,,
82, ..., by a countable (or finite) number of rectangles such that
the total volume Zf‘; , U(S) < e Recall that §,, S,, . . . are said to
cover A when (J2 'S, > 4. '

I-t is important to realize that these concepts .depend on the space in
which we are working. To illustrate the point, consider an example.

ExampLE 1. Show- that, regarded as a subset of R2, the real line has
measure zero, but as a subset of R it does not.

Solution: To prove the first assertion, given & >0, we want to find
rectangles Sy, S,, . . . which enclose the x-axis and have total area <g¢. Let

S, = [—i, - % &
=1 1,{] x [ @i~ 207121 - 2 1)J .
See Figure 8-6. Now

2e € .

u(S) = (2i) m = ok

FIGURE 8-5
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Thus
o o0 g
Z (S, < Z ==&
i=1 i=1
since 1/2 + 1/4 + 1/8 + -+ = 1.1t is clear that the real line as a subset of

itself cannot have measure zero because in covering it by intervals the total
length of the intervals will be +co.

This d:emonstration is typical of the way one proves a set has measure
- zero. Another example of a set of measure zero is the sphere
S ={xeR"| x| =1}.

From the definition of volume it is clear that'if A4 has volume zero, then 4
has measure zero. Indeed, if A has volume zero and ¢ > 0, we can even

find a finite covering by rectangles for A with total volume <e. Also, note -

that if A has measure zero and B < A then B has measure zero as well..
The main advantage of measure zero over volume zero is indicated in the

following theorem.

- . 5 n
Theovem 2. Suppose A, A,, ... have measure zero in R". Then
Ay U Ay U -+ has measure zero in R'.

From this we conclude, for example, that any set comprised of a countable
number of points has measure zero.

ExAMPLE 2. Consider the set 4 of rationals in [0,1] = R. Th§ set A does
not have volume, that is, 1, is not integrable. Indeed, the function that has
the value 1 on rationals, 0 on the irrationals, is not integrable as we have
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seen in Example 1, Section 8.1. Nevertheless, the set 4 does have measure
zero because a point has volume and measure zero, and 4 consists of
countably many points, so Theorem 2 applies.

Exercises for Section 8.3
I Argue that {(x,y) e R* | x> + y* = 1} has volume zero,

21 Does the x-axis in R? have volume zero? Can you even cover it by finitely many
rectangles?

3. If A < [a,b] has measure zero in R prove that [a,b]\4 does not have measure zero
in R. (Exercise 10, at the end of the chapter shows that [a,b] does not have measure
z€ro.)

4. Use Exercise 3 to stiow that the irrationals in [0,1] do not have measure zero.

5 Maust the boundary of a set have measure zero?

8.4 Lebesgue’s Theorem

We now consider a theorem which is probably one of the most important
results in integration theory. We feel intuitively that most ““decent” functions,
like continuous ones, ought to be integrable since the area under their
graphs should be definable. To settle the question of exactly how decent is
“decent” we have the theorem of H. Lebesgue. With this theorem Lebesgue
opened up new advances in integration theory by stressing the measure zero
concept. It led to the success of the fundamental subject of measure theory.
One learns this subject in more advanced courses.*

Theorem 3. Let A < R"beboundedandletf: A — R be abounded
Junction. Extend f to all of R™ by letting it be zero at points not
contained in A. Then f is (Riemann) integrable iff the points at which
the extended f is discontinuous form a set of measure zero.

We can draw two important conclusions from this result as stated in the'
following two corollaries.

' Corollary 1. A bounded set A = R" has volume iff the boundary
of A has measure zero.

Corollary 2. Let A = R" be bounded and have volume. A bounded
Sunction f: A — R with a finite or countable number of points of
discontinuity is integrable.

* For further discussion, sec Section 9.7 and Royden, Real Analysis, Macmillan.
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This result includes most functions one meets in practice. For example,
a continuous function on an interval [a,b] is integrable because [a,b] has
volume (the boundary consists of two points). Piecewise continuous functions
are integrable for the same reason. (A function is called piecewise continuous
if it has a finite number of points of discontinuity.)

Notice that integrability of f in Theorem 3 depends on the extension of f.
For instance, if 4 is the set of all rationals in [0,1] and f is identically one,
" frestricted to 4 is continuous on 4 but the extended f is nowhere continuous
and in fact is not integrable. In Corollary 2 it is notf necessary to extend f.
This is accounted for by the fact that 4 is assumed to have volume, having
regard for Corollary 1.

Another useful result is as follows.

Theorem 4.

(i) Let A = R" be bounded and have measure zero andletf: A - R
be any (bounded) integrable function. Then 4 fx)dx = 0.

(i) Iff: A — Risintegrable andf(x) > 0 for allxand [, f(x)dx =
0, then the set {x € A | f{x) # 0} has measure zero.

This theorem is not unreasonable. Indeed, a set of measure zero is “‘small”
with, essentially, zero volume so the integral of any function over it ought
to be zero. The second part is likewise reasonable.

”

ExampLE 1. Let

) X, -1<x
X} ==
. 3x + 8, 0<x

VAN

0
E
Show f is integrable on [ —1,1]. )

Solution: The set [ —1,1] has volume and [ has only one discontinuity at
x = 0. Thus by Corollary 2, f is integrable, since f is bounded.

ExaMPLE 2. Let f(x) = s{n(l/x), x > 0, f(0) = 0. Show f is integrable on
[0,1]. '

Solution: Here f has one point of discontinuity at x = 0.Also,|f(x) <1
so f is bounded. Thus by Corollary 2, f is integrable.

ExampLE 3. Let f(x,y) = x? + sin(1/y), y # 0 and f(x,0) = x?. Show fis
integrable on 4 = {(x.y)| x* + »* < 1}, ‘

Solution: Here f is bounded on A = interior of unit disc in R?, and has
discontinuities on the line y = 0 which is a set of zero measure in R2. Also,
A has volume (its boundary has zero volume). Hence, by Corollary 2, f'is
integrable.
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Exercises for Section 8.4
i1/ Let f(x) = x® on [~1,1]. Prove f is integrable.

2. Let f(x,y) = 1ifx # 0, f(0,y) = 0. Prove f is integrableon 4 = [0,1] x [0,1] = R2.
{ 3' Compute {, fwhere f,A are as in Exercise 2.

{4 Let 4 c R be open and have volume, and let f: 4 — R be continuous, f(x) > 0
and f(xo) > O for some xq € 4. Show [, /> 0.

5. Letry, I, . . . be an enumeration of the rationals in [0,1] and let

~ 1
U= U D("m"i) >
k=1 2

an open set. Discuss whether or not U has volume.

8.5 Properties of the Integral

"' We now present some of the elementary properties of the integral. For the
case of functions on an interval, the reader is probably familiar with some
of these properties.

Theorem 5. Let A,B < R, ceRandf,g: A~ Rbe integrable.
Then _
(i) f + g isintegrableand {4 f + g = {4 [ + fag.
(ii) ¢f is integrable and §, of = ¢ [, /-
(iii) '|f] is integrable and |{, f1 < [41f1.
(i0) Iff < g, then [, f < [,9-
() If A has volume, and | f| < M, then |, f1 < Mv(4).
(vi) (Mean-Value Theorem for Integrals.) Iff: A — Ris continuous,
A has volume and is compact and connected, then there is an
x, € A such that {4 f(x) dx = f(xo)u(A).
The quantity {4 f/o(A) is called the average of f over A.
(vii) Letf: Au B — R.IfAand B are such that A n B has measure
zero, and f| A N B, f | A, and | B are integrable, then ["is

integrable and { 4,5 f = _f,if + jnf-

This last conclusion is quite useful. For example, fa<b<conR,
(vii) implies that

jcf(x) dx = rf () dx +J}(x) dx .
a a b
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FIGURE 8-7

In the plane, if 4 and B are as depicted in Figure 8-7, the integral over
their union is the sum of the individual integrals because the intersection
has zero measure (it is a point).

ExampLE 1. If A, B have volume show directly (without Theorem 5(vii))
that 4 U B has volume.
Solution: We must show bd(4 U B) has measure zero (see Corollary 1).
But
bd(4 U B) = bd(4) L bd(B)

(see Exercise 15, Chapter 2) so that as the right side has measure zero, so
does the left.

ExaMpLE 2- Give a geometrical interpretation of property (iii) above for
fi[ab] - R

Solution: [? f(x) dx represents the area under the graph of f 'with the
portion below the x-axis counted negatively. The magnitude of this is clearly
less than (or equal to) the area under the graph of| f|; see Figure 8-8.

¥y

FIGURE 8-8
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Exercises for Section 8.5
1. If4,,A,,. . . havevolumeand 4 = 4; U 4, U ' - -is bounded, does 4 have volume?
2. Give a geometrical motivation for properties (iv) and (v) in Theorem 5.

3. Set b f(x)dx = —J} f(x) dx if a > b. Establish

(3 b ©
jf(x) dx =j S(x) dx +J fix)dx
a a b

for all a, b, ¢ (not assuming a < b < ¢ as we did in the text).
4, Let A, B have volume and 4 n B have zero volume. Show that

WA U B) = u(d) + u(B).

8.6 Fundamental Theorem of Calculus

Now that we have characterized a large class of integrable functions, we
may still ask what is a practical way to compute integrals. The answer in -

one dimension is, of course, that we use antiderivatives and the usual tech-
niques of integration. The techniques for higher dimensions are given in the

next chapter.

For f: [a,b] = R, an antiderivative of f is a continuous function
F:[apb] = R such that F is differentiable on ]a,b[ and F'(x) = f(x) for
a < x < b. The following theorem provides an effective method for com-
puting integrals of a wide class of functions.

Theorem 6 (Fundamental Theorem of Calculus). Let f: [a,b] = R
be continuous. Then f has an antiderivative F and

rf(x) dx = F(b) — F(a) .

If G is any other antiderivative of f, we also have [} f(x) dx =
G(b) — Gla).
ExampLe 1. [§?sin xdx = 1, because d(—cos x)/dx = sin x and
—cos(n/2) — (—cos(0)) = 1. The reader should be familiar with these ideas.

Recall the basic intuition concerning Theorem 6. Namely, one sets
F(x) = [¥ f(y) dy. Then suppose f > 0 for simplicity. F represents the area
under the graph of f from a to x. The fact that F' = f comes about because
f(x) is the rate at which this area is increasing. Indeed, this ought to be
clear because F{x + Ax) — F(x) = f(x) Ax (Figure 8-9).
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area = f(x) Ax

FIGURE 8-9

We assume the reader knows, or is willing to review, the basic integration
techniques which are obtained from this theorem, such as the method of
substitution (chain rule) and integration by parts. These shall be taken for
granted in some discussions to follow.

ExampLE2. LetF(x) = [% f(t)dt.Is F differentiable if f is merely (Riemann)
integrable?
Solution? No, continuity in Theorem 6 is essential. For example, let

0, 0<x<1,

f(x)r‘{l, j<x<2.
Then R

0, 0<x<
F(x) =
x — 1, l<x<

Thus, F is continuous but not differentiable at x = 1 (see Figure 8-10).

y Y

]
/
x

FIGURE 8-10
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Exercises for Section 8.6
1. Evaluate 3 (x + 5) dx.
2. Evaluate {} (x + 2)° dx.
3. Evaluate [} xe® dx.
4

. Let f:[a,b] = R be Riemann integrable and |f(x)] < M. Let F(x) = {5 f(t) dt.
Prove that |[F(y) — F(x)} < M|y — x|. Deduce that F is continuous. Does this
check with Example 27 :

5. Let f:[0,1] — R, f(x) = 1 if x = 1/n, n an integer, and f(x) = 0 otherwise.
(a) Prove f is integrable. (b) Show [} f(x)dx = 0.

8.7 Improper Integrals

We often find it is necessary to integrate unbounded functions or to integrate
over unbounded regions. Integrals of unbounded functions or integrals over .
unbounded regions are called improper integrals. These lead to convergence

- problems quite analogous to those for an infinite series.

One usually defines improper integrals by

jmf x)dx = limitr fx)dx,

0 k~w JO

or if the function 4 is unbounded near 0, by

b b

J h(x) dx = limitJ hix) dx ,
0 g0 J&

and so forth. Our definitions conform to these notions as will be explained

below. However, a word of caution is advisable at this point. Namely, we

do not define

’ j ” f(x) dx = limitfk f(x) dx .
k

Rl k—ow

If we did, consider what would happen for f(x) = x; [, x dx would be zero,
while [¥ x dx and [°, x dx would not exist; they would be o0 and —co,
respectively. Thus if one wishes to retain additivity of integrals, one must
proceed more carefully. One possible procedure to avoid this “cancelling of
infinities” is to break up f into positive and negative parts, as indeed we
shall do below.

Generally, improper integrals are of two types, depending on whether it
is the function or the domain which is unbounded. First, we shall consider
the case of unbounded regions. '
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y 5

n=1

a A=1a, oof . ;
FIGURE 8-11

Note. The case of R! is probably the most important, so if this is the
primary concern of the reader, proceed directly to the computational
methods given in Theorem 8 and use that theorem as the definition of
improper integrals.

To start the discussion, suppose f > 0is bounded and 4 = R"is arbitrary,
possibly unbounded. Extend f to the whole space as usual by setting /' = 0
outside 4. See Figure 8-11.

: FIGURE 8-12

Definition 6. For each positive real number M , let
f®), [ <M,
0, J&x) > M,

Sulx) =

(see Figure 8-13).

j‘ 'l}hus fM 11)5 bounded by M and f;; > 0. Hence we can define
4 Jur 3s 1n Definition 5. Note that [, f;, increases as M inc

and 0 < f), < f. We then define o e

ff= limitffM
A M~+w JA

if this limit is finite, and in that case we say f is integrable.

Definition 5. Define [, f to be limit f;_, .. f if this limit exists,
where [—a,a]" = [—a,a] x -*+ x [~a,a] (a cube with side of
length a). Here f should be bounded and integrable on each [ —a,a]".
If | , f exists (and is finite), we say f is integrable.

Theorem 7. For f = 0 and bounded and integrable on any cube
[—a,a]", f is integrable iff the following condition holds: for any
sequence By, of-bounded sets with volume such that (i) B, = By, and
(i) for any cube C we have C = By for sufficiently large k, then
limit [, fexists. In this case lkiinit fa. f=1af

As before, if /' > 0 is integrable and 0 < i i
s , = < g < f, then g is also int
(this is called the comparison test). / ! © integrable

This theorem is reasonai)le in that we get [, f no matter how we expand
out to infinity. See Figure 8-12.

Observe that if f > 0 is integrable and 0 < g < f, then g is integrable as -
well for [{-,qn g is increasing with a and is bounded by the integral of f, so
it converges as @ — 0.

Next, let us treat the case of an arbitrary function f > 0 that is unbounded
and defined on an unbounded region. The significance of these conditions
in the case of R will be given shortly. Unfortunately, one cannot just drop
the requirement that f is bounded and use the definition in Theorem 1
because that actually would imply that f is bounded (this is not obvious).
Another way to proceed is as follows.

FIGURE 8-13
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FRb, VAR AXTY] Lk
R B

FIGURE 8-14

Definition7. For a general function f: 4 — R (that is, f might not
be positive), we let
i e [T 020,
X} =
0, fix) <0,

and
_ —fx) S <0,
)=
0, fx)>0,
(see Figure 8-14).
Then if both [, f* and [, f-exist,welet [, f= (4 /" = {af"
and say f is integrable.

Observe that |f] = f* + f7. Then if f is integrable, so is |f | and
= o+ "=l Sl
b g(lnve&el{', if § ]S;Ifexists, Sthen both | f* and | f~ must be.ﬁnite, since
they are non-negativeand 0 < f +* < |f1,0 < f~ < |f|. Thus fis integrable
iff | f| is integrable. -
While integration in higher dimensions is important and does oceur in
practice, the case of the real line deserves special attention. In this case

there is a method for computing integrals which is particularly simple to use.

Theorem 8. .
(i) Suppose f: [a,00[ = R is continuous and f = 0. Let F be an

antiderivative of f. Then fis integrable iff lianét F(x) exists. In this
" case

J / =rf(x) dx = {‘,35*3} F (")} - F@
{a, oof

(ii) Supposef: Ja,b] — Riscontinuous andf > 0. Thenfisintegrable
iff

b
limit j fx)dx

e 0+ Jate

exists. This limit equals [} f(x) dx.
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The generalization of this statement to R” is given in Exercise 26 below.
Instead of “f, fexists,” one often says ““f, f converges.” As with infinite
series, it is necessary to be able to test an improper integral for convergence
or divergence. Some of the tests closely resemble those used for series.

One of the most useful tests is the comparison test. If {7 f(x) dx converges
and > Oand 0 < g < f, then [ g(x) dx converges. The reason, as stated
earlier, is simply that [® g(x) dx increases as & — oo and is bounded above
by [ f(x) dx, so it converges. ' .

In our treatment of improper integrals, we have used what amounts to
the most natural approach on R". Our method is particularly desirable
because most of Theorem 8 remains valid (this is outlined in Exercise 26).
However, in the special case of R! = R, it is also useful to consider a weaker
type-of convergence, called conditional convergence. Here we define

fwf (x) dx (conditional) = limitJ‘bf(x) dx
a ' b—w Ja )

if the limit exists. This is not the same as our earlier definition (called absolute
convergence) because we demanded that the limit hold separately for f *and .
f~. An example will serve to point up the difference.

ExampLE 1. Let f(x) = (sin x)/x. Show [? f is conditionally but not
absolutely convergent.

Solution: If f were integrable on [1,00[, then | f] would be also. But then
o 5 . n 3 n kn 3 n
f [CLED/ > f Gin ), _ 3 J sin %) > 2 3 1
1 x x X k=2 Jgk—1m X ik

since on the interval [(k — Dmkn], 1/x > 1/kn and [i ), [(sin x)| dx = 2.
But)"__ 1/k — 0 asn — o, 50 ¥lsin x|/x dx = -+ c0.
However, lgmit {8 (sin x)/x dx exists. To see this, note that an integration
=+ o0

by parts gives
"sinxd _ bdcosx)  cosb +oosl — ”cosxdx
1 X ¥ 1 X - b p X ’ )

and [ cos x/x* dx exists because

b icos x| b 1
€| mdx=1—-~,
L - dx L e x =1 5

which converges as b — o0, So [{ (sin x/x) dx is conditionally convergent.

One can give refined tests like the Dirichlet test for series to obtain
conditional convergence when absolute convergence fails. See Exercise 31 at
the end of this chapter. '
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ExaMpPLE 2. We give some standard improper integrals which are u§efu1
in conjunction with the comparison test. They may all bt? proved by direct
integration, successive integration by parts, or by other tricks.

[oo converges if p < —1,

() | xPdx

i divergesifp = —1;

ra converges ifp > —1,
(b) | xPdx s .
divergesifp < —1;

(c) e *xF dx converges for all p ;
J1
(d) | et*xPdx  diverges forall p ;
Jo

m

(e) | logxdx  converges ;
0

) w( 1 )dx diverges .

Ji \log x

For instance,
xp+ 1 je

J‘x"dx== p 1)’
! log x |5, p=—1.

Now log ¢ — 0 as ¢ —» o0, and ¢?*! —» w asc = 0 if p + 1 > 0, that s,

p > —1. This gives (a). Part (b) is similar and () and (f) can b.e proved in
the same way. We outline (c) in Exercise 2 below and (d) is similar to that.

ExampLE 3. Show i

© 1
J;./x3+1

Solution: This is improper at x — 0. Now for x = 0,

dx converges .

. x-~3/2

1 < 1
N TN
and [P x~%?% dx converges by (a) of Example 2. Hence, by comparison,
this integral converges as well.
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Exercises for Section 8.7

1. Letf: [a,00[ = Rbe Riemann integrable on bounded intervals. Show f= fexistsifffor
every ¢ > 0 thereis a Tsuch that ¢,, t, > Timplies {2 f(x) dx < & (this is called the
Cauchy criterion).

2. Establish formula (c) of Example 2 as follows. Prove e *x**% — 0 as x — oo and

=1
then compare the integral with f —5 dx.
1 X
3. Show {§ e~ *x” dx converges if —1 < p.

« sin x
4. Show J ——— dx is convergent.
o X° + 1

o a

5. For whatocisf x
1+

1

dx convergent?

x*

8.8 Some Convergence Theorems

1In Chapter 5 we saw that uniform convergence is sufficient to allow us to
interchange limit and integration operations (see also Example 2 at the end
of this chapter). In this section we shall refine that result.

A course at this level is not the proper place for an exhaustive treatment
of convergence theorems, since they fit in more naturally in advanced courses
in measure and integration. Therefore we confine ourselves to an illustrative
theorem—the monotone convergence theorem. The result will be needed in
Chapter 10 for Fourier series.*

Theorem 9 (Lebesgue’s Monotone Convergence Theorem). Let
g.: [0,1] — R be a sequence of non-negative functions such that each
improper integral [} g.(x)dx exists and is finite. Suppose that
0 < gy41 < g, and that g,(x) — 0 for each x € [0,1]. Then

. 1
limitj g.(x)dx =0, '
n—+om 0

At this point the reader should return to the examples in Section 5.3 to
see that they are in accord with this theorem. Certainly if the g,’s are not
decreasing the result is not true, as examples in that section show.

* For a more complete discussion of convergence theorems in the Riemann theory, see W. A. J.
Luxemburg, Arzeld’s dominated convergence theorem for the Riemann integral, Am. Math.
Monthly, 78 (1971) 970-979.
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Covollary 3. Let f,, f:[0,1] — R be non-negative functions and
suppose 0 < f,, < fosy < f and suppose [} f(x) dx exists as an
improper integral. Furthermore, supposef,(x) — f(x)forallx e [0,1].
Then ; :

1
limitijf,,(x) dx =J fx) dx .
n=o Jg o

This result follows by applying Theorem 9 to the func.:tions g,(x) =
f(x) — fi{x) which decrease monotonically to zero. The details shall be left

to the reader. .
We used the interval [0,1] for definiteness but any other interval could

be used as well and the results could also generalize to R".
The result we will need in Chapter 10 follows as a corollary.

Corollary 4. If f:[ab] = R, f = 0 and the improper integral
b £* < oo exists, then [, (f — fu?—0as M — .

Here we use Theorem 9 with g, = / — f, (/i is defined in the previous
section).

ExampLE 1. Prove:

»

n—+ oo

1
limitj e "xPdx =0 ifp>—1.
0

: s —nx?
Solution: Theorem 9 applies. The functions g,(x) = e”"™ X" < xP so are
integrable and moreover, the g, decrease pointwise to zero.

ExaMpLE 2. Let g, be non-negative and integrable on [0,1]. Let g(x) =
Z:": . g,(x) and assume g(x) is integrable. Prove

o0

1
[Jowae=5 s
0 [

n=1
Solution: Let

1 1 n 1
fx) = gx)dx,  so j flxydx =3 J gul) dx .
k=1 0

k=1 JO

Now the f,(x) increase to g so by Corollary 3 their integrals converge to the
integral of g.

vand
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Exercises for Section 8.8

1. Show that Theorem 8 can be proved using the methods of Chapter 5 if the g, are
continuous.

! ¢ sin(nx)

dx .

2. Evaluate limitf

o g n

1 — pnx
3. Evaluate limitf =e™ .

i fad- ] 0 \/;

8.9 The Dirac é-Function;
Introduction to Distributions

Around 1930, in h{s famous book The Principles of Quantum Mechanics,
Dirac emphasized the usefulness of the é-function, which he defined by the

following properties:
0, ifx#0,
é(x) = {

0, ifx=0,

o0
f dx)dx =1.
-0

One can imagine approximations to § where f, — J in some sense (Figure
8-15), but ¢ itself is hard to visualize directly. Physicists quickly realized (as
engineers had done independently) the usefulness of such ideas and proceeded
to use the S-function in their computations. For example, to describe the
charge density ¢ of a point charge with charge e it is convenient to write
o = ed.Oneimagines ed as a limit of well defined charge densities o, smeared
out over small areas which concentrate down to a single point as.n — 0.

At the same time as the physicists and engineers were computing, mathe-
maticians sat back in quiet amusement, occasionally pointing out that this

5

area underf" =]

FIGURE 8-15
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S-function business was really all nonsense because no such function can
exist. The definition does not really make sense, as anyone can plainly see.
To add to the mathematician’s enjoyment, Dirac proceeds to differentiate
this function é. .

But the physicists turn out to have had a good idea after all. Today,
distributions, of which & is an example, are indispensible in the study of
partial differential equations. But it took mathematicians almost 20 years to
establish the theory of distributions satisfactorily. This was done by L.
Schwartz and S. L. Sobolev around 1948, although hints of the theory had
occurred in the works of earlier mathematicians as well. We will give only
the briefest glimpse of the theory. . .

In actual computations, § almost always appears under the integral sign
in the form

f 8(x)f(x) dx = f(0) . M

We can see the idea behind Eq. 1 from Dirac’s definition because § being
zero away from x = 0 means that only f(0) counts, so one ought to have

Jr?(x)f (x)dx = f (0)j5(X) dx = f(0).

Eq. 1 is the clue as to how to proceed. Namely, consider the space €,(R,R)
of bounded continuous functions on R (Section 5.4). Then, regard

5: €(R,R) - R, fr f(0).

Thus we do not regard § as a function on R at all,buta func'tion on % (R,R)
which maps f to f(0). This operation is well defined and § is easily seen to
be continuous (see Exercise 40, Chapter 5. - . N

Thus it is possible to circumvent the difficulty with Dirac’s definition by

taking a whole new point of view; namely think of d as being an assignment

of 2 number to each function f. This assignment stands for the symbolic
expression | 8(x)f(x) dx. Now any continuous function g also defines such
an operation; it sends f to

g(x)f(x) dx .

4

Thus distributions (of which linear maps from &, to R are examples) include

more than just ordinary functions. o .
How does one differentiate §? For this, note that if ¢ is differentiable, then

© dg © gl-f; :
Lw a;f(x) dx = —ng(x) i (x) dx ,

provided f is zero for large |xl, as can be seen by an integration .by parts.
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Thus dg/dx sends f to the same number that g sends —df/dx to. Thus it is

logical to define &' by
dj d
() = 5<——f) = ———df ).

dx x

This leads us to restrict %, to the functions f which are C! and vanish for
large |x|. Thus we might as well use C*® functions vanishing for large enough
|x|. We are led to the next definition.

Definition 8. Let 9 denote the C* functions which are identically
zero outside some interval (2 is called the Schwartz space). A
distribution T is a linear map* T: 9 — R. The derivative T” is
defined by T": 2 — R, f > T(—df/dx).

If g is a continuous function it is customary to use the same symbol g for
the distribution that maps f — [Zw g(x)f(x) dx.

This is the elegant reformulation due to the founders of distribution
theory. Much work remained to prove significant theorems about distribu-
tions, and this led to an important vitalization of the theory of partial
dgfferential equations. The physicists were pleased and everyone was happy.

Exercises for Section 8.9
1. Show &"(f) = f"(0).

2. Let T, and T be distributions. Say T, — T if T,(f) — T(f) for all f € 2. Show that

E e—nxz 55,

n
3. If T, — T'(see Exercise 2), show that T}, — T". Discuss and compare with Section 5.3.

4, Find a sequence of continuous functions g, such that g, — ¢’

Theorem Proofs for Chapter 8

Theorem 1. (Darboux’s Theorem.) Let A = R" be bounded and lie in some rectangle S.
Let f: A — R be bounded and be extended to S by defining f = 0 outside A. Then f is
integrable with integral I iff for any ¢ > 0 there is a & > 0 such that if P is any partition
into rectangles S, . .., Sy with sides <§and if x, € Sy, ..., xy € Sy, we have

<ée.

N
D SxduS) — I
i=1

* Strictly speaking, one must require T to be continuous in the sense that if f, - f uniformly
on bounded sets and all derivatives of f, converge uniformly to thosc of f on bounded sets,
then T(f,) — T(f). The actual topology on 9 is a bit complicated however.
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Riemanw’s condition: [ is integrable iff for any & > 0 there is a partition P, of S
such that 0 < U(f,P) — L(f;P) < &{and hence also for every partition P finer than P,).

Proof: We shall show that the conditions “f integrable,” *Yf satisfies Riemann’s
condition,” and 'Y satisfies Darboux’s condition” are equivalent. This will be done in
four steps.

Step 1. Iffis integrable, then [ satisfies Riemann's condition.
Proof: Given ¢ > 0, there is a partition P, such that

ULP) < 1 +%,

where [ = [, f. We can do this since I = inf{U( f,P)| P is a partition}. If P is
finer than P, then we know
U(P) < UUGPY) < I + %
Similarly, choose P? such that for P finer than P; we have

€
LUP) > 1~ 5.

Let P, = P.u P: I P is finer than P,, we have
&

I-%<L(f,P)SU(f,P)<I+2

80 s
0 < U(P) — LfiP)<e,

which is Riemann’s condition.
Step 2. If [ satisfies Riemann’s condition, then [ is integrable.

Proof: Forany & > 0 there is a P, such that

0< ULP) — LfiP) <c¢.
This implies that § = s. Indeed, for each P we have
L{f,P) < s< S < USP)

soifU(S,P,) — L{f,P,) < ¢, wealsohave§ — s < eforeverye > Oand hence S = s.
Step 3. Iff satisfies Darboux’s condition, then f is integrable.

Proof: We shall show that the I given in Darboux’s condition will be the same as

S = inf{U(/.P) { P is a partition} and also the same as s. To accomplish this, given
¢ > 0, we shall produce a partition P such that

Up) -1t <e,

which will show that § < I. Similarly, we will have ] < s, and then I €5 < S<1I
will imply s = § = I.
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For this, choose § > 0 such that if P is a partition with sides <4, then

Y fGe(S) — 11 < § ,

where S,, . . . , Sy make up the partition P. Now we may choose x; such that

4

1flx) — sg'p(f < BN

Then )
[U(SP) — IT < U(SP) — 3 fGedulS)l + 1, fGeu(S) — 11
Now
EV(S,()

[U(AP) = 3 fe(S)l < 3. e = %

so that [U(f,P) — I] < e as required. The case for lower sums is similar.
Step 4. Iffis integrable then [ satisfies Darboux’s condition.
Proof: Suppose that f is integrable with integral I. We will show, in two steps, that

foranye > 0, thereisad > 0such thatif Pisany partition into rectangles Sy, ..., Sy,
with sides <8 and if x; € Sy, .. ., Xy € Sy, We have

<E.

N
Z:lf (xu(S) — 1

Stepd.A. Let P be a partition of the rectangle B < R". Given & > 0, we shall show
that there exists a 6 > 0 such that for any partition P’ into subrectangles with sides less
than §, the sum of the volumes of the subrectangles of P’ which are not entirely contained
in some rectangle of P is less than e.

In order to see this clearly, let us examine the cases n = L and n > 1 separately.
First, suppose that we are working on the interval [a,b]; suppose that the partition P
consists of N points. We assert that the § that is needed is simply given by ¢/N. Clearly
then, the length of the intervals in P’ which are not contained in an interval of P is
N x & = (maximum number of intervals not contained entirely in an interval of
P) x (maximum length of each such interval of P') = &.

Next let us turn to the general case.

Let the partition P consist of rectangles ¥y, . .., Vi We denote the total “area” of
the faces lying between any two rectangles by T. Let 6 = &/T and let P' be any partition
of B into subrectangles of sides less than §. Then for any rectangle S & P’ such that S’is
not contained in one of the ¥}, S intersects two adjacent rectangles. Now one can see
that v(S) < 84, where A is the total area of faces between two subrectangles contained
in S (see Figure 8-16). Thus ) s.p (S} < 6T = &.

Step 4.B. Since [ is bounded, there exists an M > 0 such that [f(x)] < M for all
xeS. There exist partitions P, and P, of S such that I — L{f,P,} < ¢/2 and
U(f,P,) — I < 2. Choose a partition P which refines both P, and P,. Then
U(f,P) — I <gf2and I — L(f,P) < &/2. By Step 1 there exists a § > 0 such that for
any partition of P into rectangles of sides <6 the sum of the volumes of the subrectangles
not contained in some subrectangle of P is less than ¢/2M. Let S, ..., Sy bea partition
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rectangles in P

A = area of this face

FIGURE 8-16
into subrectangles of side less than &; let Sy, ..., Sk be the: s.ubrectangles contained in
some subrectangle of P, and let Sg 41, . - ., Sy be the remaining subrectangles.
Letx, €8;,...,%y € Sy. Then
N K N P M- e
O SoxuS) = 2. feedu(S) + 3, SexulS) < UUSR) + M
i=1 i=1 <
&
=U(f,P)+E<I+s.
Similarly, . .
Y feeolS) = LUP) — 5> 1 — ¢
i=1
Therefore

N -
>, Sxu(S) — Il <e. O
=1

In some later proofs it will be convenient to have the following technical fact at hand.

In the definition of measure zero, one can use either closed or open rectangles.

Proof: Let A = R". First, supposc that given & > 0 there are open

Vi, Vo covering A of total volume <s. Let B; = cl(¥). Then By, B, . . . are closed
1 ’ .

rectangles covering 4 with the same total volume <g.

Conversely, given ¢ > 0, suppose we havea covering by closed. r‘?ctangle? B, 1?2, h .
with total volume < &/2". Then let ¥; be the open rectangle containing B; with twice the

side. Then v(V)) = 2"(B)), so
Yu¥) =2"Y u(B) <.
=1 ' i

i=

This same argument also works for content zero. See Exercise 11, p. 293.

rectangles
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Theorem 2. Suppose A, Az, ... have measure zero in R". Then A, v A, U -~ has
measure zero in R",

Progf:  Since all of the 4, have measure zero, there is a covering of the A4; with
rectangles By;, B;,, . . . such that Z}‘; L U(By) < ¢/2". Since the collection By, By, . . .
covers the A4,, the countable collection of all Bjcovers 4, UA, U---. But

> uBy) = > DuBy) <
i,j=1 i=1 j=1

Since ¢ is arbitrary, 4, U 4, U - - - has measure zero. B

s

&
=
=

[}

1

Note: It has not yet been justified that we can sum up the v(B;) by first j, then i.
If this is true, then the terms can be rearranged in an absolutely convergent double
series. That it is indeed true follows from Exercise 51, Chapter 5.

Theorem 3. Let A4 = R" be bounded and let f: A — R be a bounded Junction. Extend f
toall of R" by letting it be zero at points not contained in 4. Then S is (Riemann) integrable
iff the points at which the extended f is discontinuous Jorm a set of measure zero.

Proof: Consider some rectangle B which contains 4. Then we must show that the
function f is integrable on A iff the set of discontinuities of the function g, which equals
Jf on 4 and zero elsewhere, has measure zero.

It is useful for the proof to have a measure of how “bad” a discontinuity is. In order to
do this, we define the oscillation of a function h at Xq, written O(h,x,), to be
inf{sup{lh(x;) — h(x;)l | x,,x, € U} | U is a neighborhood of xo}. Note that the inf is
taken over all neighborhoods U of x,. Thus O(i1,xg) = 0, and we claim that Ofh,x;) = 0
iff h is continuous at x,. To see this, note that & is continuous at X iff for any & > 0,
there is a neighborhood U of x, such that sup{|f(xq) — h(x,)| | x; € U} < g, and this is
equivalent to O(h,x,) = 0. We are now ready to begin the proof—for convenience it is
broken into two steps. Remember g: B — R, gx) = fix)if xe 4 and g(x) = 0, x ¢ 4.

Step 1. We assume the set of discontinuities of g has measure zero. Thus if we let
D, = {x|0(g,x) > e} fors > 0,and D = {discontinuities of g}, then D, = D. I yisan
accumulation point of D,, every neighborhood of y contains a point of D,. Then every
neighborhood U of y is a neighborhood of a point of D;, and by construction of D,,
sup{|f(x,) — flx )l | %%, € U} > & This implies O(f,y) > ¢ and so yeD,. This
proves that D, is a closed set. Since D, = B, D, is bounded and therefore compact. Now
D, has measure zero, since D, < D, so by definition there is a collection B, B,,...of
(open) rectangles which cover D, such that Zf‘=1 u(B;) < &. We know that a finite
number of the B; cover D,, since D, is compact. Suppose B,, ..., By cover D,
Certainly, 3V v(B) < &.

Now pick a partition of B. We can divide up the rectangles of the partition into two
{not necessarily disjoint) collections, C1 and C2, defined as follows.

Cl1: Those rectangles which are contained in some B,i=1,...,N.

C2: Those rectangles which do not intersect D,.
For each rectangle § which does not intersect D, the oscillation of g at each point of the
rectangle is less than . Hence we can find a neighborhood U, of each point x of the
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rectanéle, such that My(g) — mylg) < &, where My{g) = sup{g(x) | x € U} and my(g) =
inf{g(x) | x € U}. Now § is compact, so a finite collection of the open sets U, covers S.

Pick a refined partition such that each rectangle of the partition is contained in U, for
some U, in the finite collection which covers §. If we do this for each § in C2, we get

a partition P such that
U(g,P) — L(g,P) < . (Mslg) — ms(g)ul(S) +ZMm~mmm

SeCl

< e(B) + ), 2Mu(S)

SeCl

(where | f(x)] < M on A)

< ev(B) + 2Me, since Z v(S) <Z (B) < ¢.

SeCt

But ¢ is arbitrary, so by Riemann’s condition, g and hence f is integrable.

Step 2. Suppose g is integrable. The set of discontinuities of g is the set of points of
oscillation greater than zero. Hence {discontinuities of g} = Dy U Dy U Dy -
where D,;, = {x € B| O(g,x) > 1/n}. Now by Theorem 1, we can find a partition P of
Bsuch that U(g,P) — L{g,P) = ZSE » (Mslg) — ms(g)o(S) < &.Now Dy, = {xe Dy, | x
lies on the boundary of some S} U {x & Dy, | x € interior (S) for some S} = §; U §,.
The first of these sets, S;, has measure zero, since we can cover the boundary of a
rectangle with arbitrarily thin rectangles. Let C denote the collection of rectangles of
the partition which have an element of D, in their interior. Then, if S € C,

Mslg) — mslg) 2 =
and

~ZM <Y (Mslg) — mg(@)u(S) < ) (Ms(g) — ms(g))u(S) < ¢

ngec SeC Sep

Hence C is a collection of rectangles which covers S, and Zs c u(S) < ne. Wecanfind a
collection C' of rectangles which covers S; with Z , (S) < &. Then C u C' covers

Dy, and ZSE cue v(S) < (n + 1)e. But ¢ is arbltrary, so D,, has measure zero.

Finally, {discontinuities of g} = D; U Dy;; U Dyy3 U * - - has measure zero by Theorem .

2. 8

Corollary 1. A bounded set A = R" has volume iff the boundary of A has measure.zero.

Proof: By Theorem 3 it suffices to show that the set of discontinuities of 1, where

0, x¢ A,
L4bx) = 1 xed,

3

is the boundary of A. But if x € bd(4), then any neighborhood of x intersects A and
R™A. Hence there are points y in the neighborhood such that 1,(x) — 1,(y) = 1. Thus
1, is not continuous at x. If x ¢ bd(d4), then there is a neighborhood of x which lies
entirely in 4 or R"\A. In either case 1, is constant on this neighborhood so 1, is
continuous at x. §

THEOREM PROOFS FOR CHAPTER 8 283

Corollary 2. Let A < R" be bounded and have volume. A bounded function f: 4 — R
with a finite or countable number of points of discontinuities is integrable.

Proof: The discontinuities of the extended function g, which is equal to f on 4 and
zero at points outside A4 are simply the discontinuities of f together with possibly some
discontinuities of g on the boundary of 4 for the same reason as in the above proof.
But bd(4) has measure zero by Corollary 1. Hence it is sufficient to show that a count-
able set has measure zero. But this follows at once from Theorem 2 and from the fact
that a point has measure zero. §

Theorem 4.

(i) Let 4 = R" be bounded and have measure zero and let f: A — R be any bounded
integrable function. Then [, f(x) dx = 0.

(i) If f: A — R is integrable, and f(x) = 0 for all x and [, f(x) dx = O, then the set
{xe | flx) # 0} has measure zero.

Proof: (i) We make the following observation about a set with measure zero,
namely, that a set of measure zero cannot contain a non-trivial rectangle, that is, a
rectangle [a,,b;] x - x [a,b,] such that @, < b, for each i. The reason is that a
subset of a set of measure zero must be of measure zero and a non-trivial rectangle
cannot have measure zero. This last assertion is intuitively clear; the details are given-
in Exercise 17. Let S be a rectangle enclosing 4 and extend f to S by setting it equal to
0 on 8\A4; let P be any partition of § into subrectangles S,, ..., Sy, and let M be such
that f(x) < M forall xe A4.

Then

N N
L(f,P) = Z ms(fW(S) < M Z ms,(lA)v(St) .
=1

i=1

Suppose mg(1,) # 0 for some i, such that S, is a (non-trivial) rectangle. This means that
§; < A4, which contradicts the opening remarks of the proof. So for any non-trivial
S8y, ms(1,4) = 0. For any trivial S,, o(S;) = 0. Hence Z  Ms(Lau(Sy) = 0 or L(f,P) < 0.
Now sup f{x) = —insf — (f{x)), so

Xxe

xe8y

U(f,P) = stﬂﬂw—~ZIM—ﬂmm——Mfﬂ

SielP xg8; Siep X

and by the same arguments as above, L(—f,P) < 0. Hence —L(~f,P) = U(f,P) = 0
Since P was arbitrary, for any partition Q of S, U(f,Q) = 0 > L(f,Q), hence

ff>0>fﬁ
[r~Js-{s=>
4 J4a 4

(if) Consider the set 4,, = {xe 4| f(x) > 1/m}; we shall first show that 4,, has
content zero.

Suppose we are given & > 0. Let S be a rectangle enclosing 4 and extend f to § by

and so, since f is integrable,
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setting it equal to 0 on §\A. Let P be a partition of the rectangle S such that U(f,P) < &/m.
Such a partition exists by the fact that faf=01S,,...,Sgarethe subrectangles of
the partition P which have non-empty intersection with 4,,, then if Mg (f) is the sup of f

on S,
X

K
Y ou(S) < ) mMs{f)(S) <&,
=1 i=1
since mMs(f) > L. Therefore Sy, . . ., Sk is a cover by closed rectangles of the set A,, such
that 3% (S) < &. Hence 4,, has content zero. Since A,, has content zero, it also has
measure zero.

Finally, observe that

{xed|fex)# 0} =) 4.
m=1
Thus, by Theorem 2, this set has measure zero. §

Theorem 5. Let A,B < R",CeR,f,g: 4 - R be integrable. Then
(i) f + gis integrable and [, f + g = [af + [a 9.
(i) of is integrable and §, ¢f = ¢ [4 f.
(iii) |f] is integrable and |[4 f1 < {4 1S1.
() Iff < g then{,f < fag.
(v) If A has volume, and | f| < M, then |[, f| < Mv(A).
(vi) (Mean-value Theorem for Integrals). If f: A — R is continuous, A has volume
and is compact and connected, then there is an xo€ A such that (4 flx)dx =
S (xo)v(A).
(vii) Let f1AUB—-R. If A and B are such that A n B has measure zero and
fl4 B, f | 4, and f|B are integrable, then f is integrable and {40 =
Saf + It

Proof: (i) Let S be a rectangle enclosing 4 and let f and g be extended to § by setting
them equal to zero on S\A. Suppose & > 0 is given. By Theorem 1, there isa , > 0
such that if P, is any partition of § into subrectangles 87, ..., Sy with sides less than
§,and if x, €Sy, ..., Xy € Sy, then

il &
l 2. Sl —f f} <3
i—f'l 4

Similarly, there is a 6, > 0 such that if P, is any partition of § into subrectangles
Ry, ..., Ry with sides less than &, and if x; € Ry, ..., Xy € Ry, then

M

> gx)u(R) —-Lg

i=1

&
< =
2

If we let § = min(8,,5,), then if P is any partition of S into subrectangles Ty, ..., Ty
with sides less than d and if x; € Ty, . . ., Xx € T, then

K
Y. (glx) + ST - j i) -—j gl <e.
i=1 A A
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Hence by Theorem 1 we may conclude that f -+ g is integrable and [, (f + g) =
Jaf +fag

(i) Suppose & > 0 is given. Let S be an enclosing rectangle for A with f extended to
Sasin (i). Let 6 > 0 be such that if P is any partition of S into subrectangles S, ..., Sy
with sides <dandif x; €Sy, ..., xy € Sy, then

N ;
2 Seu(S) — f f] <.
=1 A lel
This implies that

N
S o e)uS) — J f‘ <.
f=1 A

Hence cf is integrable and [, ¢f = ¢ [, f.

(iii) This part is most easily proved as a corollary of (iv), which will therefore be
proved first. N

(iv) Let P be any partition of the enclosing rectangle S. As f < g, we see that

U(f.,P) < U(g,P).
So

jf = inf{U(f,P) | P is any partition}
4

< inf{U(g,P) | P is any partition} =J g.
Hence [,/ < [a 9. ’

(iti) We use the fact that if / is continuous at a point x in its domain, then |f] is
continuous at that point since | f1 is the composition of y — |y} following f. Hence, il f
is integrable over 4, then by Theorem 3, | f]is integrable over 4. Now —|f] < f < |f],
so by (iv) —[4 1f1 < [+ f < [41/], and therefore [, f1 < [4 1S,

(v) If P is any partition of the enclosing rectangle S into subrectangles S,, ..., Sy,
then

N
L I/l < U(S1,P) =lZMs,ava(so
=1
N
< MY Ms(10u(S) = MU(1,,P) .
i=1

This implies that J, | /1 < Mu(4), and so

I

(vi) Let m = inf{f(x) | x € A} and M = sup{f(x) | x € 4}. By assumption, m and M
are assumed values, as A is compact (Theorem 5, Chapter 4). Let 4 = ([, /)/v(A4).
(If v(4) = 0, the theorem follows from Theorem 4(i).) Then by (v), m< A< M.
Hence by the intermediate value theorem, there is an x, € 4 such that f(xg) = 4,

<J If1 < Mu(A) .
A

‘which proves the assertion.

Remark; More careful reasoning shows that compactness of A is not necessary;
see Exercise 19.
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(i) Let f; = [~ 14 /o =S 1 and f3 = [ 1 4np> 50 these represent the extensions
of f| 4, f| B,and f| 4 n B required by the definition of integrability. By assumption,
fi» f2, and f; are integrable and, for example, {45 /14 = {4 J by definition. Now
[ =fi + J2 = fss0by (i),

J\A Df=J\A Dfl +J.A sz _J‘A Bf3
frelr-Los
A B AnD

Since A N B has measure zero, we have by Theorem 4(i) that fans S =0. B

Theorvem 6. (Fundamental Theorem of Calc&lus). Let f:[a,b] - R be continuous.
Then f has an antiderivative F and

be(x) dx = F(b) — F(a).

a
This same formula holds for any antiderivative of f

Proof: Define F: [a,b] = R by F(x) = x fly) dy. We claim F is an antiderivative
of f. Let x € Ja,b[ and let h > 0 be such that Jx,x + h{ = Ja,b[. Then

x+h x x+h
F(x + 1) — F(x) _ j S dy —Lf(Y) dy (f Jd )

h h h

Now given & > 0, choose h such that | f(y) - Foo) < e for all yeJx,x + h[; such a
choice is possible by the continuity of f. Therefore,

x+h x+h —
([0l [ 52

< J 1) = 1)
Hence e + 1) — F(0)

h
limi = f{x) (the limit through h > 0} .
=0+ h

ch
< —_—

dy =g,

Similarly, we can show

limit F(x) — F(x — h)
10— h

= f(x) (the limit through h < 0) .

Hence F’ exists and F'(x) = f(x). From the definition of F, we get

b
Jf(y) dy = F(b) — Fla).
The function F is easily seen to be continuous at aand b. Now let F, beany antiderivative
of f. We shall show that Fy = F + constant. Since Fi(x) = F'(x) = f(x) for all
x e Jab[, we have (F; — FY(x) = 0 for all xe Ja,b[. By Example 1 Section 6.7, if a
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function has zero derivative on an interval, it must be constant on that interval. So
F, = F + constant. Hence

b
Jf()’)dy = F{b) — Fy(a)
for any antiderivative F, of f. [

Theorem 7. For[ = 0 bounded and integrable on any cube [ —a,al", [is integrable iff the

following condition holds: for any sequence By of bounded sets with volume such that
(i) B, = Byy; and (i) for any cube, C, and we have C = B, for sufficiently large k, then
lgTit { . [ exists. In this case Iz?it IS E

Proof: Suppose [ is integrable. Then if [—a,a]" < B,  [—b,b]", we have

[ selre] s
[—a,al? By [—b,bI"

since f+ Lj—pap < S 1p, < J* L=y Where 1, is the characteristic function of the set 4.
Hence as lixyit fiaap S exists, so does ligloiot {5, f> and the limit is the same. We used
hypothesis (ii) about B, so that we could, by choosing k large, have [—a,a]" < B, for
any given a.

For the converse, |5, / is an increasing sequence in k, using (i), and has a limit. Say
fs.f = Cask — oo. Thusas , f < Clorallk and for each a, [ —a,a]" < B, for some
k, fi-aap [ < Clorall a. Hence as a — o0 this is an increasing function of a bounded
above so it converges (why?). @

Theorem 8.
(i) Suppose f:[a,0[ = R is continuous and [ > 0. Let F be an antiderivative of f.
Then f is integrable iff limit F(x) exists. In this case
X o0

j fdx =rf dx = {limit F(x)} — F(a) .
[n,w] X— 0

a

(i) Suppose f:a,b] — R is continuous and f > 0. Then [ is integrable iff

)

b
limgtJ- f(x) dx

at

exists. This limit equals [} f(x) dx.
Proof: (1) Si-p S liap = b ffor b > a, and [ f = F(b) — F(a). Hence limit [* ,
exists iff lgmit F(b) does, and | f = (lgmit F(b)) — Fla). b
(if) The second part is a little trickier. For & > 0 define f* to be 0 on [a,a + &]and
on Ja + ¢,b]. We proceed by first giving two preliminary steps.
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M
a= 0“.
FIGURE 8-17
Step 1. If M = sup{f(x)|a + &< x < b}, then, recalling that fi{x) = f(x) if

f(x) < M and zero otherwise, we have

b b b
J‘J”:J‘ fgj Ju
a atg a

because f < fy, on [a,b]. Note that f, might not be zero on [a,a + 5], as in Figure 8-17.

o v
J-fM —J‘fcha-

This is because fy < Mon [aa + €], and for x € [a + g&b], Julx) = flx), s0

b ate b b ate
‘rfM—J‘fB’*< fM+J‘ f)“‘j+f=J; Ju S &M

a

Step 2. For any e and M,

‘since fy < M. .
Now, to demonstrate the thebrem, first suppose { fu = I as M — co. Notice that

i increases as M increases. We must show that [ f° also converges to
len:e—{ 5'12:‘51&11;*?;(::%865 to something <I by Step 1. But, given 6 > 0, chcoose M
such that I — [ fy < 6/2. Then if we let ¢ = 6/2M, by Step 2, [ fu—Jro<d/2.
Hence[—-5[‘<5.Thusliur_r’1(i)t_[f‘=1, '

The converse follows in much the same way, again using Steps 1 and 2 to show that if

[fe-1Ithen{ foy = 1. W .

In order to prepare for the proof of the monotone convergence theorem, we first
prove the following lemma.* :

* This proof of the monotone convergence theorem was pointed out by R. Gulliver.

B v/ i
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Lemma. Suppose f is Riemann integrable, S01] =R, Ifl € M, and fofza>0.
Then E = {xe[0,1]| f(x) = «/2} contains a finite union of intervals of total length
1> o0/4M.

Proof: Let P be a partition of [0,1] such that 0 < J8 5 — L(f,P) < /4. So
L(f,P) 2 3a/4. We will now show that the intervals Re Pwith R < E satisfy the con-
clusion; let  denote their total length. We have

X < Lyp) = 2. inf fx)u(R) + Y inf f(x)u(R)
4 ReP xeR ReP xecR
ReE R&E

od o
SM A -(1-)< M +=

So !l = a/4M, as claimed. §

Theorem 9. (Lebesque’s Monotone Convergence Theorem). Let g,: [01] =R bea
sequence of non-negative functions such that each improper integral {§ g, < ou. Suppose
that 0 < g,+, < g, and that g,(x) — 0 for each x e [0,1]. Then limit [3 g, = 0.

Proof: Wehave 0 < [§ g, < [} g,, that is, the integrals form a bounded decreas-
ing sequence, so A = limit [§ g, exists, and 1 > 0. We wish to show 1 = 0, so assume
Eiiad-

"4 > 0. Note that 16 9, = Afor all n. Consider E, = {xe[0,1]] g{x) = 24/5}. Observe
that E,,.; < E,. We want to apply the lemma, but g, might not be bounded. However,
gn < gy; since [§ g, exists as an improper integral, J§ g1 = [8 9125 M - 0. Here

gux) < M,
gix) = M.

gn{x) ,
M, .

So we may choose M > 21/5 such that 0 < [4(g; — ga) < 2/5. Then for all n,
0 < [5(9n — gund) < [5(g91 = g1m) < A/5, s0 that §6 Guse = 44/5 = a. Note that since
M > 22/5, E, may also be described as {x e [0,1] | gum(x) = 24/5}. Therefore, by the
lemma, E, contains a finite union of intervals of total length > 1/5M. Now define

GInnt (X) = {

w0
D = {J {x€[0,1]|g, is not continuous at x};
n=1

s0 D has measure 0. Thus D is contained in the union U of a countable number of
disjoint open intervals with total length <1/5M. It may be readily seen that E, is not 4
subset of U. Observe that if x, is an accumulation point of E, but is not in E,, then g,
must be discontinuous at x,, so x,€D < U. That is, cl(E,) < E, u U. Define
F, = cl(E)\U: by what we have just shown, F, < E,. But F, is compact and F,,, <
F,. Therefore, by the Cantor Intersection theorem, N&y F, # &, and hénce
ﬂ:‘;l E, # (. But this means that for some x e [0,1], g(x) = 24/5 > 0 for all n,
contradicting the hypothesis g,(x) —» 0. §

Corollary 4. If f:[ab] = R, f >0, and the improper integral [* {2 < oo, then
oS = f)?* = 0asM - .
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Proof: Apply the monotone convergence theorem with g, = (/' — )% Since
(f = fos1? S S = f)* < f?, the integrals [% g, exist, by the comparison theorem,

and Gn+1 < Gne I

Worked Examples for Chapter 8

1. Show that a bounded set A = R" has zero volume iff it can be covered by a finite
number of rectangles of arbitrarily small total volume.

Solution: Suppose A has zero volume and let ¢ > 0 be given. Let § be a closed
rectangle containing A and let 1, be the characteristic function of 4 (i.e. 1, equals 1 on
A and 0 on S\A). Then by definition of zero volume, there is a partition P of § into
subrectangles Sy, . . . , S, such that U(1,,,P) < &. Let P, be the collection of all those
subrectangles S, whxch intersect 4. Then U(1,,P) is simply Z v(S andso Pyisa
collection of rectangles covering 4 with a total volume <.

Suppose, on the other hand, that given & > 0 4 can be covered by a finite
number of rectangles of total volume <s. Let these rectangles be V;, ..., V.
Let S be a closed rectangle containing 4 and let P be a partition of S into sub-
rectangles S,, ..., Sy, such that each S; is either contained in some V; or has at
most its boundary in common with some V}’s—the partition is defined by using all
theedges of the ¥,’s. Then U(1,,P) = 3. | v(V) < & Thisimplies that inf{U(1,,P)| P
is a partition} = 0,and hence L(1,,P) = Ofor any partition P',since 0 < L(1,,P) <
U(1,,P) for all £. Therefore A has volume, and this volume is zero.

2. Let f; be a sequence of bounded (Riemann) integrable functions defined on [a,b].
Suppose’f;, — f uniformly. Then prove that f is integrable on [a,b], and

b b
Jﬂ(x) dx —»J Six)dx .

Solution: First,.observe that f is bounded. Indeed, suppose we choose fy such that
Ifa(x) — f(x)| < 1 for all x. Then, using the triangle inequality,

Ol < 1)+ 1.

Therefore, since fy is bounded, so is f.
By Theorem 1, we must find a number I, such that for every s > Othereisad > 0,
such that

X, — %) — I} < ¢

for any subdivision xg, x;, . . . , X, of [a,b] withix, — x,-;] < dandx,_, < X} < x;.
By Theorem 4, Chapter 5 we expect I = hmlt {8 fx) dx. Now [? fi(x)dx is a
Cauchy sequence. To see this, note that

jﬂ(x) dx —Jﬁ(X) dxf <& if|fx) — flx)] <

_&
b-a

Hence, the sequence converges to a value which we call 1.

WORKED EXAMPLES FOR CHAPTER 8 291

Given ¢ > 0, choose N such that k > N implies | [ fi(x) dx — I} < &/3. Now
choose N, such that k > N, implies |f,(x) — f(x)| < &/(3(b — a)) for all x & [a,b]
and choose N, = max(N,N,). Now since fy, is integrable, there is a 6 > 0 such
that for |x, — x| < 6,

b
(%)% — x—1) —Jsz(x) dx

£
<=,
3

With this choice, we have by the triangle inequality,

Y FEe = Xpmg) = 1] < kzlf(x;‘xxk — Xyoy) —kifm(x;xxk - Sck-,)l
= =1

k=1

n . b
+ gfm(xk) — Xje) = f Sryx) dx

& £ £
+ waz(x)dx-1|<§+§+§=£,

which proves the assertion.
Remark: In Theorem 4, Chapter 5, we established the more restrictive result
that if f;, f were continuous (and hence integrable), then

J bf(x) dx = l'égxit J bﬁ((x) dx .

This of course is also shown by the proof just completed. The above method also
workson 4 < R".

. Show that |4 x* dx = 4*/3 by using the fundamental theorem. Verify this answer

directly by showing that for any given ¢ > 0, there exists a partition P of [0,a], such
that U(x%,P) ~ L(x%,P) < ¢ and that

3
inf{U(x?,P) | P is any partition} = sup{L(x?,P)| P is any partition} = % .

Solution: The function F defined by F(x) = x%/3 is an antiderivative of f{x) = x?,
since F'(x) = x?. Thus by the fundamental theorem

a a3
szdx=F(a)-—F(0)=?.
0

In order to verify our answer using the upper and lower sums, we partition [0,a]
into the n subintervals [0,a/n], [a/n,2a/n], ..., [((n — 1)a)/n,a]. If we call this
partition P, then

n J/ 2 3 " 3 1
vt = 55T - (R)(8) - ()G v«

(see Exercise 25) and

n — 2 3 n—1 3
L(x%,P) =kzl((k _ 1)a) % = <%5><k l¢2> = (%)(-é)(n — D(m)@2n — 1.
= =1
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Hence
a® 1 1
2 = — —
UG,P) = (3)(1 + )(1 + 2,1)
and

=€)

From these expressions we see that by choosing n sufficiently large we get
U(x*,P) — L(x*P) < ¢ and inf{U(x*,P} | P is any partition} = sup{L(x%,P)| P is
any partition} = a%/3.

dx
4. Findf .
10,0 (1 + x)?

Solution: We are integrating a non-negative function defined on an unbounded set,
so by definition

j dx i f ¢ dx
0,01 (¥ + 1) e (x + 1)2 '
Since

d=1/x + 1)) 1

dx T+ )2
we can use the fundamental theorem to obtain
¢ dx _ 1 + 1 _a
. o+ DF @+l O+1) (a+1)

Hence .

fimit J “ dx ) J‘ dx
imi ———— =] = TN -
a=rw jgo (x 1)2 10,00l (x + 1)2

Exercises for Chapter 8

» 1. (a) Let /1 A =« R" > R, where 4 is bounded and f is bounded and integrable
over A. Consider another bounded integrable function g: 4 — R such that
g(x) = f(x) except on a set S < A of measure zero. Then assuming f and g
. are integrable on S and A\S, prove {, g = [, /.
B IffidcR - Rand g: 4 « R" - R are bounded functions, integrable on
the bounded set 4,and {4 |/ — g| = 0, then prove f(x) = g(x)forall x € 4,except
possibly for a set of measure zero.

2. Give a proof of Theorem 5(iii) directly from Darboux’s theorem and the triangle
inequality for real numbers. Now go back and fill in the gap in Example 5, Chapter 6.

3. Prove that an increasing function f: [a,b] — R is Riemann integrable. [Hint: at
each discontinuity x, of f, limit f(x) < limthr Sf{x), and we can find a rational r,,
xX~rxg— xXg

ERER.

V4,

v 5.

7.

4 8.

010,
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such that (limit f(x)) < r, < (limit‘ J(x)). Show that the discontinuities of f are
X Xg™ x—txg
countable.]

Show that f(x) = x*"*! for n an integer >
even though limit {*, / exists.
a=r oo

0, is not (absolutely) integrable over R,

In R?, prove that any subset of the xy-plane has measure zero.

I fiAdc R - Rand g: 4 =« R" —+ R are bounded integrable functions on the

bounded set 4 such that f(x) < g(x) for all xe 4 and v(A4) # 0, then show
{4 < §4g. [Hint: Employ Theorem 4(ii).]

Let f:[a,b] — R be continuous and differentiable on Ja,b[. Assume f(a) = 0,
J(b) = —1and [% f(x) dx = 0. Prove that there is a c € ]a,b[ such that f*(c) = 0.

Compute the followmg integrals,
(a) {&" sin x dx.
(b) _f" 2(sin x) dx.

. Give a proof of Theorem 5(i), (ii), (iii), (iv), and (vii) for improper integrals. (The

parts of Theorem 5 omitted here do not make sense if 4 has infinite volume.)

@IfAcd vd,u-
:v_._l o(dy).
(b) If 4 is compact, then show that 4 has measure zero iff 4 has content zero.

Show that a bounded set B has volume iff bd(B) has content zero.

U Ay, all sets having volume, then show u(4) <

. If § is a closed or open rectangle show that the two definitions of volume coincide.

That is, prove that [g1 = (b, — a,)(b; — a;)* " (b, — a,) where either § =
[ag,by] x <+ x [a,,b,] or S Jagbi[ x -+ x Jagb,[. [Hint: For the closed
rectangle use the partition consisting only of the rectangle S. This statement for
open rectangles then follows [rom Exercise 1.]

. Prove that A has measure zerg iff for every ¢ > 0 there is a covering of 4 by sets

V1, V2, - . . with volume such that 3° (V) < e.

. Prove that a bounded function f: § — Ris integrable on the rectangle § iff thereisa

number I such that for any & > 0 there is a partition P, such that for any refinement
P of P, and any choice of x; € §, for S; ¢ P, IZS‘GP SxuS) - Il < &,

. Is [§ x* dx convergent for any p? If so, which p?

. Generalize Example 2 on page 290 to functions f: 4 « R* — R. .

. (&) Suppose f, — f uniformly on 4 = R". Let 4, be the points of discontinuity of

fi (extended). Show that the discontinuities of f (extended) are contained in
A, U 4, u - . [Hint: Study Theorem 1, Chapter 5.]

(b) Use (a) to give another proof for Example 2.

(c) Find functions f,: 4 — R which are integrable and such that f; — f pointwise,
but f is not integrable. [Hint: Consult Gelbaum and Olmsted, Counterexamples
in Analysis, Example 5, Chapter 7.]
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17. (a) Let P, denote the division of [a,b] into 2" equal subintervals and form L(f,P,),
U(f,P,) for f:[a,b] — R bounded. Show that f is integrable iff hmlt L(f,P,) =
limit U(f,P,). Why do these limits always exist?

Liiad: ]

(b) Generalize (@)for 4 = R".

Let /: B — R be integrable, f > 0. If 4 = B and f is integrable on 4, then
{4 S < {5 [ Ts this true if we do not assume f > 0?

7 18.

19. (a) Generalize the mean-value theorem for integrals (Theorem 6(vi)) to the case
where A is any bounded connected set. [Hint: If M = sup{f(x)| x € A} and
m = inf{ f(x) { x € A}, then we do not necessarily have a and b € A such that
f@) = mand f(b) = M.If 1 = [, f/v{A), then as usual m < A < M. Consider
separately the cases A = m, 1 = M, m < 1 < M. For the first two cases use
the fact that if g > 0 and {5 g = 0, then g{x) = 0, except for a set of measure
zero (Theorem 4(ii)). For the last case we can pick points x and y € 4, such that
f{x) < A < f(y), and then we can apply the intermediate-value theorem as in
Theorem 6(vi).]

(b) If o(x) > 0 for x € s connected bounded set 4 = R, ¢ is continuous and

increasing in x and f is integrable, then fq) is integrable and [, fo = ¢(c) §as
for some point ¢ € A. (This is the “second mean-value theorem.”)

20. Suppose f:]0,b] -+ R is continuous, positive, and integrable on ]0,b]. Suppose
further that as x — 0 [rom the right, f{(x) increases monotonically to +co. Then
prove that ¢f(¢) - O ase ~ 0.

# 21. Show that [ x™? sin x dx converges if p > 1. Show that if 0 < p < 1, then the
convergence is conditional.
# 22. The gamma function is defined by the improper integral I'(p) = [§ e~ 1 dx,

Show that the integral is convergent for p > 0.

23. (a) If ¢: [a,b] = R" is a continuous function, then show that the set § = graph i

¢ = {(x0(x) | xe[ab]} = R has content and measure zero. [Hint:
First, consider the case n = 1 and use the definition of continuity.}

(b) For ¢:R — R" continuous, show that graph ¢ has measure zero. [Hint:-
Graph @ = (J_ graph (¢ | [—n]).]

(c) Let f:[a,b] — R be integrable. Show the graph of f* has volume zero by
considering the difference of the upper and lower sums for f.

(d) Show that the ellipse x*> + 3y? = 9 in R? has volume zero.

24. Give an example to show that the following is not equivalent to the integrability of
/. For any & > 0 there is a 6 > 0 such that if P is any partition into rectangles

Sy, ..., S8y with sides <4, there exist x; € Sy, . .., Xy € Sy such that
N
2. SGxdu(S) — I’ <e.
i=1
¢ 25. Prove that
" f = n(n + 1) and ikz _ a(n + 1)(2n + 1) '

k=1 2

i

26.

0 27.

¢ 28.

129,

230.

31
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These formulas were used in Example 3. [Hint: Let S = )% _ k. Write down
S backwards and consider S 4+ S. Consider the identity (k + 1P - k3=
3k? + 3k + 1 and observe that

>l + 17 — ) = (n+ 1 — 1
£=1

and
DAk + 12 - k) = 3( 21&) + 3( Zk) +n
k=1 k=1 k=1
Alternatively, use induction.]

Consider a set 4 < R", where A is bounded and has volume. Let f: 4 = R" = R,
£ = 0, but allow f to be unbounded. Suppose C; is a sequence of compact sets with
volume, C; = A with C; increasing to 4, and assume v(C;) — v(A) (this is actually
automatically true as shall be seen in Exercise 12, Chapter 9). Then f is integrable
iff [ is integrable on each C; and 1}_’}13 {c, f exists and in this case

jf = hmlt

Prove that if /1 A « R" -+ R is continuous, 4 is open with volume, and [,
for each B = A4 with volume, then /' = 0. [Hint: Use Theorem 5(vi).]

[Hint: Study Theorem 8(ii). ]

S=0

Let f:[0,1] — R be integrable and be continuous at x,. Show that the map x
% f(y) dy is differentiable with derivative f(x,). Give an example of a discontinuous
integrable f for which this map is not differentiable. For bounded integrable f prove
this map is always continuous, and in fact, Lipschitz.

Show that the Cantor set C < [0,1] has measure zero (see Exercise 38 at the end of
Chapter 3).

(a) Let f:[a,b] — R be differentiable and assume that f* is integrable. Prove

Ja f'x) dx = f(b) ~ fla).
(b) Must J” always be integrable?

Prove the following analogues of the Weierstrass and Dirichlet tests for uniform

convergence using the Cauchy criterion (Exercise 1, Section 8.7).

{a) Let f:[a,00[ x [¢,d] = R and suppose there is a positive function M(x),
x e [a,00[ such that |f(x,s)} < M(x) for all se[ed], and [ M{x)dx < co.
Then F(x) = {2 f(x,s) dx converges uniformly in s. If f(x,s) is continuous in x,
s, prove F is continuous.

(b) Let f: [a,00[ x [c,d] — R be continuous and suppose | {; f(x,s) dx| < M fora
constant M for all r > a, se[c,d]. Suppose ¢(x,s) is decreasing in x and
o(x,5) = 0 as x — oo uniformly in 5. Prove F(s) = [ ¢(x,5)f(x,5) dx con-
verges uniformly.
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o 32. For x > 0 define L(x) = [} 1/t dt. Prove the following, using this definition.
(a) L is increasing in x.
(b} Lixy) = L(x) + L(y).
(¢) L'(x) = 1/x.
(d) L(Q1) = 0.
(e) Properties (c) and (d) uniquely determine L. What is L?

s 33. Let f: R = R be continuous and set F(x) = 2 f(y) dy. Prove F'(x) = 2xf(x?). F
Give a general theorem. |

¢34, Let f: [0,1] - R be Riemann integrable and suppose foreverya,bwith0 < a <
b <1 there is a c,a < ¢ < b with f{¢) = 0. Prove [§ f = 0. Must [ be zero?
What if f is continuous?

035. Let A, = Im[(n + 1) + (n + 2) + -+ + (n + n)]. Prove 1Lmit(1/n)A,, = 3/2 using
the Riemann integral.

o 36. Prove that limit (n))*/n = ¢! by considering Riemann sums for J&log x dx
based on the partition 1/n < 2/n < -++ < 1.
37. (a) Under what conditions is |2 f(p(0)e(t) dt =[5 /(x) dx?
(b) Evaluate | dx/{(1 — x)\/1 — %) using x = cos I,
38. Let f:[0,1] = R,
0, if x is irrational ,
Jx) =<1 ) p
- ifx=-, i
- q q I
where p, g > 0 with no common factor. Show f is integrable and compute s 1.

9 39, Prove that

1 1 1
= limit} —— + ——t o + |
log 2 l:Ln;t[n +1 +n+2+ 2n:l

[Hint: Write the expression in brackets as

13 1

! n=i + k
and use Riemann sums.]
® 40. Let R([a,b]) = {f: [a.b] - R|f is Riemann integrable}. Set

b
d(f.g) = J 1f(x) — glx)l dx .

Is d a metric on the space R{[a,b])?

41. Find an open subset of R contained in J0,1[ which does not have volume as follows.
(a) Review the construction of the Cantor set (see Exercise 38, Chapter 3}.

Tales
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(b) Modify the Cantor set by letting C, be obtained from C,., by removing the
middle 1/2%th from each interval of C,_, and letting C, = [0,1]. Set C =
ﬂ;‘; s Cre

(c) Show that o(Cy) = [T&, (1 ~ 1/2) = 1/4.

(d) Let U be the complement of C. Compute the boundary of U and using (c)
show that it cannot have measure zero. o .

This exercise also produces an example of a compact set C with empty interior

which does not have volume.

42. Find a subset 4 of [0,1] such that 4 = cl(int A) and yet bd(4) does not have
measure zero. (This exercise requires care and patience.)

L [(m\ . [2n VAU n -
sin| — Jsin{ — |- - - sin = .
' n n n 201

Use this identity to evaluate [§ log sin x dx.

43, Tt is a fact that*

44. Discuss generalizations of Theorem 9 to R".
45. Discuss generalizations of Theorem 9 from [0,1] to [0,c0][.

46. (a) Suppose U = ]—1,1[ x ]-L1[ « R?, f: U — R. Assume that §f/dx and
0df/dy exist at each point of U and are bounded on U, where (x,y) are the standard
coordinates for R?, Show that f is continuous at {0,0). :

(b) Show by example that boundedness of the partial derivatives is necessary in
part (a); mere existence is not enough.

¢ 47. For every « > 0 compare f§ x*dx with ¥ n*and 3"~ ! n*, and hence determine

. n

limit Z W .= :L:'
e

# 48, For any function f(x) continuous over the reals define the sequence f(x) =
nfErin fE@)dé for n =1, 2, 3, .... Show that df(x)/dx exists even if df(x)/dx
does not, and that f(x) = limit f,(x), and that convergence to the limit is uniform

when [ is uniformly continuous.

#49. Suppose {I,} is a collection of open intervals whose union covers a closed interval
. C on the real axis; show that some positive s exists such that every subinterval of
C no wider than ¢ lies entirely in at least one of the Is. ,

50. State whatever lemmas, theorems, and so forth are needed to justify each of the
following assertions.
(a) limit 3= 27*sin(k/n) = 0.

(b) If f(x) is given by a power series converging in ]~ 1,1], then the same is true for
fx).

(©) Let f(x) = tan(nx/2) and set a, = f“YO)/n!. Then }* a, is not a convergent
series. (Do not attempt to compute a,.)

* See J. Marsden, Basic Complex Analysis, W. H. Freeman, San Francisco, p. 24.
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51.

52.

¢ 53.

54.

(d) If f,(x) is differentiable on [a,b] with {f}(x)} < 10 for all n, and x  [a,b] and
f{x) = 0 at each x, then f,{x) — 0 uniformly.

(&) f(x) = Z COS,(; %) has a continuous derivative.
2 x99 100
—l—X=—7 """ = i > 0.
(f) I—x 5 991 L}IOO' or x

ax a

limit —— = =
®) i-'o sinbx b

() Y la,l < co then fo (X a, cos nx) = 27 a,sinnt.
(j) For some integer n,n > 10‘°°(log n)teoe n

Explain the following: A function defined on [0,co[ but not infinitely often
differentiable cannot be expressed as the sum of a Dirichlet series

IO =) ae™™.
n=0
[Hint:let t = —log x]

Let Q be the set of points (x,y) € R? that can be expressed in the form (sin 6 + sin ¥,
cos 6 — cos i) for some {8,3). Find an interior point of Q (that is, a point which
together with a disc around it belongs to Q).

Show that the series
& 1
,,Z‘, 2% — k sin(kx)
is uniformly convergent on R.
Prove the “dominated convergence theorem for series™: If
(i) for each k, af — a, asn — v, a, and af € R™;
(ii) for each n and k, ||a}|| < by, lla] < by, some by e R; and

(iif) 2= | by is convergent (so by the comparison test, 2 aand Yo
convergent); then

ap are

M
gk

a; —
1 k

a,asn — oo .

k 1

Give an example to show that condition (iii) is necessary, even if it is assumed that
Y, aiand ) a, are convergent.

Chapter 9

Fubini’s Theo?em
and the Change of
Variables Formula

9.1 Introduction

There are two fundamental integration theorems which help us to evaluate
multiple integrals. The first result concerns the evaluation of muitiple
integrals by means of iterated integration. Using this method, we can calculate
the value of a multiple integral by performing successive single integrations.

ExampLE 1. If 4 is the square defined by0 < x < land 0 < y <

J(x + Y)x dx dy J ( [x + yx] dy) dx
A x=0 =0

[feei)e

-

(=}

Pl

1
3 12"

If A is not a square but say a triangle then we extend the function to a
square by letting it be zero outside A. Then, in the above process, the y
integration becomes cut off at some point which depends on x, as indicated
in Figure 9-1.

The intuition behind this method is as follows. For a given function
f(x,9), 0 < x < 1,0 <y < 1, the number [} f(x,y) dy is the area under
the graph of f on the line x = constant. Integrating this area over x gives

299

N

1,then ...
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y y
1
[ £ y)ay 5o
0 f fx, y)dy
/ :
| g(x)
X F X
dx dx

FIGURE 9-1 Iterated integrals.

the volume under the graph. This then suggests that (4 fGx,y)dx dy =
{5 (8 fx,p) dy) dx. A precise result will be given in Theorem 1, called

Fubini’s theorem.
The second basic theorem of this chapter is called the change of variables

formula. This is used in conjunction with the above method to evaluate
certain types of integrals. The following example is typical.

EXAMPLE 2. Suppose we wish to evaluate [, (x* + y?) dx dy where A is
the unit disc, 4 = {(x,y) e R* | x* + y* < 1}. This is easiest to evaluate
if we change the variables to polar coordinates (r,0). The change of coordinates
is given By

x = rcos @, y=rsinf,

for r > 0, 0 < 6 < 2n. Then we have the “rule” dx dy = rdr df. Since
x% + y* = r?, we have

r

rL [2m
= j‘ r3 df dr

0=0

J(xz + y¥)dx dy = | r*rdrdf
A

Jr=0
ri
=| 2muridr=
Jr=0

Nl a

The justification of the “rule” dx dy = r dr d6 in Example 2 is given by
the change of variables formula (Theorem 3 below). Notice that the extra
factor risjust the Jacobian (x,y)/d(r,0) = r. However itis easy to heuristically
“justify” the rule by regarding dr and d0 as infinitesimals. Namely, dr
represents a radial infinitesimal while r d represents an infinitesimal arc
length. Thus r dr df is the area element in a sector bounded by r, r + dr

and 6, @ + d0 (see Figure 9-2).
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area = rdrdf

df

FIGURE 9-2

In the case.of one dimension the change of variables formula is very easy.
It states that if f is continuous on [a,b] and we have a mapping ¢: [«,f] —
[a,b] with @(x) = a, @(B) = b, ¢’ exists and is continuous, then

b g
f £ dx = f S0l du

To prove this, first find an F such that F' = f which is possible by the
fundamental theorem, and observe that

b
J J(x) dx = F(b) — F(a) .
Now let G(u) = F(p(u)). By the chain rule,
G'(u) = Flow)e'(u) = fle)e' @) .

Hence, again by the fundamental theorem,

, ,
J fle))e'(u) du = G(B) — Gle) = F(b) — F(a)

as required. (This theorem is also true if f is not continuous, but is merely
mtegrabl.e as we shall see below.) This technique is often called “integration
by substitution” and its power is well known to the student. '

E,XAMPLE 3. To integrate [ (1 + x?)'° x dx, let y = 1 + x? and note that
y o=2x,50[ (1 + x*) % dx = (1/2) | y'%' dx = (1/2) [ y*°dy = y''/22 +
C (C a constant).

The generalization of this result to higher dimensions is contained in the
statement of the change of variables formula; while it is a good deal more
subtle to prove, it is easy to understand and along with Fubini’s theorem is
the most powerful computational method we have.
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Exercises for Section 9.1

. 1. Evaluate [} x2¢** dx.

Usin x
, 2. Evaluate 5 dx.
o cos® x

-3, Evaluate [, (x + y?) dx dy where 4 = [0,1] x fo,11.
- 4. Evaluate [, e™*** dx dy where 4 is the unit disc in R*.

- 5. Bvaluate [, dx dy where A is the triangle in R? bounded by the linesx = 0,y = 0,
x+y=1 .

9.2 Fubini's Theorem

Let us now state the first of our two basic theorems. We start by giving

Fubini’s theorem for the case of the plane IR2 N
b aa/ CRSC e

Theorem 1. (i)' Let A be the rectangle described by a < x < b,
¢ <y < d,and let f: A — R be continuous. Then

Jf =r(rf (x,) dy) dx
A ad cb
=j (J fix,y) dx) dy:

b/ rd )
J G fx,9) dY> dx

means that the function

d
" g(x) =f fx,y) dy.

”

The expression

is'integrated froma to b. _
(ii) Suppose in (i) that f is integrable and the functionf,: [c,d] - R
defined by f(y) = f(x,) is integrable for each fixed x € [a,b]. Then

Jf =Jb(fdf (x,¥) dy) dx .
A a c

One can similarly assume that

J Sx,y) dx
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exists for each y and obtain

d b
[r=[ ([ renss)

As usual, we can apply this to a non-square region A by extending [
to be zero outside A and applying the above to a containing rectangle. .
Examples are given below. |

To be able to drop the assumptions of continuity or existence of the
iterated integrals and replace them by just integrability of f is, unfortunately,
not possible. To obtain such a general result the student will have to wait
for more advanced courses in measure theory. However in actual practice,
the above theorem is completely adequate. As mentioned in Section 9.1, the
result is, intuitively, entirely reasonable.

The following corollary is a typical application of Theorem 1. This
corollary can often be used effectively by breaking up a complicated region
into smaller regions to each of which the corollary applies.

Corollary 1. Let ¢, [a,b] — R be continuous maps such that
ox) < Y(x) for all xelab] and let 4 = {(x,y)|a < x<b,
o(x) < y < Y(x)}. Let f+ A — R be continuous. Then

b [/ ["(x)
ff =j ( Sx,) dy) dx
4 a \Jo(x)

There is an entirely analogous theorem with the roles of x and y inter-
changed. The corollary is an immediate consequence of the theorem if we
remember that f is extended to be zero outside 4. Theorem 1 and Corollary 1
are easily extended to multiple integrals, as shown in Theorem 2.

(see Figure 9-3).

vix)
[ 65, vy
#(x)

x |
T !
! ]
! !

X

FIGURE 9-3 Fubini’s theorem.




302 FUBINI'S THEOREM AND CHANGE OF VARIABLES

Exercises for Section 9.1
. 1. Bvaluate |} x%* dx.

! sin x
. 2. Evaluate - dx.

0 €08* X

-3, Evaluate [, (x + y?) dx dy where 4 = [0,1] x [0,1].
- 4. Evaluate [, e=**~7" dx dy where A is the unit disc in R*.

- 5. Evaluate [, dx dy where 4 is the triangle in R? bounded by the lines x = 0,y = 0,
x+y=1

9.2 Fubini’s Theorem
Let us now state the first of our two basic theorems. We start by giving

Fubini’s theorem for the case of/the plane R?. _
Latcea] CESE it

Theorem 1. (i). Let A be the rectangle described by a < x < b,
¢ <y <d,andlet f: A — R be continuous. Then

jf =r(ff e,y dy) dx
A ad cb
=J‘ (J fx,y) dx) dy.

The expression )

rgdf(x,y) dy) dx

means that the function

d
- g(x) =j fGe.y) dy.

”

is integrated from a to b. .
(ii) Suppose in (i) that f is integrable and the function f,: [c,d] = R
defined by f(y) = f(x,y) is integrable for each fixed x € [a,b]. Then

b/ (d
J.f =J (f f(x.9) dY) dx .
A a 4

One can similarly assume thatb

J S(x,y) dx

FUBINI'S THEOREM 303

exists for each y and obtain

Lf =f (f J(x.y) dx) dy.

As usual, we can apply this to a non-square region A by extending f
to be zero outside 4 and applying the above to a containing rectangle. .
Examples are given below. i

To be able to drop the assumptions of continuity or existence of the
iterated integrals and replace them by just integrability of f is, unfortunately,
not possible. To obtain such a general result the student will have to wait
for more advanced courses in measure theory. However in actual practice,
the above theorem is completely adequate. As mentioned in Section 9.1, the
result is, intuitively, entirely reasonable.

The following corollary is a typical application of Theorem 1. This
corollary can often be used effectively by breaking up a complicated region
into smaller regions to each of which the corollary applies.

Corollary 1. Let @, y: [a,b] - R be continuous maps such that
¢(x) < ¥(x) for all xelab] and let 4 = {(x,y)|a < x<b,
o(x) < y < Y(x)}. Let f: A — R be continuous. Then

b/ (P(x)
ff =I ( Sfx,y) dy) dx
4 a \Jo(x)

There is an entirely analogous theorem with the roles of x and y inter-
changed. The corollary is an immediate consequence of the theorem if we
remember that f is extended to be zero outside 4. Theorem 1 and Corollary 1
are easily extended to multiple integrals, as shown in Theorem 2.

(see Figure 9-3).

Vix)

ff(x, »)dy
#(x)

- X

FIGURE 9-3 Fubini’s theorem.
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< (1,0,0)

S

x
FIGURE 9-4

Theorem 2. (i) Let A = R" and B < R" be rectangles and let
[iA % B = R" x R" — R be continuous. lDeﬁne, for each x € A,

fi: B < R™ = Rby [i(y) = f(x.y)- Then

L [ (e ) i = [ ([ pr ) .

(ii) Iffisintegrable and f, is integrable for each fixed x, then again

j f=qu(x,y)dy_)dw
AxB A B

Similarly, if {4 f(x,y) dx exists for each y, then

J . f——-j(Jf(x,y)dx) dy.
AXB B\JA

‘In practice, this theorem may be used repeatedly to reduce a problem to
jterated one-dimensional integrals.

ExampLE 1. Evaluate |
j(x +y + 2)*dx dydz ) o
4 .

where 4 is the three-dimensional volume sketched in Fi"gure 9-4.
i - -
Solution: We proceed in the following manner. Here A is simply the 'set .
{x,y,2) € R3 |x 20,y20,z20andx+y+z< 1}. Hence 4 consists
Lo

[ ;
i

S R
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of those points (x,y,z) for which x 20, y > 0, x + y shl, and 0 € z
1 —(x+y). Let B={(x,)|x>0, y>0 and x + y < 1}. Then by
Theorem 2, and remembering that f is zero outside 4,

I—(x+y)
J(x+y+z)2dxdydz=f(f (x+y+z)2dz>dxdy.
A 0

B
Similarly, B consists of those points(x,y) for which x & [0,1]and y € [0,1 —x],

50 1 flex fl—~(x+y) s
J‘(X+Y+Z)2dXdde=JJ‘ f (x -+ y+ 2?dzdydx.
4 oJo Jo

Now use the fundamental theorem to evaluate these integrals. First note

that s 33
W‘l'=(x+y+z)2, ’

so performing the z integration yields

j(x +y +z22dxdydz =J“J‘1""((x ty +1- ()
A 0J0 3

_(x+y+0)3>

dy dx

3
L e+ ) o)
BT P

Again, using the fundamental theorem, the integration yields

(YA =% +0-x)* &
“L( 3 2 +'17>d’°

_11§1+x"’d
=LET3IT TR

1 1+L_15—10+1__ 1

T4 6 60 60 S 10

For improper integrals it is generally sufficient to apply the theorem first
on a bounded region and then take limits. See Example 1, at the end of the
chapter.

ExaMpLE 2. In the following integral change the order of integration and
evaluate: [§ (1 xy dy dx.

Solution: The region in question is shown in Figure 9-5 (see Corollary 1).
In the reverse order, we get

1fy 14,3
y 1
X dxd = —-—d = -,
LL yaxa L 2773
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The proof of this theorem requires some subtle manipulations but we can
L‘i ~ give a fairly simple intuitive proof as follows.

. To begin, let us suppose we isolate a small rectangle S in 4. Then gis
approximately affine near S, so g(S) is approximately a parallelepiped. See
Figure 9-6. If g were affine, the volume of g(S) would be i(det §)| v(S) where
g is the linear part of g. However, g(xo) + Dy(x,) approximates g well
near X, and is affine, so v(g(S)) ~ |Jg| v(S). Thus

flgex) gx)l dx ~ f(y) dy

where y = g(x), and so “adding” these infinitesimal quantities gives the
result. .

FIGURE 9-5

Exercises for Section 9.2

. . ExaMpPLE1. Whatisthe volume of the parallelepiped spanned by the vectors
i 1. Show that the volume of region 4 in Example 1 is 1/6.

(1,1,1),(2,3,1), (0,1,1) in R??

Solution: These vectors are the images of the standard basis under the
linear mapping with matrix

i 2. Draw the region corresponding to the integral {§ [$” (x -+ y) dy dx and evaluate.
. 3. Interchange the order of integration in Exercise 2 and check that the answer is
unaltered.
+ 4. Let A be the region in R® bounded by the planes x =0, y = 0, z = 2 and the
surface z = x* + y*. Show that
NG

Lxdx dydz = 8—1-5—

1 2
13
11

LS N - |

By Theorem 3, the volume of the image set B is |det g| times one, the volume
of 4 (the unit cube in R?). This determinant is easily seen to be 2, so the
volume required is 2.

.3 Change of Variables Theorem
%3 g ’ ExampLE 2. Evaluate f§ [§ (x* — y*) dx dy using the change of variables

=x? - 3%, 0 = 2xy.

4 g B ‘
/‘\ X ‘:

s

&(s) :

FIGURE 9-6 Change of coordinates.

Next we turn to a rigorous statement of the change of variables formula for
multiple integrals.

Theorem 3. Let A = R" be an open bounded set with volume and
let g: A — R be a C* mapping which is one-to-one, Jg(x) # 0 for all
xe A and IYg(x)I, 1/\Jg(x)| are bounded on A. Let B = g(A4) and
assume B has volume. For f: B — Rbounded and integrable, f - g|J(g)|

is integrable on A and {_ R o
ff=j(f°g)119|,
B 4

a(glr - '7gn) ...
J‘Bf(yla' . )yn) dyl e dyn =‘[1f(g(x1" . ',xn))mdxl dxn .

that is,
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FIGURE 9-7

PR

Solution: Take B = 0,1 x J0,1[ and let g be the map taking (u,0) to
‘the corresponding (x,), so g~ '(x,)) ‘= (x* — y*,2xy). The region 4 corre-
sponding to B is shown in Figure 9.7. We can check that g: 4 - B is one-
to-one and

1 1
Jo0) = 7o) T A+ P
since
ouy) |2x -2y 2 )
— = = 4(x* + )
ax,y) 12y 2x ( )
which is non-zero. Thus by Theorem 3 our integral is*

]

" dudy 1
o u-(x? + 2————————=—jududv.:
‘ | L O+ ) v 4,

Each integral can also be evaluated directly:

11 1 1 -
J J(x‘* — yHdx dy =j (— - y‘*) dy =0.
0JO 0 5 -

2 1 —(v?4)
J‘ududv:JJ' ududo = 0.
A 0 J(w?/4)—1

Exercises for Section 9.3

Similarly

s 1. Show that Theorem 3 contains the one variable theorem discussed in Section 9.1

as a special case.

¢ 2. What is the volume of the parallelepiped spanned by (1,1,1,1), (0,1,1,0), (2,0,3,0),
{1,1,0,1) in R*?

* Strictly speaking, one should apply Theorem 3 only to the integral ff f! (x* — y*) dxdy
and then let & — 0 in order to make Jg(u,v) bounded (a refinement shows that this assumption

is actually not necessary).
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r 3. Transform [} [} (x? + y?) dx dy using the change of variables x = u + v,y = u — v.

4. Show that the volume of the parallelepiped spanned by vectors vy, ..., v, in R’ is

given by |det A;|'/* where 4;; = v,

¢5. Show that the area of the ellipse x*/a® 4+ y2/b®> < 1 is nab by making a change of
variables and reducing the problem to one of finding the area of a circle.

9.4 Polar Coordinates

One standard application of the change of variables formula is to the
evaluation of integrals using polar coordinates. The function which changes
from polar coordinates to the standard rectangular coordinates is g(r,0) =
(r cos 0, sin 8).

cosd -—rsiné

Jg(r,0) = =rcos? @ + rsin? 6 =r.

sinff rcosf

If we consider g to be defined on the set {(r,0) l r> 0,0 < 0 < 2r}, then
Jg(r,0) is never zero and g is one-to-one on this set. We leave to the student
the verification that g is one-to-one. Although the image of this function
excludes the set of points on the x-axis with x > 0, this is a set of measure
zero and therefore does not contribute to the value of an integral. (See
Theorem 8.4, and Figure 9-8.)

ExaMPLE 1. Consider a thin plate in the shape of an annulus with inner
radius 1, outer radius 2, and mass density equal to 1 /r3 at all points a distance
r from the center. Compute the total mass. See Figure 9-9. If we let B denote
the annulus, then B is the image (except for points on the positive x-axis)
under the polar coordinate map g of 4 = {(r,0) |0 <8 <2ml<r<2}

FIGURE 9-8 Polar coordinates.
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] 2

x, 5 2)

T

~
P S ———

Vi
/

<

FIGURE 9-9

X

Hence the required mass is given by

' FIGURE 9-10 Spherical coordinat
J(x2 + ) dxdy = j (1/r®) Jg| dr a6 =J 1/r% dr df inates.
B A 4

Hence _:Ig(;',(p,()) # 0 in the region specified above; g is also one-to-one on
the region. Therefore the change of variables formula can be used to give

2n *2 2n
=j j‘l/rzdrd() =j (=1/2+ 1)d8 = x.

0 Ji 0

\J‘ f(x,y,z) dx dy dz
g

Exercises for Section 9.4
(d)

Evaluate the integrals in Exercises 1 and 2 using polar coordinates.
a

v1. [pexp(x® + y?) dx dy where D = {(x,) | x* + y* < 1}, = . - . ) )
" Af(’ cos 6 - sin @,r sin 6 - sin .- cos @)r® sin ¢ - dr do d6 .

22, [pln(x? + y)dxdy  whereD = ()| x>0y 208 < x> +y* < b*}.

+3. Find the area of a circle of radius r using polar coordinates. E )
XAMPLE 1. Suppose we are given the function f{(x,y,z) = x* + y* + 22

and we want to integrate it over the set B = {(x 2
: i = {(x,y,2) | x* + y* + 2% < 1}.
Then B is the image under g of 4 = {(r,,6)|0 l< r< {,0 <f< 271

9.5 Spherical Coordinates 0 < ¢ < =} (except for the points of B on the xz-plane where x > 0). Hence

L(xz +y?* + 2% dxdydz = | r*|Jg| dr do df

A

r~

The same techniques which were applied to polar coordinates can also be
applied to spherical coordinates. Here, let g(r,p,0) = (rsin @ - cos b,
r sin 0 - sin ¢@,r cos @) and consider g to be defined on {(r,0.0) { r>0,
0< P < 210 < @ < =n}. See Figure 9-10. The image under g of this set
is all of R? except for the part of the xz-plane where x > 0. But we know
(see Exercise 5, Chapter 8) that this is a set of measure zero and so can be
safely neglected in integrals. The Jacobian determinant is given by

=|r*-r’sinpdrdpdf (sincesin¢ > 0in
therelevantregion)

Y

A
f2r (*m 1

= ffr‘*sinqodrdgod()
o JoJo

27 (= sin
f 2 dp do
o 5

2n 4
2d0 = |-
[(2a0= (2r.

sin ¢ cos @ rcos @ cos b —rsin @ sin 0

Jg(r,p0) = |sin@sinf rcoso sin@ rsin@cosf

cos @ —rsin @ 0

i

rtsing.
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Exercises for Section 9.5
¢ 1. Show that [j, el *7*+2%%) dx dy dz = 4n(e — 1)/3 where D is the unit ball in R>.
2. Let D be the unit ball in R3. Evaluate
dx dy dz

D2 4+ x* 4+ y? 4 22

9.6 Cylindrical Coordinates

Cylindrical coordinates are treated much the same way as polar and spherical
coordinates. The appropriate mapping is g(r,8,z) = (r cos 8,r sin 8,z) on the
set {(r,0,z) | r > 0,0 < 6 < 2x}. See Figure 9-11. The Jacobian is Jg(r,0,7) =
r, so the change of variables theorem becomes

flx,y,2) dx dy dz =j f(rcos 8,rsin 8,2)r dr df dz .
gld) 4

This is useful for triple integrals which have “‘cylindrical symmetry” as
opposed to “‘spherical symmetry” problems for spherical coordinates.

—x2—y2

ExampLE 1. Evaluate [, ze dx-dy dz over the region
. R={xy2)|x*+y*<10<z<1}.

Solution: Here we get

1 2n 1 T
j" J j zerdrdfdz == (1 —e™Y).
z=0 J0=0 Jr=0 2

FIGURE 9-11
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Exercises for Section 9.6
* 1. Evaluate [, z./%* + y? dxdydz where D = {(x.y.2) | 1 < x> + y* < 2,1 <2< 2}.

11 pvT—yT
o 2. Work out J J j 2(x? 4+ y?) dx dy dz by using cylindrical coordinates.
0J~1J-VT552

3. Make a change of variables to evaluate [, cxp(x ty ) dxdy where D =
{en]0<y<x0<x<1} x-=y

3

9.7 A Note on the Lebesgue Integral

Several times in this and the previous chapter, we have hinted of the existence
of another theory, of integration. There is such a theory called the Lebesgue
theory. We shall now discuss the need for this theory and its basic underlying
differences from the Riemann theory.

The need for the Lebesgue integral is largely a technical one. Namely,
some functions might not be Riemann integrable and we might wish to
integrate them anyway. For example, such a function can occur as a limit
of Riemann integrable functions (a uniform limit of Riemann integrable
functions is Riemann integrable, but a pointwise limit need not be). It is
-desireable, however, to work with “complete’ spaces which contain limits
of Cauchy sequences; for example R" in Chapter 2 and %(4,R) in Chapter 5.
In the next chapter on Fourier series we shall see a useful space of functions
with the property that convergence in this space may be pointwise but not
necessarily uniform. The Riemann theory is not sufficient to integrate such
limit functions.

Henri Lebesgue’s problem was to find a more general theory of integration
than the Riemann theory and which, moreover was more useful technically.
Actually, this is a simplification-—the factual history is more complicated.
For example, his work first received prominence when he used his ideas
to give a characterization of Riemann integrable functions (see Theorem 3,
Chapter 8).*

Here we can give only the briefest glimpse of the ideas. To develop them
fully requires a course in itself (see for example H. L. Royden, Real Analysis).
. The basis of Lebesgue’s theory is as follows. For the Riemann integral,
the area under the graph of a function was divided into vertical rectangles
in order to define the integral. But why could it not be divided into horizontal
rectangles just as well? See the illustration in Figure 9-12.

Intuitively this type of subdivision, where we take a partition on the y-axis
rather than the x-axis, ought to yield the same area. But in fact, there is a

* For historical details see, for example, M. Kline, Mathematical Thought From Ancient to
Modern Times, Oxford (1972).
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y ) y

xoxlxz xi X

FIGURE 9-12 (a) Riemann approximations.
(b) Lebesgue approximations.

technical difference and Lebesgue’s idea (horizontal rectangles) is what we
want. This also leads to more complicated mathematics and let us now see
why.

Let f: [a,b] = Rand suppose fis boundedand >0.Letyo < y; < -+ <
y, be a partition of the range of f. Our candidate for an approximating sum
is (look at Figure 9-12 to see this):

> (31 — ¥ - (length of the “interval” {x | /(x) > y:}) -

The technical point is that {x | f(x) = y;} = I; might be a complicated set;
after all the Riemann theory can already handle ‘““decent™ functions, so we
have to be prepared to handle fairly complex ones. Thus our problem is that
if I; is a eomplicated set, how do we compute its length? This is where a
' main part of the Lebesgue theory comes in. One first has to develop the
idea of the measure (or length) of a set. This turns out to be a bit complicated,
but once this measure theory is developed, one can then proceed with the
study of the Lebesgue approximating sums given above. Note that we
already have seen one aspect of “measure” in Chapter 8 when we studied
sets of measure zero. This concept is taken directly from the Lebesgue theory.

The conclusion is, therefore, that with considerably more eflort, 2 more
comprehensive theory of integration (which includes the Riemann theory as
a special case) is possible. In more advanced areas of mathematics, the
technical rewards are more than worth the extra effort involved.

Theorem Proofs for Chapter 9

Theorem 1. (i) Let A be the rectangle described by a < x < b, ¢ < y < d, and let
f: A — R be continuous. Then

b d
J f=f (ff(x,y) dy) dx
4 a c
d b
=J (ff(x,y) dx) dy .
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(i) Suppose in (i) that f is integrable and the function f,: [c,d] - R defined by f(y) =
S(x,y) is integrable for each fixed x & [a,b]. Then

b d
Lf =J (Jf(x,y) dy) dx .

One can similarly assume that

b
f S(x.y) dx

[-[([rerer

Progf:  As (i) is a special case of (ii), we only need to prove (ii). Let g: [ab] = R-R
be the function defined by

exists for each y and obtain

d
g(x) =Jf (x.y)dy .

We must show that g is integrable over [a,b] and that

b
jf=fg(x)dX-
A a

Suppose a = xp < x; < <x,=band c =y, <y, < - <y, =d are par-
titions of the intervals [a,b] and [c,d]. Denote by Py, the partition of [a,b] given by
the sets V; = [x,_,,x], denote by P, the partition of [c,d] given by the sets W, =
[¥)-1.y,), and denote by P, the partition of A given by the sets

SU = [xi—nxi] x [}’j—u}’j] .

L(f,P,) = ; mg, (f)0(S;)

= ; (IZ '"su(f)v(Wj))v( V)

where mg(f) is the minimum (inf) of / on the set S. For x € ¥, we have mg, () < my (),
where f, is defined by f(y) = f(x,y). Hence

Then

'd
;ms,,(f)v(wg) < jme,m)u(W,) < f Sy dy = g(x) . ,

As this inequality holds for any x € ¥, we get

jZ ms ()W) < my(g) .
Therefore
LUAPa) < 3, my (g0(V) < L(g,Pros) -
i
From this and from a similar argument for upper bounds we obtain the inequalities

L(f,P,) < Lig,P, [n,b]) < Ulg,P, [a.b]) S UPY.
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Since f is integrable over 4, the above inequalities show that g is integrable and

b d b
f Uf(x,y) dy) dx =J g(x) dx =J f.
a 3 . a 4

Using the same argument as above, we can show that if we assume §P 1x,y) dx exists

for each y, we get .
d
Lf ==J (Jf(x,Y) dX> dy.

Corollary 1. Let ¢, y: [a,b] — R be continuous maps such that o(x) < Y(x) for all
xe[ablandlet A = {(x,y) la < x < bplx) <y< Wx)} Let f1 A — R be continuous
or piecewise continuous. Then

b Wix) '
Jf =J ( S,y dy) dx .
4 a olx)

Proof: Let S = [ab] x [¢,d] be a closed rectangle enclosing 4 and extend f to S
by setting it equal to 0 on S\A. The two sets graph(p) = {(x,¢(x) | x € [a,b]} and
graph(y) = {(x,W(x)} | x € [a,b]} are (by Exercise 23, Chapter 8) of measure zero.
Thus the set of discontinuities of f defined on § is of measure zero, and thus f is
integrable over S. Also for any x, f, is continuous on [¢,d], except possibly at ¢(x) and
1#(x), and so £ is integrable for any x e [a,b]. Thus we may apply Theorem 1 to get

W(x)
ff Jf f A )dydx—f< L(y)dY>dX-l
lx)

The proof of Theorem 2 is entirely analogous to the above proof, and so it will be left
as an exercise.

We therefore turn to Theorem 3. The proof of this can be very laborious if not dealt
with effectively. In particular the idea given in the text, p. 307 is hard to make precise
if we interpret it too literally. The proof we give herfe is due to J. Schwartz in the
“American Mathematical Monthly,” 61 (1954) 81-85.

Theorem 3. Let A < R be an open bounded set with volume and let g: A - R" be a
C' mapping which is one-to-one, Jg(x)} # 0 for all xe A and Jg(x)], 1/Jg(x)| are
bounded on A. Let B = g(A) (an open set by the inverse function theorem) and assume B
has volume. For f: B — R bounded and integrable, f o g |J(g)| is integrable on A and

Jf ==J(f°g) gl
B A

a(gly . 7gn)
X)) I g L,
J fg(x1: X, a( e e ’x") X1 X

that is

J‘f(yl" . ‘:yn) dyl '
n

Note: By a careful analysis of the proof one can show that f and |Jgl, |Jg|~* need
not be assumed bounded (see Section 8.7 for improper integrals and see also the remark
on p. 326).

THEOREM PROOFS FOR CHAPTER 9 317

The first stage of the proof consists of establishing our formula when g =L is a
linear map, in which case JL = det L. This yields the geometric interpretation of
det L: it is the factor by which volumes are changed under the transformation L.

Since we do not want to assume this from linear algebra, we will go through the proof
in some detail. We do need, however, to recall these two standard facts from linear
algebra: (i) det TS = det T+ det S, and, (ii) any matrix is a product of elementary
matrices (see M. O’Nan, Linear Algebra, pages 91 and 241).

Lemma 1. . IfL: R" = R" is a linear map and A < R" is a set which has volume (that is,
§a 14 exists), then the volume of L(A) is |det L|- v(A) ie fumls=[4ldet L|. (Sec
Figure 9-13.)

Proof: We will first consider the special case where A4 is a rectangle and L is a linear
map whose matrix in: terms of the standard basis is of one of-the following two types:

10 0 10 o
01 01
1
1 i
L, = c oo L,= 1
10 10
\0 P 0 1/ \0 e 01)

(The first matrix is obtained from the identity matrix by replacing a single diagonal 1
by a constant c. The second matrix is obtained from the identity matrix by writing a
single one anywhere off the diagonal. These are called the elementary matrices.)

= A/
T
! L{A)

Al oo
7/

FIGURE 9-13 Image of a rectangle
under a linear map.
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©ol 1,0

(a) (b)

FIGURE 9-14 Image of a rectangle
under an elementary matrix L.

IfA = [a;,b,] x -+ x [a,b,] and ¢ is in the ith row, then
Ly(A) = [ay,b,] x -+ x [eapeb] x « -+ x [a,b,]

so that obviously the volume of L,(4) = v(Ll(A‘))' = |lc| v(A4) = |det L] v(4).
Now if the 1 off the diagonal is in the (i,j) position, then

Ly(A) = {(egs o oXim g% + XpXig g5 - 0Xy) } x, € [a,b,]}

for 1 < k < n. (See Figure 9-14.) It is clear from the illustration that the volume in
Figure 9-14b is the same as in Figure 9-14a, because they both have the same base and
the same height. This fact can be verified analytically as follows. The set L,(4) can be

broken up into three regions:
’ {(xlr- s aXi— 1% + xjrxH-h- . .,X") | Xk € {ak’bk]
forl<k<n and a+a<x+x<a+b}
H{ET T A XjaXp4 190 %) ! % € [a,b,]

forisks<sn and a +b, < x +x; < a; + b}
{Gepse + ovXpa 1% + XpXps g0 - %) | X € [B,bi]
forl<k<n and a,+b,<x,:}-x,<b,+bj}.

By Fubini’s theorem, the volume of the first set is
b, - a,) s lbey = @ Ybpey — @ey) (b;~1 - “}—1)(b1+1 - a;ﬂ)"'

ay+by aytagtby—x; )
b, — a,) <J 1 dxj) dx; .

aphay a;

Now by the fundamental theorem

ag+by ay+agt+by—x a;t by
j ‘ (J‘ ldx,) dx; =f {a; + by — x;) dx,
a agtay

agtay 53
= (a, + b)b; — a) — Ha, + bj)z -~ Ha, + “1)2

=4b; — a)*.
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Thus the volume of the first set is

by —a) (boy - o by — @) by - a;_y)
by = Ajpg) (b, ~ an)%(bj - a])z .

We can perform a similar integration over the third set to find that its volume is the
same as that of the first. The second set is a rectangle with volume

by —ay) - bi-y — G )bisy ~ Gpyy) e (bj-l - aj—l)(bj+l = Gyyq)
(bn - an)(aj + bi -4 — b])(b] - a]) N

The volume of L,(4) = sum of the above three volumes — (by — ay)- - (b, — a),
that is, the same as that of the rectangle [a;,b,] x « - x a,,b,]. Thus we have
ULy(A)) = |det L,} o(A), since det L, = 1. :

Now let 4 be an arbitrary set with volume and let L, be one of the elementary matrices.
Assume that det L, 5 0 (that is, ¢ % 0 if L, is an elementary matrix of the first type).
Let S be a rectangle enclosing 4 and let P be a partition of éi into subrectangles
S{y. .., Sy, such that

U(14,P) — v(4) < &2 |det L,()"\ and v(d) — Lf{1,,P) < &2 |det Ll)".\

Then if we consider the sets ¥, = U {S,|S; = 4} and W, = U {Si|Sind=g},

we have the result for rectangles that o(L(V)) = |det L] L{1,,P) and v(L(W) =
Jdet L] U(1,,P). So u(L(W,)) ~ v(L(V))) < ¢, and thus Li(A) has volume and vo(L,(4)) =
/det Lf v{4). If det L, = 0, that is L, is a matrix of the first kind with ¢ = 0, then
u(L(S)) = O for any rectangles $, so v(L(A4)) = 0 for any set 4 with volume.
Now let L be any linear map and let 4 be any set with volume. From fact (i) men-
tioned earlier, we can write L = L,L; - L, where the L, are elementary matrices.
By repeated application of what we have proved above, it follows that L(A) has volume

and
W(L(4)) = Idet Ly] [det Ly - - - [det L,| o(d) = |det L| u(4) . J

Lemma 2. Ifthe theorem is true for the functionf = 1, then it is true Jor any integrable f.

Proof: If the theorem is true for f = 1, it is true for any constant function (why?).
Now let f be any integrable function on g(4). Let § be a rectangle enclosing g(A) and let
P be a partition of g(4) into rectangles Sy, ..., Sy. Recall that we define mg(f) =
inf{f(x)| x € S;}. Denote by s (f) the constant function on S, with constant value
mg(f). Then

N N
L(£,P) 2.21'"5'( oSy =,Z‘; L ms(f) :
N N
= f (ms(f)og) gl < ), f (fog) gl
g~ sy i=1 Jg-}sy

i=1 1

=f (fog) Vgl =f(f°g) gl .
g7 1(S) 4

Hence

f fSI(foy)IJgi .
g(A4) A
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A similar argument with Mg (f) = sup{f(x) | x € §;} shows that

J f>f(f°g) /gl
a(4) A

J f=J(f°g)}Jgi- B
a(A) 4

Lemma 3. The theorem is true if g is a linear transformation.

Proof: By Lemma 1,
‘[ 1=j |det g| =J gl ,
[1[%3) 4 A

_[ f=J(f°g)IJgI- B
(1% A

One more key observation is given in Lemma 4.

so that

since g = Dg. By Lemma 2,

Lemma 4. If the theorem is true for g: A » R" and for h: B — R®, where g(4) = B,
then the theorem holds for hog: A — R".

Proof: Make the following computation:

j f= f=j (f o ) WA
hog(d) Jhig(d)) g(4)

r

=| (fehog)lJhlog) Vgl
A

I

=| (folheg)W(hog). @
A

o

Some special notations will enable our proof to run more smoothly. If x € R", so that
x = (X, . .,X,), we put |x} = max J}. This “norm™ has the convenient property that
. 1€isn

in terms of it, a cube with center p and side of length 2s can be characterized by the
restriction |x — p| < 5. If A: R" — R" is the linear transformation represented by the
matrix a,;, so that

n n
Ax) = Alxy,. . ox,) = ( Z“ij’- e Za,,jxj> ,
j=1 j=1

we put
n
Al = max a,l .
Il ms”;m

Thus, JA(x)| < |4} ix. We also introduce the Jacobian matrix j(x) = (ju(x)) of the
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transformation g(x) = (g,(x) * - - g,(x)) by putting

0
jik(x) = gix) .
k

If C is a cube in the open set A4, such that C is the set of all x characterized by
a condition of the form |x — p| < s, then »(C) = (2s5)". We have, by the mean-value
theorem,

o) = aip) = Y. Julp + 06x = Py = ),
where 0 < 0,(x) < 1. It follows immediately that
lg(x) — g(p)l < s max |yl ;
that is, g(C) is entirely contained in the cube defined by
! |z — gl < s max L)

so we sce that il g{(C) has volume, then

wg(C) < { max o v(C)} . ‘ tY]
To ensure that g(C) has volume, we prove another lemma.

Lemma 5. If h: U c R = R is a C' map which is one-to-one, Jh(x) #0, U isa
bounded open set, and C is a set with volume such that ci(C) = U, then h(C) has volume.

Progf: 1tis sufficient to show that the boundary bd(h(C)) has content zero. First show
that bd(C)) < h(bd(C)). Indeed, let x € bd(h(C)). Then to show x € h(bd(C)), let
y = h~Y(x). Then we must show y & bd(C). Let ¥ be a neighborhood of y, and suppose
V < U. Then (V) is an open neighborhood of x, since h™* is continuous. Thus, k(V)
contains points of A(C) and R™\A(C), since x € bd(#(C)). Then as h is one-to-one, V
contains points of 4 and R\C, so y € bd(C). Applying this argument to h™t, we see
that in fact bd(h(C)) = h{bd(C)).

To show that A(bd(C)) has volume zero, given s > 0, cover bd(C) with rectangles
B,, ..., By of total volume < & Equation 1 showed that h{bd(C)) lies in a covering by
rectangles with total volume (max |Jh(x)))s. Here the maximum is over By U -+ - v By.
This shows that &(bd(C)) has volume zero. §

By Lemma 3 we see that il 4 is a linear transformation and S has volume, then

WA~XS)) = det(A™Hu(S)

3

{take f = 1 on A™Y(S), / = 0 on the complement, and apply Lemma 3). Now in Eq. 1
let S = g(C) which we now know has volume; then since

Idet(4 ™) v(g(C) < {tyeacx 4™ Y)l}"v(C) ,

we obtain

(g(C)) < |det(A)] {’5’5}" M- lj(y)l}v(C‘) . 2
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Now, let the cube C be subdivided into a finite set C; - - - Cy, of non-overlapping cubes
with centers x; - - - X, and, suppose that & is greater than the length of a side of any of
them. Apply Eq. 2 to each 'of C, * - - Cy, taking, however, 4 = j(x,) in applying Eq. 2
to C,;; then add. This gives

‘M "
(g(C) slzlldet(j(x;))l {Tsag 1" ‘(xe)i(y)l} u(C) .

Now, since j(x) is a continuous {matrix-valued) function, J~Y2)i(y) approaches the
identity matrix d;; as z approaches y, and hence

4

{ryré%:‘c Ij"’(Xz)i(y)I} < 1+10),
where () approaches zero with . This gives
M
og(C) < [1 + n(@)] ) ldet(lx)l o(C) ;
i=1

as 0 approaches zero, the sum on the right approaches {c Ig(x)| dx, and the inequality
becomes

v(g(C)) Sf |Jglx) dx . 6
c

If we examine the proof of Lemma 2 more closely and remember f = 0 outside B we
get from Eq. 3 that
J‘ f <J(f°9)l-’gl . @
M oA 4
Actually, Eq. 4 is enough for the theorem because Eq. 4 can be applied equally well to
-1
g~ ! to get

(fogog ") Jgog™-Wg~ 1l
() -

f(fog) Mgl <
A

. Lfog{JgIS I 5

g{4}

Combining Egs. 4 and 5 gives the theorem. §

Worked Examples for Chapter 9
1. Use the change of variables formula and polar coordinates to show that
J e~ dx = \/;

(the function e~** is called the Gaussian function; see Figure 9-15).
Solution: To use polar coordinates, we want to employ the expression x? + yh

WORKED EXAMPLES FOR CHAPTER 9 323

I x
FIGURE 9-15 Gaussian function.

Therelore let us consider
I, =j e~ dx dy
Ay

where A4, is the ciréle centered at the origin of radius b. Thus

b 2r
I, =J‘ J e~ rdf dr
r=0 JO=0

which we evaluate by iterated integrals to obtain

b

I, = ZnJ‘ re” " dr = n(l — ™%
r=0

since

d 2
E:(e“’z) = —2re”"".

On the other hand, we want to relate I, to

b

J‘ e~ dx .

—b

To seec how this is accomplished, note that the improper integral
f e P dx dy = limit n(l — ¢ ) = x.
R? betco

Since the integral exists and ¢~**~** > 0, we can evaluate the improper integral any
way we please (Theorem 7, Chapter 8). Let us evaluate [p. e™**=¥ dx dy using the

rectangle [—b,b1% = [—b,b] x [~b,b]. Thus )

f e~V dx dy = IimitJ e™ ¥ dx dy
R? [~bb]2

b=

(] b b 2
J- e dx dy = <J e dx)(J. e~ dy) = <J e dx)
[~bb)2 -t AN -t

by Fubini’s theorem, and the fact that e™**~»* = ¢”*¢™**. Hence

b 2
limit (j- e~ dx) = 7.
b-+ o0 -5

but
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2

Thus, as e”** = 0, we have

o0
j‘ e dx = ﬁ
- o0
as required.

(Differentiation under the integral sign.) Suppose f* [a,b] x {e.d] — Riscontinuous

. and 9fJ@y exists and is continuous on [a,b] x [c,d]. Let

b
F(y) =Jf(x,y) dx .

Then prove F is differentiable and

b3
F(y) = f 5§ (xop) dx.

a

Solution: Consider

b
CEUELON e [Hrrr BoSED 2y is
7 o 0y a h 9
b 9 Fij
= J:' %(xﬁx.lx) - 'é-'[;‘(x’})) dxl

for some c,;, between y and y + h, by the mean-value theorem. However, 3f/dy is
continuous and hence uniformly continuous on [a,b] x [¢.d]. Thus given & > 0,
choose 8 > 0 such that

’ l of o

“a;(xo»)'o) - 5; (X,Y)} <

&
b—-a

iffx — xgl < dand |y — yol < 8. Therefore let {h} < 6. Then

Fly + h) = F(y) _J"Q{
h dy

(x,y) dx

sz

In part, this result justifies differentiation under the integral sign. There are analogous
theorems for improper integrals.

a

d 9
'a-g (xfcx.h) - l' (x:y)

oy b —

. Compute the volume of the ball of radius r in R* and center the origin (that is, of the

set {x e R" f x| < .

Solution: Use induction on the dimension n. Of course in R the ball is simply the
open interval J—r{ and has volume 2r. Suppose we have computed the volume
of thenn — 1 ball of radius r to be a,_,r"~* (at first, one guesses the answer will be of
this form; this is reasonable since the n — 1 ball is an n — 1 dimensional object).
Then, since the boundary of the n-ball has measure zero, we may apply Fubini’s
theorem. For each fixed x,, 0 < x, < r, the cross section of the n-ball of radius r,
which is denoted as B(n,r), is

{(erse  XpmroX) | XF 40+ x2_, < rt—x2,

dx < ——b—a) =¢."
a

. o(BS,r)) =2 a, -1 -
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which is an (n — 1)-ball of radius (r* — x?)*/?. Hence Fubini’s theorem allows us
to write

r ae
pt
J 1 =j (f dx, - - - dx,,-,)dx,,
Bin,r) -r B(n—l.(1'2—-.r,2')l/2)

giet!t r

. v
=J a"_l(('.Z — x3)1/2)n—1 dx,, X

-r

Now let x,=rsinf® for 0 < 6 < n/2, and hence (? — x2)!/2 = rcos§
dx,/d0 = rcos § > 0 on J0,1/2[. Thus W =700 and

j 1 =J‘ au-l«rz hand xf)l/l)n—l dx,,
Bin,r} .

-r

= 2f gy ((F? = X231 dx,
0

2
= 2j a,_(r cos 8)"~tr cos 0 do

0

/2
= 2a,,_1r"f cos” 0 df

0

2
= az", where a, = 2a,,_1J cos" 0.d6 .
0

Using elementary calculus, one finds

(n=1mn =3
)2 . W n odd e
j‘ cos" 8 df =
w2 2 neven .
Hence we have
v(B(1,r)) = 2r
oBEY) =2 ay 1 (%) . (;_t) - 5
U(B(3,I‘)) =2 a,’ ’-3 . (Z) — <g_>7n_3 . 4
oB@,) =2 ay - ,.4.( (75‘ _ _752:4

[+
-] oW W
I =T A
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I
G ]
u-|°°
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wn

v(B(6,) = 2-
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4. Improve the change of variables formula by replacing “A is open” with “A4 has

volume.”
Solution: There are two ways in which this can be done, and both shall be given as
theorems. N

Theorem. Let g:D = R = R" be of class C*, where D is open. Furthermore, let g
be one-to-one and Jg(x) # 0 for all xe D. Let B = g(D). Suppose D and B have
volume. Let A < B have volume and f: A — R be.integ‘rable. Then

f (fog) U4l =ff-
g™ HA) 4
Proof: Extend f to B by letting f = 0 outside 4. Then by Theorem 3,

L(f o g) gl =Lf .

Now since f = 0 outside A, fog is zero outside g~ Y(A), and our conclusion
follows. §

Theorem. Let B have volume and f: B — R be integrable. Let A have volume and
suppose g:int{4) =« R" - int(B) = R" is C!, one-to-one, onto, and Jg(x) # O for
all x e A. Then if f: B — R is integrable,

ff=ff°gngl .
B A

Proof: Since B has volume, and bd(int(B)) = bd(B), int(B) has volume (since
bd(B) bas measure zero). Also, ini(B) U ((bd{B)) n B) = B, and so by Theorem 8,

J‘mﬂf Jﬂf
int(B)

Hence we get the result by Theorem 3. §

Notice that the conditions on g are equivalent to the existence of a C! inverse for
g (by the inverse function theorem). )

Remarks: In these two theorems one can show that Jg(x) # 0 can be dropped as
a hypothesis (then g does not necessarily have a C! inverse). This is outlined in Exer-
cise 5. Exercise 15 asks the reader to prove the change of variables formula for
improper integrals. This becomes fairly easy using the usual change of variables
formula and our discussion of improper integrals from Chapter 8.

Exercises for Chapter 9
1. Use cylindrical coordinates g(r,0,2) = (r cos 0,r sin 8,z) on
{(r8,2)|r > 0,0 < 0 < 2m}

to calculate the integral over 4 = {(x,y,2) ) x* 4+ y? < Ll < 1} of fix,y,2) =
(x2 + yHz2.
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2. Give a counter example to show that the change of variables formula does not hold
if g is not one-to-one, even though Jg(x) # 0. [Hint: take f = 1 and g(x,y) =
(€* cos y,e* sin y).]

3. Evaluate the following integrals.
@ [ax¥*dxdy,where A = {{(x,) |0 <x <y’ 0 <y <2+ xx <1},

(b) [, sin(x? + y?) dx dy, where A is the unit disc.

(©) dx dy dz.

X+ Y+ 2P
(d) jA y/ﬁ dx dy, where A is the unit square = {(x,y)lo <x<l0<y<l1}
(€) f4xdxdy, where A = {(x,)|0 < x < \/1;,0 <y <sin <2},

{f) & {8 r* drdé. '

@ JLy 3 e + 3y%x) dy dx.

4. Compute the volume of the following sets:
(a) A tetrahedron with the base area 4 and height k;
(b) A cone with base radius r, and height hy;
© {Ce)|x* <y <1 = x%;

@ {(xy2) | x* +y* + 2 <1  and  z < 1/2}.

5. Sard’s Theorem. The purpose of this problem is to prove a simplified version of a

fairly difficult theorem known as Sard’s theorem.* In our case the statement of the
theorem is as follows.

Theorem. Let g: A = R" = R" be of class C*, where A is open. Let B =
{xe 4| Jg(x) = 0}. Then g(B) has measure zero.

Of course the set B in this theorem need not have measure zero (to see this take g
to be a constant mapping). Before outlining the proof, we ask the reader to assume
the result and show that in Theorem 3, the assumption that Jg(x) ¢ 0 can be
omitted (provided the (open) set of points where Jg(x) % 0 has volume).

The theorem is proved as follows. First show that if U is a closed rectangle in A4,
it suffices to show that g(U n B) has measure zero (show that g(B) is the countable
union of these intersections). In fact, we shall show g(U n B) has content zero.

Next, prove these two facts. For any ¢ > 0, there is a § > 0, such that for
x,ye U, |x — y| < 8, we have

lglx) — g(y) — Dglx) - (x — )l < elx — yl.
Also there is an M such that
lgG) — gl < M ly — x| .

Let U have sides of length I. Choose N such that if U is divided into N" rectangles
(of sides [/N) and § is such a rectangle, then for x, y € § the above inequalities hold.
‘(Choose N > I/8). Suppose x € § n B. Then find a hyperplane H in R" (thus H is

* A general treatment can be found in Milnor, Topology from the Differentiable Viewpoint, or
in Sternberg, Lectures on Differentiable Geometry.
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some (n — 1)-dimensional subspace) such that

{Dg(x)y —x)| yeSt = V.
Next show that {g(y)| y e S} lies in a cylinder of height <2¢ n(l/N) and base
n — 1 cube of side <2M n(l/N). Hence show that g(U r B) lies in N" rectangles of
total volume <& K, where K = 2"M"! (n)"I", a constant independent of N. This
will prove the result.

6. Find {, xy sin(x? — y?) dx dy, where

A={xy)|0<y<lx>y and x* -yt < 1}.

7. Prove:
{a) If 4 has volume and 4 is defined as

A= inf{ Z (S)) | $1,S3.. . . is a countable cover of 4 by open rectangles} ,
i=1

then we have v(4) = 4.
(b) Let 4 be a bounded set with volume and let 4; be a sequence of sets with
volume such that the A, are non-overlapping (that is, have non-intersecting

interiors) and such that

A=A.

ta

L}
—

Then show that o

oA) =y o(d) .

i=1

8. (2) If u: 4 = R* — Ja,b[ and v: B = R? — Je,d[ are two functions of class C*
from the open sets A and B onto the intervals Ja,b[ and Je,d[ such that
u(x,y) = u(x',y") and v(x,y) = v(x',y’) only when (x,y) = (x'.y), and

ou dv Ovdu

at any point (x,y))€ A n B, W = {(x,) la < ux,y) < be < vlx,y) < d}, and
if fis an integrable function on W, then show that

4o du v Ovou : N
t= === —==)dudv.
J;vf £ J;f(u,u) (536 dy Ox 6y> du dv F,;

(b) Use (a) to evaluate

J (x* + yHdxdy,
W

where W = {(x,) | x > 0,y > 0,—1 < x* — y* < 1,xy < 1}.

9. Suppose f: Ja,b[ - R and g: Je,d[ —+ R are two integrable functions and define
Flx,y) = flx), §(x,y) = g(y) (assume [ and g are bounded). Then prove

b d
J JGep)G(x,y) dx dy = (ff () dx)(f g(x) dx) .
{a, b} x [c,d} a c
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10. Use Fubini’s theorem and the fundamental theorem of calculus to give an alterna-
tive proof of Theorem 9, Chapter 6. [Hint: If §2(/ax, 8x; > 8%f/dx, 0x;, integrate
the difference over a small rectangle.]

11. Let § = {(x,y) e R* | x rational, 0 < x < 1, and write x = p/m in lowest form,
y = kjm, k = 1,...,m — 1}. Then show that the interated integral

1/
JJ%@&:O
0J0
Jon
[0,11%10,1]

12. If A is a bounded set with volume and 4, is a sequence of sets with volume such that
Ay > 4; and A,V A, U = 4, then (d) - v(d) as i — oo, [Hint: Use
Exercise 7 or the monotone convergence theorem]. :

13. Suppose C = A x B, v(C) = 0, and

but that

doesn’t exist.

1, ifxyeC,
1 =
ey {0 ,  otherwise,
is integrable over B for each x € 4. Let C, = {y € B|(x,)) € C}. Then show C, has
volume zero in 4 for all x except possibly a set of measure zero. Give an example
where v(C,) # 0 for some x.

14. (a) Prove Theorem 2. [Hint: As in Theorem 1, it suffices to prove (ii). Do this in
exactly the same way as for Theorem 1.]

(b} Prove the following generalization of Corollary 1. Let A = R" be a closed
rectangle and let ¢p: 4 = R" > R" and y: 4 < R — R" be continuous
functions,such that ¢ (x) < ¢(x)forallxe 4,1 < j < m.LetD = {(x,y)e R" x
R"| x € A,p,(x) < y; < Y¥x),1 <j < m}. See Figure 9-16. Let f: 4 - R

graph of ¢

/

—— the set D

‘]l—— graph of ¢

FIGURE 9-16 The set D.
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be continuous, define B, = R™ by
B, = {yeR" o)) <y, <Yl <jsmi,

define f,: B, = R" — R by f(»), and define g: 4 < R"— R by g(x) = §5 L
Then g is integrable over Aand [, g = | /.

15. Investigate possible generalizations of Theorem 3 to unbounded regions.

» 16. For what values of p is r¥ integrable in R?, where

r=Jx*+ y+ 227

¢ 17. Let £: [0,1] - R,
: n?, if x=1/n,

fe) = {0 , if xe[0,1],x# 1/n.
Prove f is integrable and [} f(x) dx = 0. (Warning: [ is not bounded.)

18. Let A be a closed rectangle in R". Let C = A have volume. Prove that for any
¢ > 0 there is a compact set K < C such that y(C\K) < &, and a compact set

L = C such that o(L\C) < e.

19. Let A = R*, B < R" have volume and [:4 =R, g:B = R integrable. Let
F(x,y) = f(x) + g(y). Show

j F(x,y) dx dy =<J f)v(B) + <Jg>v(A) .
AxD 4 B

s 20. Compute the area of the region D = {(x,y)|1 < x < Ixt <y < xt+ 1

21. Suppose g: R — R is differentiable everywhere, and that |g'(x)l < M for all xe R.
Show that, if ¢ is small enough, the function f which is defined by f(x) = x + eg(x)

is one-to-one..

22. Let f and g be two integrable real-valued functions on [a,b]. Let

), 100 > g6
hx) = max(f()gx) = {g(x) S0 < o)

Show that h(x) is integrable.

w23, Let fi{x) = )" _ . (1/2™sin mx be defined for all x e R.
(a) Show limi'él],,(x) exists. [Hint: Show f,(x) is a Cauchy sequence. ]

(b) Show the sequence converges uniformly.

(9) Show {3 { limit f,,(;)) dt = 0.

24. True or False '
(a) If f is a continuous function on [0,1], then [ is bounded on [0,1].
(b) If f:§ — R" is a continuous function, where S is a compact subset of R, then
f(S) is compact. ‘
(c) An integrable function on [0,1] must be continuous on [0,1].
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(d) ITU and ¥ are open subsets of R, then U x V = {(x,y)| x e U,y e V} is open
in R?,

(e) If fand g are integrable functions on [a,b], then /' — 2g is integrable on [a,b].

(f) Any bounded sequence in R* must have a convergent subsequence.

(g) If f is a continuous real-valued function on [0,1] such that f{x) > 0 for all
xe[0,1] and f§ f(x) dx = 0, then f(x) = 0 for all x € [0,1].

(b} If fis an infinitely differentiable real-valued function on R, then f must have a
power series expansion about each point of R.

® XS fi, fos fo, - .. are all continuous real-valued functions on [0,1] such that
S{x) = limit f,(x) for each x € [0,1], then f}, /3, f3, . . . converges to f uniformly
on [0,1].

() Ifag,ay,a,...is asequence of real numbers and r is the radius of convergence
of 3= a,x", then 3’ a,r" converges. :

(k) ILfy, f2, fa, - . . converges to [ uniformly on [a,b] and if f is integrable for each
n=1,2,3,.4., then [ is integrable on [a,b].

) Ufi, fo fas . .. converges to f uniformly on [a,b] and if £, is differentiable on
Jab[ foreachn = 1,2,3, ..., then fis differentiable on Ja,b[.

(m) An open connected subset of R” is arcwise connected.

(n) If fis a differentiable real-valued function on ]0,1] and f(1/2) = f(x) for all
x €]0,1[, then f*(1/2) = 0. '

(o) If fisanintegrable function on [0,1] and & > 0, then there exists a step function
g on [0,1] such that [ 1/ — gl < s.

(p) Every closed and bounded subset of R contains its least upper bound.

(@ If f(x) has a power series expansion on ]~r,[, then f is differentiable on
=

(r) Il fis integrable on [a,b] and on [b,c], where a < b < ¢, then [ is integrable
on [a,c].

(s) Iff:R" - R™is continuous and S is closed in R™, then f~*(S) is closed in R".

(t) If a series Z;‘; | 4 converges conditionally, then the sequence of partial sums
Z}'=1 a; is bounded.

(u) Iffisacontinuous real-valued function on Ja,b[ then there exists a differentiable
function F on J]a,b[ such that f = F' on Ja,b[. '

25. Suppose that f, fi, f3, f3, ... are continuous real-valued functions on [0,1] and
suppose f, — f uniformly on [0,1] as n — co. Prove that each of |}, |fil, |f2,
1fals - . . is integrable on [0,1] and that f§ | £] — [§ If1as n - 0.

+ 26. Compute P
(a) limit(l + 2% + - + n¥)n** ! where k > 0. "'
n—w

1 1 1
b) limit| —— o ek ) e
® ,ff‘;t(n + 1 * n+2 * * Zn) A

27. Show, if f"(x) > 0 for all x that f is convex upward, which means

f<x + }'> Sf(x) + /()
2 2
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" . x+y\ _J&)+
[Hint: Consider the auxiliary function G{x) = f| ) 3
fixed y.]

#+28. Suppose f(x) is continuous on 1-1,1f f0) =0 and f(x) # 0 if x # 0. Prove:
it 128+ Jx)
x=0 J&)
29, Let C beacubein R, f, g: C = R bounded and integrable. Suppose f(x) < g(x)
for all x in a dense subset S of C (that is, cl(S) = C). Show that fef < ey

for

exists. It equals what?

s 30. Suppose A < R"and A has zero volume. Suppose f: 4 = Risa bounded function.
Prove [ is integrable and [, f = 0.

*

31. Consider the following theorem.

Theorem. Let A be an open subset of R, @1 A = R" a one-to-one continuoutsly
differentiable map whose jacobian J¢ is nowhere zero on A. Suppose that the function
[ p(4) = R is continuous and is zero outside a compact subset of ¢(A) and that

J iy [ exists. Then fon S =Ja(fo0) [Tl

Suppose A;, [ = 1,2, ...are open subsets of R” such that the theorem is tx‘}te for
each 4, and the restriction of ¢ to 4;. Let 4 = | JA,. Show that the theorem is true
for 4 and ¢.

s 32. Suppose / is bounded, defined on [0,b], b > 0 and suppose {b f exists for all
0 < ¢ < b. Show [} [ exists.

33. Suppose § = R has volume and ¢ € R. Define S = {{(tx,,. . .Ix,) [ (pa - oXa) € s}.
Show t$ has volume and vol(tS) = [t" vol(S). [Hint: define the map @: (¥1»- - » V) =

(yl/tv' . *?yn/t)’]

34. True or False If false give a counterexample; if true give a reason.
(a) Suppose f is integrable on 4 and g is-a function on A such that g < f-Theng
is also integrable on A. - '
(b) Suppose A4 has volume and f is continuous on A. The.n {4 J exists.
{c) Suppose A has volume and [, f exists. Then £ is continuous on 4.

(d) Any bounded subset of R? has zero volume when considered as a subset of R3.

{e) Suppose I = [0,1], ¢, and ¢, are continuous functions: I - R with ¢,(x) <
@,(x) for. all xeI. Then the set § = () | xel, pylx) <y < @,(x)} has
volume.

‘ 1
» 35. Compute limit n log(l + ;)
n-w

Chapter 10 ‘

Fourier
Analysis

Fourier analysis arose historically in connection with problems
of mathematical physics such as heat conduction and wave motion. This
subject has now evolved into a vast theory with many applications, both
mathematical and physical. This chapter is intended to give a brief but basic
working knowledge of some Fourier methods, to introduce the student to
the general theory,* and to delineate some fundamental applications.

Probably the best motivation for the study of Fourier analysis is obtained
by examining a vibrating string. Although this topic is the subject of a
detailed discussion later, here we are primarily interested in an heuristic
approach. Further applications (for example, to quantum mechanics) are
presented in later sections.

Consider then, a string of length / with clamped ends and which is free to
vibrate when plucked. The position (vertical displacement) of the string is
represented by a function y(¢,x), where ¢ is the time and x e [0,/]. See Figure
10-1. It is a fact from elementary physics that y obeys the wave equation:

%y 0%

a2 ¢
where ¢ is a constant determined by the nature of the string and the tension
in it.} That the string has clamped ends entails that y(¢,0) = y(t,]) = O for
all r. :

* A thorough treatment of the general theory requires concepts which are beyond the scope of
this book. For this more advanced work, we refer the reader to books such as Zemanian,
Distribution Theory and Transform Analysis, or to Rudin, Real and Complex Analysis.

1 For a discussion of this point and other physical situations in which the wave equation arises
(for example, sound waves, water waves) see R. P. Feynman, R. B. Leighton, and M. Sands,
The Feynman Lectures on Physics, Addison-Wesley (1963), Ch. 47--51.

1
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¥t x)

W x 2

FIGURE 10-1

To simplify matters, let us first look at the case of special solutions,
called standing waves; these are solutions of the form y(t,x) = (cos wt)u(x),
where y(t,x), as above, represents the vertical displacement at x at time ¢,
and  is the frequency. Thus |u} represents the amplitude or wave shape.
Physically, a standing wave is a synchronous up and down motion which
repeats its shape periodically after time ¢ = 2m/w, such as occurs when a
string produces a pure note.

Certain solutions which correspond to fundamental solutions or harmonics

are given by
yltx) = sin(ﬂ;f>cos(w,,t), n=2012,...,

where w, = nmc/l is the frequency. For n = 2 and t = n/w,, we obtain the
illustration in Figure 10-1.

It is both important and remarkable that any solution y(x,t) describing
the motion of the string can be decomposed into harmonics; that is, written
as a series:

o0 o0
y(x,t) = Zlclly,l(x,t) = ZIC,,H"(JC)COS((D,J) 3
n= n= -

where y, is as above, and u,(x) = sin(nmx/l). We think of u, as the first
harmonic component of y, u, the second, and so forth. Thus a complicated
looking vibration (such as occurs on a violin string) is in reality an infinite
combination of simple harmonics, where each harmonic component appears
with weight c,. In Figure 10-2, we illustrate how summing three sine curves
of varying amplitudes can lead to a more complicated curve. For a general
curve, one requires an infinite combination of sine curves.

The purpose of Fourier analysis is to carry out this procedure of decom-
position using a general method. For finite regions (such as [0,[] above)
the appropriate method to use is Fourier series, while on an infinite region
(the whole real line, for instance) Fourier integrals are required.

The series obtained from sin nx, cos nx, or ¢™ are called the classical
Fourier series. For other types of problems (the harmonic oscillator in
quantum mechanics, for example), other types of basic solutions enter and
arbitrary solutions need to be expanded in terms of these basic solutions
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FIGURE 10-2

{for the quantum mechanical harmonic oscillator, for instance, Hermite
functions are used). Therefore, it is useful to discuss the general theory of
expansion, which will be done in Sections 10.1 and 10.2. .

InSections 10.3,10.4,and 10.5 we will study the special case of trigonometric
Fourier series, and show that the expansion procedure is justified. To
justify this for other families of functions often requires an examination of
special situations—for instance, the differential equation giving rise to the
problem.

In this regard, there are two main theorems. The first deals with the
important concept of mean convergence and states that any square integrable
function has a Fourier series which converges in the mean. As we later
explain, this must not be confused with convergence at each value x (called
pointwise convergence). For the latter, one must use the basic theorem of
Jordan (or Dirichlet-Jordan). The mean and pointwise convergence properties
are proved in Theorems 8 and 9, respectively.

Some further theorems on convergence, such as justifying term-by-term
differentiation, are given in Section 10.6.

A few simple but important applications of Fourier methods are presented
in Section 10.7. There we study special cases of three problems—the wave
equation, the Dirichlet problem (Laplace’s equation) and the heat equation—
all from the point of view of Fourier series. The discussion is quite rigorous
and we are careful about differentiability properties, assumptions concerning
initial or boundary values, and the manner in which these values are assumed.

In Section 10.8, an informal treatment of Fourier integrals is given,
stating the basic properties and definitions without proofs (these are left for
a more advanced course). Hopefully, however, the student will obtain some
per.spective of the role of Fourier integrals and their relationship to Fourier
series. i
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Finally in Section 10.9 a brief glimpse is given of quantum mechanics
and how the machinery of Sections 10.1-10.3 can be used to establish some
of the basic results of the subject.

10.1 Inner Product Spaces

Before we begin our study of Fourier series themselves, we must learn
certain concepts which will enable us to simplify the job. These ideas are
really quite easy and reveal an important geometric aspect of Fourier series.
In this chapter we also need some basic facts about complex numbers. The
reader should therefore glance at the appendix to this section before
proceeding if he is not already familiar with the elementary properties of
complex numbers.

In Chapter 1 we studied the inner product ¢, > on R". Now we want to
extend these notions to an arbitrary vector space V. In the present chapter,
V is no longer finite dimensional, but is a space of functions which is infinite
dimensional—as was the space #(4,R™) studied in Chapter 5. For example,
¥ might be a space of functions f: [0,2n] — R. This is a vector space if we
take the usual definitions, (f + g)(x) = f(x) + g(x) and (ef Yx) = af ().
The expression {f,g) = |3" f(x)g(x) dx is called the inner product of f and g.

It is important to allow complex values, for the simple reason that it is
often more convenient to work with ¢ than with sin 0 and cos 6. In the
complex case, we let™

g -=L " 0900 dx »

where gTaa is the complex conjugate of g(x). The reason we use 3(;—) is so
that we can (as in the real case) define the length or norm of f by

2r
1112 = <L =L |f()|? dx

(for complex numbers z, we recall that |z]> = zZ is a positive real number).

It is this sort of space V that the reader should keep in mind when studying
the next two sections. Later on, we shall be explicitly dealing with this space,
or spaces like it. '

Our study begins with general spaces with inner products rather than the
special one above (which is actually the one of most interest to us) because
it is conceptually and notationally simpler to work with the notation ,
than with integrals. At this point only the following basic properties of
¢, are significant.

* Physicists use the convention of putting the bar over the f.
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Definition 1. Let V be a complex vector space (this is just a vector
space where we allow complex numbers for scalar multiplication).

An inner product on V is a mapping {, >: ¥V x V — C (where C
denotes the complex numbers) with the following properties.

(i) <af + bg.h) = a(f}h) + b{g,h), for all f, g, heV and
a,beC.
(ii) <Al = <hSD.
(i) <f,f> = 0,and {f,f> = 0implies / = 0.

Frf)m (i) and (i.i) we deduce that (h,af + bg) = @lh,f)> + b<{h,g). Notice
that 1f. all quantities were real, we would have the same properties as the
usual inner product on R” (Theorem 5, Chapter 1). As we have stressed, in

general, ¥ is not finite dimensional, so we must avoid using (finite) bases
and matrices.

Theorem 1. The space V of continuous functions f: [ab] — C
forms an inner product space if we define

b
g = j S(x)glx) dx .

The integral of a complex-valued function is defined as

b b b
f fx) dx =J Ji(x) dx + ij folx) dx

where f = f; + if,. The properties of complex integrals are similar to and
may be deduced from real integrals. Some of these are listed in the appendix
to this section.

The structure of an inner product space allows us to introduce many
of the ideas considered in Chapter 1. The norm of f, denoted || /1, is defined by

112 = <A
and the distance between f and g by
difg) = I/ — 4l

(see Theorem 5, Chapter 1). ’

We use the same language as in R" by analogy. For example, we say f
and g are orthogonal if {f,g> = 0. Since ¥ is a vector space, we can also
talk about linear dependence and other related ideas we saw in R". The
following theorem develops the analogy with R" further.

Theorem 2 (The Cauchy Schwarz Inequality). Let f, g belong to
the inner product space V; then

KLl < I/1 gl
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Furthermore, all the properties listed in Theorem 5 (II), (111}, Chapter
1 hold (II (iii) also holds for a complex).

We can also introduce the notions of topology exactly as before (see
Chapter 2). The main concept for us here is that of convergence of a sequence
or series. A definition now follows.

Definition 2. Let V be an inner product space and let f, be a
sequence in V. We say f, converges to f and write f, — f if
If., — fIl — O; that is, for every real number ¢ > 0 there is an N
such that n > N implies || f, — fIl < &. Similarly, a series Z:‘; L n
converges to f if the sequence of partial sums s, = ), _ g«
converges to f. .

Suppose our space V consists of the functions f: [a,b] — C(see Theorem 1).
Then the Cauchy-Schwarz inequality reads

b 2 b b
U S()g(x) dX) < U If &) dx) q gl dX) :

The triangle inequality (If + gll < I/l + lgll) becomes what is called
Minkowski’s inequality and reads

b : 1/2 b 1/2 b 1/2
{J 1£(x) + gx)* dX} < {J‘ |f) dx} + U lgCol* dX} :

With this inner product on the space of functions V, convergence is called
convergence in the mean. It is quite different from pointwise or uniform
convergence and is generally much weaker. We write f, — f (in mean),
f, = f (pointwise); and f, — [ (uniformly) to distinguish these types.

Thus f, — f (in mean) is the same as

b
(J 1fx) = S dx) -0.

For example, consider the function f, defined by fi(x) =1 — nx for

0 < x < 1/n and f,(x) = O for all other x € [0,1]. Then f, — O (in mean),

but f,.does not converge to f = 0 pointwise (at x = 0 specifically) and
therefore not uniformly. See Figure 10-3. One could contemplate other
types of convergence such as f1fu = f1 =0, but the one above is the most
appropriate for Fourier series because of that theory’s close connection
with inner product spaces.

Uniform convergence implies mean convergence (see Exercise 5, at the
end of this chapter and Theorem 4, Chapter 5). However, pointwise con-
vergence does not in general imply mean convergence (see Section 5.3).
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1
gy = L
Llf,l 0l*dx = 3,70
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FIGURE 10-3

The space V of Theorem 1 is easily extended to include other functions
su.ch as piecewise continuous functions (see Theorem 3). However, even if
Vis e.xtended to all Riemann integrable functions it still suffers from a serious
deﬁ_mency———it is not complete; that is, a Cauchy sequence may not converge.
As in R", a definition follows.

Definition 3. A sequence f, in an inner product space V is a
'Cauchy sequence when for any ¢ > Othereisan Nsuchthatm,n > N
fmplies I fs — ful < & An inner product space is called complete
if every Cauchy sequence converges. A complete inner product
space is called a Hilbert space.

_ In order to make ¥ in Theorem 1 complete, the concept of the Lebesgue
mtegral must be used. Fortunately, our elementary discussion does not
require this notion, but the student should be aware that a solution to this
Problem can be found. Of course, for the beginner in the subject, it is more
fmportant to get an intuitive grasp and a working knowledge, and this then
is our goal.

'Hence, the question is, can we work with more general functions and
still have an inner product space? The answer is really quite simple. The only
place in Theorem 1 where continuity was used was in the statement that

b
J fx)dx =0 implies f = 0
(see the proof of Theorem 1). For a general f,
b
j- [fx)dx =0 implies f(x) = 0

except possibly for those x in a set of measure zero (see Theorem 4, Chapter 8).
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If we regard such an f as actually zero (modify f on this set of measure zero
if necessary) then Theorem 1 carries over. We shall not try to make this
any more precise because it is a technical point which tends to obscure
what is going on. With that understanding, the next theorem follows.

Theorem 3. Let V = L2 be the space of functions f: [a,b] - C,

such that |f|? is integrable (that is, [5|f(x)|* dx < o). Then the
space V is an inner product space with inner product

b —
g =f f(x)g(x) dx

b 1/2
Il = (J e dx> :

and norm

Another convenient class of functions which forms an inner product .

space is the class of sectionally continuous (or piecewise continuous) ones.
They are defined as follows.

Definition 4. A function f: [a,b] — C is sectionally continuous if
[a,b]hasafinitepartitiona = xo < x; <" < X, = bsuch that f
is continuous and bounded on each open section Jx;X;.i[,
i=0,...,n— 1

p

APPENDIX . TO SECTION 10.1:
Complex Numbers -

The reader is possibly familiar with some aspects of complex numbers. We

shail now quickly review the basic properties of these numbers. .

We define the set C of complex numbers to be the set of ordered pairs of
real numbers {a,b) (that is, elements of R?) which we shall write a + bi.
For example 3 + 2i = (3,2), 2i =0 4+ 2i = (0,2), i = 0+ li = (0,1), and
so forth. We define the operations + and - as follows:

@b+t d)=(@+d+ b+ dis
(@ + bi)- (c + di) = (ac — bd) + (ad + be)i .
The reader may verify that the complex numbers with these operations do
form a field (defined in Chapter 1); that is, all the usual algebraic rules for
addition, subtraction, multiplication, and division hold.

Complex numbers are generally denoted z. Thus z stands forz = a + bi =

(a,b). Also, we usually just write z,z, for z; - z,.
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Using the definition of -, we see that the imaginary unit i satisfies
ii=0+1)- 0+ 1) = —1.

Thus i* = —1, which is written as i = ./ —1.

Since we have defined the complex numbers to be ordered pairs of real
numbers, they may also be naturally assoeiated with points in R2. Thus,
in particular, the metric on R? induces a metric on the complex numbers.
Also, from the norm on R? we get a norm for z = a + bi_defined as
la + bi] = \/a® + b? = \/(a + bi)a — bi). The relation between a -+ bi
and a — bi is sufficiently important to be given a name. We call a — bi the
complex conjugate, or simply the conjugate of a + bi, and we write Z for
the conjugate of the complex number z. Thus using our definition of norm
above, we have

Z? =z-%.

Important properties of the complex conjugate are that 7z, = Z,Z,,
z; + 2z, = &, +%,andz,/z, = Z,/Z, (see Example 2).

We want to think of the complex numbers as an extension of the real
numbers and therefore associate (or identify) the real number a with the
complex number a + 0i. Then a complex number may be thought of as

" the sum of a real number a and a real multiple of i = ./ 1. In the number

a + bi,ais called the real part and b is called the imaginary part to distinguish
the two numbers in the ordered pair. Since we associated the real numbers
with numbers of the form a + 0i, we see that a number is real iff its imaginary
part is zero. That is, a + biisrealiffa + bi = a — bi, which can be written
aszisrealiff z = Z.

It is useful to have a definition of ¢°, where z may be a complex number.
Since we want ¢® to coincide with the usual definition for a real and we
want e®* = ¢ - ¢, we only need to define € for 8 real. We define ¢!’ =
cos § + isin 0 and hence ¥ = e*(cos b + isin b). Then since cos 0 +
isin0 = 1, we have ¢**% = ¢°, and so our definition agrees with the usual
definition in the case where a is real. The reader may also check (Exercise 1)
that e*1 722 = g%t - ¢%2,

Complex numbers are represented (as already stated) by points in R?.
Using polar coordinates we can thus write !

z=re =rcosf + irsinf,
where » = |z| and § = arg z, the argument of z; see Figure 10-4.

Any function f:[a,b] - C may be divided up into two real-valued
functions, f; and f,, such that f(x) = fi(x) + if2(x) (that is, define fi(x) as
the real part of f(x) and f,(x) the imaginary part). Then we make the natural
definition

rf(x) dx ==rf1(x) dx + infz(s) dx
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FIGURE 10-4

if both f; and f, are integrable over [a,b]. In this case f is called integrable
over [a,b]. It is easily seen that
@) |8 ¢f(x) dx = c [i f(x) dx forany complex number ¢ and any integrable
function f;
Gi) [8[/x) + gtx)] dx = [i f(x) dx + [% g(x) dx for integrable functions
fand g; and
(i) 2 7G0) dx = 5709 d.
One can also prove
@iv) Ift fx) dx| < 517 (x)] dx with a little more effort.
Similarly, f'(x) = f(x) + if5(x) can be defined, and the usual rules for
derivatives hold.

ExamPLE 1. Show that it is impossible to define an order on the complex
numbers satisfying all the order axioms (see Chapter 1).

Solution: We must have either i < 0 or i > 0. Suppose, first of all,
that i < 0. Then 0 € —i, and so (=i < (=) 0=0= —(=1) < 0=
1<0. Then —13>0, so (—=1)(1)<0=—-1<0. But —-12> 0 and
—1 < 0= —1 = 0, which is not possible. On the other hand, suppose
i > 0. Then i(j) > 0= —1 > 0, which again leads to a contradiction.
Hence such an ordering of the complex numbers is impossible.

EXAMPLE 2. For complex numbers zy, z,, prove that z,z, = 7,7, 12,2,
|z,] * |24], and |zy/z,| = |z,]/lz,] if 2z # 0. Also, show that |z; + z,]
lzy] + |24l

Solution: TFirst, we show that Z;z; = Z;Z,. Let z; = x; + iy, and
z, = X, + iy,. Then

212, = X1Xy — 1Yz Tix1y2 t X291)
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and so
ZyZ3 = X1X; — Y1V2 — Ux1Y2 + X2¥1) -
Also,
Z1Z; = %y — iy1)xy — iyz) = X1%; — y1Y; — Ux1 Y5 + X39y)

and therefore 2, = Z,Z,.

To show that [z;z,] = |z,||z,], note that |z,|?|z,)* = z,Z, 2,2, =
(2,2,)(2,2,) = |z,2,]* by the above.

To prove that |z,/z,] = |z,|/iz,|, write z; = z, - z,/2,. Then, by what has
beel} shown, |z;| = |z,| |z,/z,|, which implies that |z,/z,| = |z,|/|z,|.
' Flznally3 lz; + 2| < |24} + |z,] is simply the triangle inequality for points
in R?, which was proved in Chapter 1, Theorem 5.

ExampLE 3. If fi,...,f, are orthonormal vectors in the inner product

space V, that is, {f,./fp =0, if i # J, {f, /> = 1. Prove that f,...,,
are linearly independent.

Solution: Suppose Z:; , ¢ifi = 0. We must show that ¢; = 0. Fix i, and
letg = Z;=1 ¢;f;; then form (g, f;>. We have

1

<g,./;> = Z <ij}!f;'>

ji=1

Cc
ZC]'5Ji=C;

J

= ckKfinf
=1
=1
(where d; = 1if j = i, and is zero if j # i). Since g = 0, we obtain ¢; = 0,

and so we have the desired result.

ExampLE 4. Let V be an inner product space and f, ge ¥, g # 0. Define
the projection of f on g as the vector h = {f,g>(g/llgll*). Show that h and
[ — hare orthogonal, and interpret this result geometrically.

Solution: We compute as follows.
Chof = By = <y f> — |4
_ e /Xfg  Kf929f929)

lgl* lgl*
_ 0.0 St _
lgl* lgl*

s%ncc.a {f,g> = £g,f>. Hence h and f — h are orthogonal. The geometric
significance of this is illustrated in Figure 10-5.
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Exercises for Section 10.1

Exercises 1—7 deal with complex numbers; 812 deal with inner product spaces.

1. Prove that
(a) e™ €™ = ¢
(b) e s 0 for any complex number z.
{c) |€% = 1 for any real number 0.
(d) (cos B + isin )" = cos nf + i sin nf.

z,+zz‘

2. Show
(a) & = liff z = k 2ni for some integer k.
(b) et = e iff z, — 25 = k 2ni for some integer k.

3. Use the power series for cos x and sin x to prove & = ZZ": 0 Z/k! for z = ix,
(As usual, 0! = 1.)

4, Prove:”
@ [bef(x)dx = c [ fix) dx .
for any complex number ¢ and any integrable complex-valued function f.
() 2 (fx) + glx)) dx = [b f(x) dx + [q glx) dx
for any integrable complex-valued functions f z_md g.

4 5. Compute [} ™ dx.

5 6. (a) For z = re!” and w = pe'” show that zw = rpe® ™ Interpret this result

geometrically. o '
(b) Interpret geometrically the process of multiplication by i.

7. For complex-valued functions (on an interval or an open subset of R"), discuss the
sum, chain, product, and quotient rules for derivatives. Also, prove the funda-
mental theorem of calculus for complex functions on intervals.

8. Generalize Theorem ! to functions defined on a set in R".

« 9. Prove the following in an inner product space (compare Exercise 12, Chapter 1.
@) {figd =0= 17 +gl> = I/ + llgll? (Pythagoras theorem).
() 4fig> = If +gl* = IS = gl®) = ilS + igl? = I.f — igh®).
© 21f1* +20gh*> =If +gl* +1S - gli®.
@ If +gl-1f =gl < IS1? +lgh*.
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»#10. Show that

b 2 b
jf(x) dx| < (b - a)f | fG)? dx

and deduce that a square integrable function on [a,b] is also integrable. Is the
converse true?

¢11. Let @, ..., @, be orthonormal vectors in ¥ and f € V. Define the projection of f
on g, ..., 0,byg= Z’;ﬂ {fp:>0;. Show that g and f — g are orthogonal.
Interpret geometrically. .

212, (a) In an inner product space prove that || f| — llglll < §f — gl. In particular,

IfI < gl + IS — gll. [Hint: Write / = (f — g) + g and apply the triangle
inequality.] ’

(b) If f, — [ (in mean), prove || £, is a bounded sequence.

10.2 Orthogonal Families of Functions

In this section we study some general properties of orthogonal vectors in

~ an inner product space. This is the basic general theory underlying Fourier

analysis and is remarkably simple. The core of the problem, however,
is treated in the next section. The main notions developed in this section are
that of a general Fourier series, a complete orthonormal system, and the
relations between these concepts.

Let ¥ be a vector space with an inner product {, ). A vector pe V is
called normalized if ||p|| = {@,p)'> = 1. Forge V,if g # 0, then g/||g|| is
normalized. Also, recall that f and g are called orthogonal vectorsif { f,g) = 0.

A sequence @g, @y, @5, - .. in V is called an orthonormal family if each
@; is normalized and ¢, ¢; are orthogonal if i # j. These conditions may
be restated as

P> = 0ij
where 6;; = 1ifi = jand 0ifi # J.

Ultimately, we shall study the space ¥V = £2 consisting of the square
integrable functions f:[a,b] —» C with {fig> = [} f(x)g(x) dx, as was
stressed in Section 10.1, but for now, our discussion will be restrained to
general inner product spaces.

The object of Fourier analysis is to write each f & V in the form

f = ch(pk s
k=0

where ¢, € C, and ¢g, @, . . . is a given orthonormal family. In general, one
cannot do this; however, if this can be done for each fe ¥, the family
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®o» P1, - - - is called complete. (This is not to be confused with the unrelated
notion of complete in the sense that Cauchy sequences converge.)

The sum Z;f’:o cx¢y is understood to be taken in the sense of “‘mean
convergence,” that is, if s, = Z,’:= o CkPr> then HZ;:“: 0 CiPr — s, = 0 as
n — 0. The questions of pointwise or uniform convergence {(in case Visa
space of functions) are more subtle and will be dealt with in the ensuing

sections.
Our first job is to determine the constants c, in the expression for f.

This is very easy and reasonable if we keep in mind the geometric intuition.
We refer specifically to the fact that in R, ife,...,e,is an orthonormal
basis, each x € R" is written

n
X = inei s
i=1

where x; = {x,e;>. The latter is called the projection of x along e;. The same
is true in general.

Theovem 4. Let V be an inner product space and suppose f =
Z:’: o Ck®Pi for an orthonormal family, @o, @1, - - - in V (convergence

in the mean) and f € V. Then ¢, = {f;p1> = P
We gather some important terminology in the following definition.

Definition 5. An orthonormal family @o, @1, .- in an inner
product space V is called complete if every f eV can be written
=22 e We call Yo o {Sspi>@, the Fourier series of f
with respect to @q, @y, . - - » and < 1.0y the Fourier coefficients.

Theorem 4 sayé that the only candidate for representing f in terms of

the ¢, is the Fourier series with ¢, = {fyp>- Also,notethat saying @o, @15 - -+

is complete can be stated as the condition that each f is “equal” to its
Fourier series, that is, the Fourier series of f converges in the mean to f.
Thus {¢,} is complete iff for every feV, |f — ZL 0 oo — 0 as

n-— Q.

Before proceeding with the theory, let us give some examples (which will -

be complete orthonormal families).
First, there are the classical Fourier series where ¢, are taken to be the

functions

e(nx

(p" = \/2—7E 3

These will be studied in greater detail later and will be shown to be a complete
orthonormal family in ¥ = %2, For now, note that the Fourier series for

n=0,+1,+2,...,xe[0.2n].

ORTHOGONAL FAMILIES OF FUNCTIONS 347

f:[0,27] — C for this family is given by

k=—ow

2n

ikx

ﬂ

where

1 2= .
Cp = —p= (x)e~* dx = ({,
(the term is e~ because we use the complex conjugate of g in {f,gD).
After'we prove completeness (Section 10.3), we can assert that f equals its
Fourier series in the sense of convergence in the mean.

Another family closely related to the above is -

1  cosmx sinnx

e ﬁ ,\/7_;’ mn=1,2,....

Accepting that this is orthonormal, the reader should write out the Fourier
series of a function with respect to this family.

Tl.le above are really the only orthonormal families which are directly
pertinent to our later discussions. However, for reference we give other |
classical examples which arise in practice. To describe these, the Gram-

" Schmidt process will be reviewed first.

Given an inner product space V and linearly independent vectors

90> d1> gz, .- - in V, one can form a corresponding orthonormal system
®gs @1, - - . by the Gram-Schmidt process. To do this, take
9o
Do = 7>
° lgoll

_ 191 = {9.1:002¢0)
g, — <g1,00>00l "’

_ [92 = €92.01001 — <92:00>%0]
gz ~ <g2:01001 — {g2:90>®0ll ’

and so on. Geometrically this is the “obvious” thing to do. It is left to the
reader to verify that the process leads to an orthonormal family; see Exercise 2.

The normalized Legendre polynomials are obtained by applying the
Gram-Schmidt process to the polynomials, 1, x, x?,...,x",...on[— 1,1].
It can be shown by induction (a fairly tedious but straightforward proof)
that the nth normalized Legendre polynomial is

@n+ 1) 4"

1

()

P(x) = ——=——" xZ — 1)

/22" ax )

O_nzﬂi = ]—o0,00[ the ‘Gram-Schmidt process applied to the functions
x"e~ %% np = 0,1,2,...gives the normalized Hermite functions, and applied
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to the functions x"e™*, n = 0,1,2, ... on [0,00[, it gives the normalized
Laguerre functions.

These functions are more properly treated in the context of differential
equations where they represent fundamental solutions of certain differential
equations, just as sin nx was the fundamental solution for the vibrating
string.

Let us continue with the general theory. The next result is called Bessel’s
inequality.

Theorem 5. Let ¢y, @y, - . . be an orthonormal system in an inner
product space V. For each f€V, }:?‘;0 I fupd|? converges and we
have the inequality

5 Khiodl < U1

In particular, note that the Fourier coefficients ¢, = {f,@,» converge to
0 as k — oo. Thus Bessel’s inequality gives some control over the behavior
of the Fourier coefficients. Some motivation for this result is given below.

Recall that @q, @5, . . . is a complete orthonormal system iff for every

feV,wehave

5 =3 oo
k=0

Parsevdl’s theorem relates completeness of a system @q, ¢y, . . - t0 Bessel’s
inequality as follows. :

Theorem 6. . Let V be an inner product space and @o, ¢y - .. an
orthonormal system. Then @g, @q, ... iS. complete iff for each
f eV, we have

W12 = §Oi<f,<p,,>12 .

Hence, we see under what conditions Bessel’s inequality becomes an
equality. This theorem gives many useful relations in Fourier series, but
usually it is not very practical for telling when a given family @q, @4, . - - is
complete (see, however, Exercises 7 and 75 at the end of the chapter). For
this, one usually uses direct techniques, which are given in Section 10.3.

Geometrically, Parseval’s relation may be regarded as a generalized
Pythagoras’ theorem. Recall that if g is perpendicular to h (that s, {g,h) =0),
then ||g + k| = llgll* + |h]® (Exercise 9, Section 10.1). This is the ordinary
Pythagoras theorem for right triangles. Now if Z:‘;o oo, = [, then [
is a sum of orthogonal vectors {f,0,>®y, 50 I/ ||? should equal the sum of
the squares of the lengths of € f.0.>e, But,since ¢, is normalized, {f,¢,)®,
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has square length |{f,p,>|?, so we should get || f1|* = >*_ _|{f,¢,>I?, which is
Parseval’s relation. "=

If we have an incomplete orthonormal system, then intuitively speaking,
there are some terms missing on the right-hand side and so only an inequality
prevails, namely, Bessel’s inequality.

We have seen in Theorem 4 that it is natural and, indeed, obligatory
to choose the Fourier coefficients ¢; = {f,¢;> when expanding f = }'° _ ¢,¢;.
There is another reason for this choice which aids in the geometrié?nder-
standing and is as follows. : '

The constants c;, for which the length

|- Lo

is smallest, are ¢; = {f,¢,>, the Fourier coefficients (that is, the choice
c; = {f,p;> yields the best mean approximation). This is reasonable because
Z;; o <o is just the projection of f on the space spanned by @, .. . , @,
and the shortest distance to a plane from a point is the perpendicular distance.
See Figure 10-6. The precise statement is given in Theorem 7.

Theorem 7. Let V be an inner product space and @q, @1, . . . , @y
a set of orthonormal vectors in V. Then for each set of numbers
tO: tl’ AR ] tna

“f - Z Ly
K=o
Equality holds iff t, = {fipu)-

Z ”f - Z S0P
=6

This concludes our brief treatment of the general theory. The remainder
of the chapter is devoted to the study of the classical cases of the orthonormal

S
7
Lf-{f ) 0 = w00
Loy ~~
f,————j
e e,
‘po
FIGURE 10-6
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families
e 1 sin nx cos mx
n=0,+1... and { ; ; nm o= 12, }
{ I : } AN RN

on [0,2z] or [—n,m]. The cases of corresponding orthonormal families on
other intervals follow easily from this (see Exercise 3).

We cannot stress too strongly the fact that / = Z,‘f’: o {fsp1> ¢, means only
that the sum converges in the mean to f and that this does not entail pointwise
convergence without some additonal conditions. In the general situation
(see Section 10.3) we usually do have mean convergence, but in order to
obtain pointwise or uniform convergence, we require more careful hypotheses,
such as continuity or differentiability assumptions on the function f.

ExaMmpLE 1. Let V be an inner product space and ¢q, ¢y, . .- 2 complete
orthonormal system. Then show that @, @,, . . . is not complete.

Solution: If@,, @, . . .werecomplete, we could write f = Z:‘; , {Lo0e:
for each f € V. Take f = @,; then we would have

@0 = 2, {PosP)P: -
=1

But {@o.0ip =0, i=1,2,..., 80 @o = 0, which is impossible since
looll = 1. Hence @y, @3, . . . is not complete. As an alternative method of
solving the problem observe that Parseval’s relation

1 = 3, Koot

does not hold for f = @, because the left side would be 1, while the right
side would be 0. Similarly, ¢y, @y+1, .- - OF a0y proper subcollection is
not complete: ;

ExAMPLE 2. If @¢, @1, . . . is a complete orthonormal system in an inner
product space ¥, and f is orthogonal to each ¢, then f = 0.

Solution: Since the system is complete, we can write
f= Z Lo -
i=0
By assumption, each {(f,p;> = 0, s0 that f = 0. If ¥ were a Hilbert space,

the converse to this would also be true. See Exercise 14, at the end of this
chapter.

ORTHOGONAL FAMILIES OF FUNCTIONS 351

ExaMmpLE 3. Show that the functions
1 cos mx sin nx
NN

are orthonormal on [0,27].

m=1,2,...;n=1,2,...

Solution: In effect, this problem means that

2n 1 )2 2n COSZ mx 2 oin?
— Vdx = 1, dx = 1 sin” nx —
j 0 («/ 2n J 0 (L * ' L n be=1

{(normalization) and

f2n 1 y ‘J‘Zn 1 :
cos mx dx = 0, sinnxdx =0;

Jo Jom o Jin
f2n

- (cos mx)(sin nx) dx = 0, allm,n;
”"Zn 1

- (cos mx)(cos m'x) dx = 0, m#m;
Jo
f2n

- (sin nx)(sin n'x) dx = 0, n#n;
Jo

(orthogonality). Each of these relations may be verified by elementary
techniques. An easier way is to note that

1 [* . .
2n J‘o emxe mx dx = 5'"" s
because if n # m,
2n

— O .

2n
J. ei(n*m)x dx — 1 ei(u—m)x
0

0 in — m)

Taking the real and imaginary parts of this relation for all n, m gives the
desired relations above.
This example also shows that

{e n=0,41,+2,. . }
A/ 2n
is an orthonormal system on [0,27].

ExampLE 4. Let f: [0,2n] — C be such that

Zn
j Ife)? dx < oo .

0
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Then show that ,
limitj f(x)sin nx dx = 0

n—+oo o
and ,
limitJ f(x)cos mx dx = 0.

m-> o 0

Solution: By Example 3, the sets

sin nx cos mx
n=12,.. and { m=1,2,.. }
{ Jr } NZ:

are orthonormal families. Hence, by Theorem 5, the Fourier coefficients
of f with respect to these systems converge to zero, and the result follows
immediately. As an exercise, a direct proof can be tried (see p. 416).

The reader may legitimately ask where the hypothesis

W17 = f " dx < o

0

is used in this solution. This is required so that we can form the inner product
space V of such functions, and obtain the upper bound ||/ |2 < oo so the
series of Theorem 5 will converge.

”

Exercises for Section 10.2

1. Take the case V =. R". Show that any » orthonormal vectors form a complete set.

2. Let go» 91» g2, - - - be linearly independent vector§ in an inner product space.

Inductively define

ho ot h,
= ='—-""-7ln=n'~ P/ Prs Pn = 77 41 °
ho = 9o, @0 = T+ o = 0 k;)(g PP 00 = T

Show that @g, @1, P2, - - - ate orthonormal. Why must we assume that the g's are
linearly independent?

¢ 3. (a) Sdppose Polx), 9 (), . . . are orthonormal functions on [0,27]. Then show that

the functions )
) = o (27tx>
‘l’u x) - 1 Py [

are orthonormal on [9,1]. . {  sinnx cosnx i
(b) Write the family obtained by modifying —— , —=—, —=, of —=10 [o,/]
asin (a). NZi ﬁ ﬁ 2n

(c) Write the Fourier series of f for the families obtained in (b).
(d) Show that if the ¢, in (a) are complete, so are the ¥,..
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sin nx cos mx

N

1
s 4, Assume for the moment that the functions T N are complete on the
2%

interval [0,2x] (this will be proved later).
(a) Apply this to the function x to show that

o

sin nx
X=7n—- 22
n=1 n

(convergence in the mean).
(b) Using the Fourier coefficients found in (a), apply Parseval’s relation to show that

&1
—6* o "Zl F ) \\
&1 ‘
(c) Use the same procedure on x? to get 5= Z -
n=1 1

» 5. Prove that the Fourier:series of a sum of two functions is the sum of the Fourier series.

z sin(n + 1/2)0 .
2 K =|——o—|—1.
PN [ sin 02 J

[Hint: First, note that

¢ 6. Prove that

ell)(l - elnﬂ)

elﬂ+82i0+,_,+enw= -
1_‘210

and take the real and imaginary parts.] This result will be important to us later.

10.3 Completeness and Convergence Theorems

This section will investigate the problem of the convergence of the Fourier
series of a function. We see that the Fourier series of a given function is
completely determined by that function, but there is no prior guarantee
that the series converges or, if it does converge, whether or not its sum is
the given function. The type of convergence we obtain depends on the
hypotheses we place on f. The important results are summarized in Table
10-1; further convergence theorems are given in Sections 10.4 and 10.6.

It is possible to weaken slightly the hypotheses of the pointwise con-
vergence theorems presented, but this makes little difference in practice
and requires lengthy expositions on topics such as functions of bounded
variation. We shall discuss those slightly sharper results in the optional
Section 10.4.*

* We should also like to mention that there is a deep result of L. Carleson which states that for
|f]? integrable, the Fourier series of [ converges pointwise to f; except possibly on a set of
measure zero. However, this result is far beyond the scope of this book. See Acta. Math. 116
(1966) p. 135.
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TABLE 10-1 Convergence Properties of Fourier Series

Hypotheses on the function f Convergence of Fourier series

Converges in mean to f

r" O dx < oo

0

Converges pointwise (and in mean) to

[fx+) + f(x=)]
2

£, [’ both sectionally continuous

Converges unifomﬂy (Section 10.6),

f continuous, ' sectionally continuous :
pointwise, and in mean to f

The practical aspects of Fourier series (that is, examples and computational

methods) are given in Section 10.5. ' '
From now on, we deal primarily with the following two orthonormal

systems:
(a) Exponential system

einx

N3

(b) Trigonometric system

n=20,+1, +2,...

1 sinnx cosmx
‘\/i};, ﬁ b \/; b

on the intervals [0,2n] or [ —n,x]. . .
These two systems are closely related. Indeed, the trigonometric system

n,m=12,...

is obtained by taking the real and imaginary parts of the exponential system - -

(see Exercise 1). '
The Fourier series of & function f: [0,2r] — C with respect to the expo-

nential system is the series
N

o0
Z c,e™ = limit Z c,e™
N-w Sy
n=—ao n=

where the Fourier coefficients are given by
1 [ .
Cy = E;E JVO f(.)))e i d.V

(we have gathered two /2n’s for convenience and for historical and con-
ventional reasons).
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The Fourier series of a function f with respect to the trigonometric
system is

a, & .
5 +"=Zla,, cos nx + b, sin nx ,
where the coefficients are given by
1 2n
a, = — f{x) cos nx dx, n=20,1,2,...
T Jo
and
1 [2n !
b, ==1 f(x)sin nx dx, n=1,2,....

T Jo

The reader should review Sections 10.1 and 10.2 if these statements are
not clear.

The partial sums for the trigonometric series and the exponential series
are the same (Exercise 1), Thus, if we can prove theorems for one system we
will automatically obtain theorems for the other. The system used depends
on the particular problem and, to some extent, personal taste. Examples of
computational differences are given in the Section 10.5.

The primary goal here is to give theorems which enable us to say that a
function *“equals” its Fourier series. If we take the equality to be convergence
in the mean, then this is a problem of completeness of the orthonormal
system. Fortunately, and this is one of the main theorems of the subject,
the above systems are complete. On the other hand, if we take the equality
to mean pointwise or uniform convergence, then extra conditions must be
put on f.

Let us first deal with completeness; the theorem is as follows.

Theorem 8. The exponential and trigonometric systems on [0,2x]
(or [—m,n]) are complete in the space V = £* of functions,
f:[027] - C with |3 |f(x)* dx < o (the integral may be
improper).

This means that for any function f with |f}? integrable (that is, f is square

 integrable), f equals the sum of its Fourier series in the sense of convergence

in the mean.

The proof of this result is a little involved; completely different proofs of
related results which will follow, especially Theorem 9, might be more
easily understood. (See also Exercises 75 and 76 at the end of the chapter for
alternative proofs of Theorem 8.)

It is false that we always get pointwise convergence. Indeed, one can
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The shaded *“area” -+ 0
or, more precisely

mn
fo If(x) = 5, () Pdx 0

|
]
|
|
|
J

o ——=
]

2n
FIGURE 10-7

even construct a continuous (periodic) function f whose Fourier series
" diverges at a given point.*
Let s, be the nth partial sum of the trigonometric Fourier series for the

real function f. Then the intuition behind Theorem 8 is illustrated in |}

Figure 10-7. Notice that each s, is a nice smooth function (a trigonometric
polynomial) but as n — o, s, may still converge to something discontinuous
as illustrated. If we demand uniform convergence, f/ must be continuous by
Theorem 8, Chapter 5. Thus if f is discontinuous, we get mean convergence,
but never uniform convergence.

The above theorem also follows, in special cases, from somewhat easier
theorems given later in Section 10.6. The technique of the proof of Theorem 1
is important, for it shows that Fourier series in higher dimensions are also
complete (see Exericse 18 at the end of the chapter). Theorem 8 has the ad-
vantage that it is valid for a wide class of functions f. However, it does not
deal with the question of pointwise convergence. The next theorem does
answer this question. -

To state the theorem, we need some additional terminology. For this

theorem we may use either real or complex functions, but it is often enough ;

to consider real functions, for if f = f;

+ if5, the Fourier series of f is that
of f; + i(that of f;) (why?). ‘

Suppose théen, that f:[0,2x] -+ R (or [ ~n,n] — R) has a possible dis-

continuity at x, € [0,27]. In case x, = 0 or 2z this shall mean that we are
to take the function f extended to be periodic; that is, define f(x + 2m) = f(x).
This is reasonable because the Fourier series itself is periodic. This periodic
extension is illustrated for two cases in Figure 10-8. Now recall that we define
Slxg+) = limiﬂtL S{x) = limit f(x)
x>Xx0

if it exists (see p. 80). This means that for every ¢ > 0, there isa § > 0

* This uses more advanced methods; see, for example, Widom, Drasin, and Tromba, Lectures
on Measure and Integration Theory, p. 153. Van Nostrand Mathematical Studies #20.
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f(x) = Isin (x/2)}

W

0 27
(@) (b)
FIGURE 10-8 (a) Continuous at 0. (b) Discontinuous at 0.

-

such that if [x — xo| < dand x > x,, then | f(x) — f(xo+)| < & Intuitively,
Sf(xo+) means the value of f just to the right of x,. See Figure 10-9. Of
course, f(xq+) may not exist; look at Figure 10-9b. One defines f{(x,—)
in an entirely analogous way. A discontinuity, x,, where both f(x,—)
and f(x,+) exist, is called a jump discontinuity and f(xq+) — f(xq—) is
called the jump of f.at x,. The jump can, of course, be either posmve or
negative, and is zero iff f is continuous at x;.

Suppose [ is differentiable on some open interval Jxq,x, + &[. Then we
can form f* on this set, and hence can talk about f”(x, ) if it exists (by the
above definition). Similarly, we can form f’(x,—). Intuitively, f'(x,+) is
the slope of f just to the right of x,. For instance, in Figure 10-8a,
SO0+) = Li_r.r(i)iwtk(d/dx)(sin x/2) = 1/2 and in Figure 10-8b, f'(0+) = +1.

There is a slightly weaker definition of f'(x,+) which is sometimes
important. The above definition demanded that f7(x) exists for x > x, and
for f'(xg+) = IimigL J'(x) to exist. It is easy to prove that if this is so, then

X—+ X0

{f(xo +h - f(xo”‘)}
x—b0+ h

J'(xo+) =

(see Exercise 39 at the end of the chapter). For the following theorem the
existence of this limit is sufficient, so we shall adopt it as our definition, with

y

£x,-) /J

Foxgt)

ﬂﬂ/\ Qo
W

: (b)
FIGURE 10-9 (a) Jump discontinuity.
(b) f(x, +) does not exist.

et

~.
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y
|
i
|
f(xo+) 7 |
(F OB + flx,—) s\
-3 1
f5,=) 1 i
|
|
L - X
0 X, 2w
FIGURE 10-10

f'(xo—) similarly defined by

St —) = limit

Sf(xg—) — f(xo — h)
h )

The proof that this second method is actually a weaker assumption is left
to the reader in the same exercise.

Observe that [ is differentiable at x, iff f(xo+) = flxg—), f"(¥¢ +); and
f'(xo—) exist, and are equal.

The next theorem contains the principal result on pointwise convergence.

Theovem 9. Let f: [0,2n] = R (or f: [—n,n] = R) be sectionally
continuous, have a jump discontinuity at x,, and assume that f'(xo+) -
and f'(xq—) both exist. Then the Fourier series of [ (either in
exponential or trigonometric form) evaluated at X, converges to
[f(xo+) + flxo—=)1/2. In particular, if f.is differentiable at x,,
the Fourier series of [ converges at x4 to f(X).

If x, is an endpoint of the interval, then as mentioned previously the T b

numbers f(xo+) and f(xo—) are computed for the function after it is
extended to be periodic (see Figure 10-8). In the section on theorem proofs,
we give two proofs of this result. The first is quite short. The second, which

is the classical proof, is longer but is also useful for other purposes required -

in Section 10.4, so it is included as well.

Notice that the Fourier series does not necessarily converge to f(x,) at a
jump discontinuity but to the average of f (xg+) and f(xo—). A typical
example is a step function (see Figure 10-10).

Theorem 9 is very nice because it gives us conditions which are easily
verified in examples, and which do hold in most cases of interest. Further-
more, even in simple examples it is difficult to prove directly (without
Theorem 9) that the Fourier series converges to the function.
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In Theorem 9 we also have mean convergence of the Fourier series to fby
Theorem 8. However, Theorem 9 tells us that in addition, the Fourier series
converges at points where conditions of the theorem hold. Pointwise con-
vergence is a more delicate and sometimes more useful condition.

EXaMPLE 1. Suppose f: [0,2n] — C has [2"|f(x)]* dx < co. Then show

that
2 2 0 1 2n . 2
= 3 o L Sge i dx
1 2n 2,
=7 L f(x) dx
] 1 2n 2
+ Z — J S(x)cos nx dx
a=1 T Jo
=] 1 2n 2
+ Z - J f(x)sin nx dx
n=1 0

Solution: Let

V== {f: [0,27] - C| |1 £]12 =J2"If(x)lz dx < oo} .

Then, by Theorem 8,

inx

{fp,.(x) = NG

is a complete orthonormal family in V. Thus, by Theorem 6, Parseval’s
relation holds, and so

n=0,+1,42,.. }

23]

112 =3 Kfoul® -

H=—o

Here
2Zn
Sopw = j S(X)@u(x) dx
0

_ erf(x e~inx dx ,
0 2n

so the first equality follows. Let us recall that

@« N
Y, K@ means  limit ) [Kfip)P?
n= - N-oo L -N

for the exponential functions (that is, they are taken in the order
Pos P1s P15 P2, P2y - - .). (However, here the terms are positive, so the
series can be rearranged arbitrarily, by Example 5 at the end of Chapter 5.)
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The second equality follows by applying the same procedure to the
complete orthonormal family,

{ 1 cosnx sin mx
NN
One can also derive the second equality from the first by writing e”

cos nx — isin nx, squaring and gathering terms, and noting that the
cross-terms from n and —n cancel.

nm = 12,.. } .

inx __

ExaMpLE 2. For the following functions on [ —=,m], state whether we have
mean or pointwise convergence of the Fourier series and what the series

converges to at x, = 0.

: -2, x <0,
(@) f(X)—{z, <> 0.
. X, x < 1,
o= o
() f(x) = sin x.

14+ x, x<09

(d) f(x) = . <1>
x sin %) x > 0.

»

Solution: The graphs of these functions are given in Figure 10-11.
Each function is piecewise continuous, and the discontinuities are jump
discontinuities. This is obvious except perhaps for (d). There, f(x) =
x sin(1/x) = 0 as x — 0, since |x sin(1/x)} < |x|,s0 f(0+) = 0.

Also, at 0, f'(0+) and f'(0—) exist in cases (a), (b), and (c). All of these

are fairly obvious. For instance, in (a), f(x) =2 for x>0, and so

limit f'(x) = O exists. In case (d), this is not true. Here, for h > 0, we have

x-+0+
O+ k) —f0+) . (1
A = Sln(z> N

which does not converge as i — 0. Thus Theorem 9 does not apply in this case.
However, in each case we do have mean convergence by Theorem 8. At
x = 0, the Fourier series converges in (a) to 0 = [f(0+) + f(0-)]/2,
in (b) to 0, in (c) to 0, and in (d) our theorems fail. (One can show the con-
vergence of the Fourier series in (d) to 1/2 by a direct analysis.)

ExampLE 3. Find an example of a function f such that the Fourier series
of f converges pointwise and in the mean to f, but does not converge
uniformly.
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FIGURE 10-11

Solution: Let

0, —t<x<0,
L 0
2 X

[ =
1, O<x<m,
1 -
2 X=71.

The discontinuities of f are jump discontinuities (see Figure 10-12). From
Theorem 8, the Fourier series of f converges to f in mean, and by Theorem 9,
it converges pointwise, since f(xo) = [f(x¢+) + f(x;—)]/2 at each point.
Howevgr, the Fourier series cannot uniformly converge to f, because
each s,(x) is continuous and if s,(x) — f(x) uniformly, f would be continuous
(Theorem 1, Chapter 5), which.is not the case. J

Y
f
[ ————] SO
° ° . °
X
-1 p
FIGURE 10-12
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Exercises for Section 10.3 ' ' 1
1. (a) Show that the nth partial sum of the trigonometric Fourier series of_a (re;_lI . otr
T complex) function is equal to the nth partial sum of the exponential series. [Hint:
prove this by writing e"* = cos nx[+ i si_jx nx.}

b) Write the corresponding series on | —7,7]. ) )
Ec)) Show that if, on [—m,n], f is even (that is, f(x) = f (—x)), the?l in Fhe
;sonometric Fourier series, all b, = 0. The series is then called the cosine sertes.
R = —f(x) show all a, = 0. The

(d) Repeat question () for f odd; that is, if f(—x) =
series is then called the sine series.
i i in the sense of / being periodic)
. . [0,22] — R, show that fis continuous at zero (in J :
"2 ilzfc)_tf(:)) [——~ S (%n) and f is continuous in the usual sense at both points 0 and 27 in

[0.20], that s, limit /(x) = /(0),and limit /() = 1@n).
»3. Suppose f: [0,/]] —» C has fo 1f)|? dx < oo. Then show that

—~— -

2

+
2
+

o] 1 2
j‘ f(x)eannx/l dx\
o
1 2
[
0
! 2mnx
2 S(x) cos(—~——> dx
Sl gl
2
ns on [ —7,7] determine whether the Fourier series
and what the pointwise limit is if it exists.

! 1
j o2 dx =7 2
0 n=-—0
&1
=
= ! mx2n
> EU f(x)sin( - )dx
= 1 1 o
% 4. For each of the following functio
converges pointwise or in mean, t N
(a) flx) = x" (consider all possible values of ;= ..., -3,-2,-1,0,1,2,...)

, x <0,
() f&x) = kx, x=20.

© fx) = tanzx. .
d) fx) ="

e“""l, x>0,
€ f(x) = 0, < <0.

this section to justify your manipulations in Exercise 4, Section

for some k € R,

o 5. Use the theorems of
10.2.

10.4  Functions of Bounded Variation
and Fejér Theory” .
o the Jordan theorem (Theorem 9 above), but

i orem similar t ( ‘ e), L
There o s 1 conditions and which also gives a criterion

ich holds under more genera . / '
‘g)}i uniform convergence. We shall just state this theorem without proof

* This section is optional and may be omitted without loss of continuity.
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{although it is quite similar to the proof of Theorem 9, it is just a little more

intricate). We shall be content to prove a weaker version in Section 10.6
and to prove a related theorem of Fejér.

To understand the theorem, the notion of a function of bounded variation
is needed. Let f: [a,b] — R. Say that f is of bounded variation if there is a
number M such that for all partitions a = xy < x;, <---<x, =b of

[a’b]y . u
T ) = fse- )l < M.

Roughly, saying that f is of bounded variation means that the graph of
f has finite arc length. The conditions of Theorem 9 imply that f is of
bounded variation on some closed interval containing X, but being of
bounded variation is generally a weaker condition. One can show that a
function is of bounded variation iff it is the difference of two bounded
monotone functions.* It follows (see Exercise 3, p. 292) that if f is of bounded
variation, then its discontinuities are all jump discontinuities and are
countable in number.

The Dirichlet-Jordan theorem is as follows (the proof is omitted).

Theorem 10. Let f: [0,2n] — R be a bounded function.
(&) If f is of bounded variation on an interval [xq — &,x, + €], (for
some ¢ > 0) about x,, then the Fourier series of f evaluated at
Xo converges to [ f(xq+) + f(xg—)]/2.
(i) If f is continuous and of bounded variation, then the Fourier
" series of f converges uniformly to f.

Both Theorem 9 and the Dirichlet-Jordan theorem give sufficient con-
ditions for the Fourier series to converge. Exercise 34 gives an example to
show that the conditions are not necessary. Useful, necessary, and sufficient
conditions are not known. :

As we have remarked, the Fourier series of a continuous function need
not converge pointwise. By the Dirichlet-Jordan theorem, such a function
cannot be of bounded variation. Fejér’s theory covers this case by weakening
pointwise convergence of the series to Cesaro summability of the series.
Let us recall from Section 5.9 that sequence ay, a,, . . . is said to converge:
in the sense of Cesaro or (C,1)ifo, = (a; + - - - + a,)/n converges. If q, — x,
then ¢, — x, but not necessarily conversely. For series, this criterion is
applied to the partial sums.

In 1904 Fejér proved the remarkable fact that although the Fourier
series of a continuous function need not converge pointwise, it is always
(C,1) convergent.

* If fis of bounded variation, set v(x) = sup{ ¥ ., | f(xy) —f(x4=1)] I a=x,<x; < +'<
x, = x}, the variation of f. Write f=p — q, where p = v + f/2, g =v — f|2. One checks that
pand g are increasing. The converse is easy to verify.
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Theorem 11 (Fejér). Let [ be piecewise continuous on [0,2n] and
suppose f(xq+) and f(xo—) exist. Then the Fourier series of f con-
verges (C,1) at x, to [f(xo+) + flxo—)1/2. If f is continuous, the
Fourier series converges (C,1) uniformly to f.

Note that no assumption of bounded variation or differentiability is
required. For practical applications, these refinements of Theorem 9 are not
too important, but they are of considerable theoretical interest.

When one considers “distributions” or “‘generalized functions,” such as
the Dirac delta function (Section 8.9), Fourier series still make sense when
suitably interpreted, and every distribution has a convergent Fourier
series (convergence in an appropriate sense, see p. 277). These convergence
facts are quite useful in practice, but space does not allow a treatment of them

here.*

ExaMPLE 1. Let usformally compute the Fourier series of the delta function,
8 on [ —m,n]. Recall that this function has the defining property:

r 10 80 — a)dx = f(a) .
Now " .
J‘ S(x)e" ™ dx =1,

—-n

so the Fqurier series of § is

] inx
e

pe 21

Of course, this does not converge at x = 0, but we do not expect it to,
since 8(0) is undefined. -
What is true is that

o(x) = 2n

H= o0

in the sense that it holds under the integral sign; that is, for any continuously
differentiable function, f,

. © 7 inx g
() =J, $(x)f () dx = _Zw J_&);n_i '

-

The validity of this is quite obvious; in fact, from Theorem 9,

50 = 5[ s ) 52

for each y. (Since the sum is from —oo to -+ oo, we can replace n by —n.)

* For a more complete discussion, see for example, Zemanian, Distribution Theory and Trans-
Sform Analysis.
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The situation for a general distribution and the proof of convergence
of its Fourier series is analogous, that is, if T'is a distribution, then as above,

1
T__._.._Z_ aemx’

SMS

where a, = T{e™™).

Exercises for Section 10.4

¢ 1. Prove that the trigonometric series 22, "™ is (C,1) summable to 0 for x not a
multiple of 2z.

2. Compute the Fourier series of &', the derivative of the delta function.

10.5 Computation of Fourier Series

In this section we are mainly concerned with specific examples of Fourier
-series and methods that can be used to compute them. Included in our
discussion is an interesting and important phenomenon which occurs in
the behavior of a Fourier series at a jump discontinuity; this is known
as the Gibbs’ phenomenon.

The trigonometric and exponential forms of Fourier series are entirely
equivalent as we have seen (Exercise 1, Section 10.3). For computations,
the trigonometric form is often the most convenient. The various forms of
Fourier series and their convergence properties are summarized in Tables
10-2 and 10-3. The functions can be real or complex, but we will work with
real functions for simplicity.

There are several comments to be made on these formulas. The first two
forms {Table 10-2) should be self-explanatory. The Fourier sine series arises
when f is odd, because then we have f(—x) = —f(x) and hence

a, = % f S(x)cos nx dx '

% f " f(= x)cos(— mx) d(—x)

- _;cl.f_“f(x)cos nx d(—x) = —a,,

soaq, = 0.
Similarly, for f even, the Fourier series reduces to the cosine series. See
Figure 10-13,
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TABLE 10-3 Convergence Properties

i ence of Fourier series
Properties of f Converg

j'm S dx < oo Converges in mean to f
X

[

f has a jump discontinuity at xg and f'(xg +), Converges pointwise at xo to
[Hxg—) exist. If xp is an endpoint, we regard f [ ) + Fta—)]
as extended so it becomes periodic (see below 5
for the half-interval forms)

Converges uniformly to f

[ continuous and f* sectionally continuous

| i 1 functions @, on [ —7,7]
the interval [ —1,[], we replace orthonorma L,
byFl/(/)r(x) = /[l p(mx/l) which again are orthonormal on [-L. Th(lis is
just :1 change of scale and the same convergence propertx'es alsq 1’101f in
Jthis case. The reader should write down the sine and cosine series (for f

even) on a general interval [ —L[]. _ '
Od_C[l‘hC: half—i)nterval formulas are obtained as follows: for the cosine series

extend f to [ —1,1] by defining
f(=x) = f().
i ies. See Figure 10-14. For
becomes even and so has a cosine series ‘

Zoh:\xllerfgence at x, = 0 we must check this extended f}mctmp, and not the
original one. If f(0-+) exists, then the extended function evidently hlas n(i
jump at 0. Similarly, we do not get a jump gt lor —1. Tht}s the usua con
vergence criterion applies without modification for the cosine series.

: SR B by f(—x) =
-i | sine series is similar. On [ I,Q[ define [ by .
——;{3:)3 1fl:;lrlf(')l n;eiras I so that f is odd and so has a sine series for its Fourier

y y
periodic .
extension . r ) , ,?\
Oy /N
R/ O ANUPE AN NN
S~ i =~ ! | | |
l } ! [ | i N -
-7 -X x 1:r I! -1 =X x
V"‘.\ AN
=) M
(a) fodd (b) feven

FIGURE 10-13 (a) fis odd. (b) F is even.
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|

l

-R 9
FIGURE 10-14

series. See Figure 10-15. In this case, at the point 0 the Fourier series is
always zero (sin 0 = 0). Thus at 0, we do get an extra jump discontinuity
introduced but the Fourier series is zero at these points. To ensure continuity
of the extended f, we would have to impose the conditions that f be con-
tinuous and f(0) = f(I). Thus the convergence criteria apply to the half-
interval sine series: without modification if we keep in mind that at 0, I
the convergence is to zero.

From the general theory (Theorems 6 and 8) we know that Parseval’s
relation holds for each f with [3" |f|* dx < oco; that is,

2 w0
J UPd =3 lef?,

0 n=-—oo
where ¢, are the Fourier coefficients in exponential form. Care must be
taken in the above cases because ¢,, a,, b, of the table are not the Fourier

coefficients in the previous sense, as we have gathered factors of ./2x, \/1—r
for traditional reasons. But if we remember this, Parseval’s relation is easy
to find. The results are tabulated in Table 10-4.

If we know the Fourier series of f(x), say, on [ —=,x], then we can get an
expansion for the function g(x) = [% f(y) dy using the following theorem.

Theorem 12.  Suppose {* | f(x)|*> dx < oo and f has Fourier series
% +n; (a, cos nx + b, sin nx) .

Then letting g(x) = [, f(y) dy, we have

+1) & x "
g(x) = ﬂ’(_x.z__”) + <a,,f cos ny dy + b,,J sin ny dy)
n=1

- —

Gx +m) & fla) b, .
= 7 +n;{(7>sm nx - <——>(cos(nx) —~ (=1 )}

¥

n

and the convergence is uniform for —n € x < 7.

Note that this expansion is not the Fourier series of g, but does give the
Fourier expansion of g(x) — a,x/2. Also, the expression is obtained simply
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y
»
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Iy Rl
\f N b=
\ N

FIGURE 10-15

by integrating term by term the Fourier series of f. Similarly,

any of the series

in Table 10-2 may be integrated term by term to give a uniformly convergent

series (the proof is the same in each case).

This is quite useful when the constants, a, and b,, have already b.een
computed for f. Then to get the actual Fourier series for g, we can just

TABLE 10-4 Parseval's Relation

Type of series Parseval’s relation
1 Ir il b4
Exponential series —J‘ fePde= Y lef <°ff )
2n 0 n= = -
] | = az © 2n
0 2
Trigonometric series ;J IS dx = 5+ Zl(“v3 + b) <or L )
. 1{= <
Sine series ;j | /o)) dx ="=Zl by i
1" 2 af &,
Cosine series p /e dx = = +,,Z;a"
1, @
Exponential series 1 fe? dx = Z fe,?
on[—L{] 20 ) nE-w
Trigonometric series 1 " fO? dx = f_% + i(-aﬁ + b3)
on {—'l,l] l g1 2 =g
. 2 1 aZ w
Half-interval 2o de = =2 Z a?
cosine series I'Jo 2=
Half-interval 2 [ 24 -2
sine series ] 'olf Cf* dx "Zlb"
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substitute the series for x, and gather terms (the series for x is given below).
See also Example 3 at the end of the chapter.

Recall that if we have any convergent expansion for a function in terms
of cos nx and sin mx, then it must be the Fourier series of the function (see
Theorem 4). Differentiation of Fourier series requires more care and will be
treated in Section 10.6; see for example Section 5.3.

In Table 10-5 are assembled some of the common Fourier expansions.
In using this table, one should keep in mind that the Fourier series is linear.
That is, the Fourier series of af (x) + bg(x) is

a(Fourier series of f) + b(Fourier sc;ries ofg).

TABLE 10-5 Some Fourier and Related Series

Valid pointwise
Function Series on the interval
1. I, 0<<x<n= t + (2) & sin(2n — 1)x ]—naf,
Sx) = 2 \n) & =
0, ~—m<x<0 1 i(l ( 1)ﬂ)sinnx tatx = 0,m, —n]

T2 s n

la. flx) =1, 0€x<n 4 & sin(2n — x 10,7
;"ﬂ 2n — 1
(half-interval sine series) Datx = 0,x = x]
1 [0,x]
(half-interval cosine series)

2. f(x) = x (-1t 1-mal
2"; w S nx [Oatx = n,x = —x]

&, sin nx J0,2af ‘

7’—2"; " [ratx =0, x = 2x]
x4 &cos(2n — )x [0,x]}
2 n5 (@ —1)? ,
(half-interval cosine series)

2a. 0, -n<x<0

Sx) = T 2 icos(Zn - x
x, 0<x<= 4 n~ (2 - 1)t
&(=1" . ]-mal

_n; n sin(rix) [n/2atx = n,x = —x]
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4 4
TABLE 10-5 (continued) g i g
Valid pointwisc : /// : : /// /’1 / //1|
. . on the interval L 17 . Rl ! P
Function Series o o 7 _7'{/ L
d e
27? &, cos Nx v ¥
3. f00) = % ) [0.2r} @ ®
" FIGURE10-16 (a) f(x) = xon [0,2x]. (b) f(x) = x on [—7,x].
= /cos nx sin nx\ | 10,2n] . . . "
4 ( ") | [ at02n] Also, Theorem 12 can be used effectively to build further series successively
" by integrations, for example, x, x2, x*, . .. . Also, note that if f is modified
‘ at a finite number (or even a countable number) of points, the Fourier
] i series is unchanged (why?). Specific illustrations will be given shortly.
L-mm 1 In these formulas, care should be taken with regard to the domain. For
: example, f(x) = x on [0,2x] is quite different from f(x) = x on [-n,x]asa
§ &sin@n — 1)x [0, periodic function (Figure 10-16).
T Re e -1 I— i Of course, on ]0,a[ the functions and their series agree. A comparison
of these series leads to many interesting identities. For the function x above,
i (2__...._-— for example, we deduce that
= n ©. sin nx 2 (=1t
4(1_(__1)n) . x=75—22 n =ZZ' ""_n — S1I1 X
o sinnx [017'[ | n=1 n=1
mon ‘ vatx = s for 0 < x < m. However, off ]0,n[ they will not agree. See Figure 10-17.
(half-interval sine series) Qatx= L We have sketched roughly what the above series look like up to the nth term.
- : 4 = cos 2 ’ In Table 10-5, [ —=,x], [0,2%], and [0,n] are presented for convenience.
4, f(x) = sinx 214 e [oxf These can be changed to [—11I], [0,/] by introducing constants and new
L . . variables as indicated in Table 10-2. Some further expansions are found in
(half-interval cosine serics) the'exercises and examples.
. - We now turn to what is referred to as the Gibbs’ phenomenon.* The Gibbs’
da. . sinx, 0SxST [—nm] phenomenon generally occurs when f has a jump discontinuity. The idea
S = , —-mn<x<0 5,
S
4b. f(x) = lsin x| all of R X , 5,
—————— - A}
. g 2, nsin2nx 100 ,
= X RS 3 .
5. f(x) ="cos SN !\/k
(half interval sine series) [0atx =0,x= 3| 0 - 2;}’ - 0 ww
- . 1l
w — 1 ]
6. fx) = & siuh 7 {22 g foosh x at 7, —7]
oo (a) v

FIGURE 10-17

* Named after J. W. Gibbs, a mathematical physicist and physical chemist who discovered it.
Gibbs is usually credited with inventing current vector notation around 1880.
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is illustrated in Figure 10-18. This shows that if 5, is the nth partial sum of
the Fourier series, then the maxima and minima of 5, near the jump always
differ by more than the jump of f,and this excess remains asn — co. Roughly,
the Fourier series “overshoots” the jump and this overshoot persists in the
limit. Another way of saying this is thatasn — oo, 5,(x) tends to approximate
a vertical line longer than the jump.

The general case is a bit delicate so instead we consider just one special
case of a jump discontinuity and determine the overshoot exactly.

Theorem 13. Consider

07
£ ={

x <
XET.

a, -7
b, 0
and supposea < b. Let s,(x) bethenth partial sum of the trigonometric

Fourier series. Then the maximum of s, occurs at m/2n and the
minimum at —(w/2n) and

imits, () = (2=2) (2| e +1) +b
n— o 2n 2 nlg !

~ (b — a)(.089) +b.

NN

b

Similarly,

_y n b—a 2 [Tsint
" I:T;tsn(“i’r;) =< 5 )(*EJ‘O——t——dt +1> +a

~ a — (b — a)(.089)

and the difference of these limits is

b — a\[4 ["sint ]
( 3 )(& L -t—~dt) ~ (b — a)1.179) .
i f
overshoot : : 'WL
1

—apprr T

FIGURE 10-18
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FIGURE 10-19

Fora= —1 and.b = 1, this is illustrated in Figure 10-19. Thus the
overshoot of the maxima and minima is each about 9 percent of the jump in f.

E‘X.I}MPLE 1. Let us show that formula 1 of Table 10-5 is obtained by
evaluating the Fourier coefficients by direct integration on [ —
Table 10-2). We obtain ® L] (oee

IJ"" {1, n=0,
a,=— ] cosnxdx =
TJo 0, n=12,....
1{r n
17,,=—J‘sinnxa7x=l _Sosnx
T Jo T n 0

_11=(=1
=—(——

2
—_ nodd,
=< 7n
0, neven . !

This establishes formula 1.
ExaMPLE 2. Use the table to find the series for
-1, -t <x<0,
gx) = 1, 0<x<n.
Solution: Let f be defined as in formula 1. Then
glx) = 2f(x) - 1,
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so the expansion for g is

1 2 &sin[(2n — 1)x] 4 & sin[(2n — )x]
2('2‘““_.%,,; 1 )~ l=72 -1
since the Fourier expansion of 1 on [ —=,z] is 1. Of course, one could also
obtain this directly.
Note that the half-interval sine expansion of 1 is not 1 itself but is the same
as that of g above (explain).

ExaMPLE 3. For each 0 < x < m, prove that

o 9 © -1 n+1 .
g —"; p—1 (1 — (—1)")cos nx = ";L—nl-— sin nx .
"Solution: The left side is the cosine series for f(x) = x on [0,7], while
the right side is the sine series. For each 0 < x < mwe have convergence to
the value x. At + 7 the right side is zero.

ExaMPLE 4. Establish the first formula in Table 10-5 for f' (x) = x and
state how one obtains those for x*.

Solution: Since f(x) = x is odd, we use the sine series. Then

2 n
b,,=-J x sin nx dx .
7

0

»

Integrating by parts gives

b, = 2._(_xcosnx> " +zj" cos nx
T n o T o n
1yl 2
_2n=0 L 2
7 n i
Hence the series is
(_1)n+1

Z b, sin nx = 2 Z

n=1 n=1
The series for x? is obtained as follows. The first formula is the integral of
the series for x on [0,27] (with a factor of 2, since % ydy = x%/2). The
term 27%/3 comes from the cosine term at 0 using y.°, 1/n* = n*/6
(Exercise 4, Section 10.2). Here Theorem 12 is used. The second formula
uses the first and the expansion for x on ]0,2z[ from formula 2 of Table 10.5.
These can also be done directly. The third formula is the fourier series
(= cosine series in this case) for x?, and the remaining formulas are the
integral of the cosine expansion of x on [0,z], and this along with the sine

expansion of x on ]0,x[ are substituted, respectively.

n
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ExampLE 5. Find the Fourier series on [ —,n] for
0, -1<x<0,
x2, 0<x<mn.

f(x) ={

Solution: If we integrate function 2a of Table 10
. -5
given here. Hence by Theorem 10, ;e eet 2 of the f

_mx | ow* 2& [* cos[(2n — 1)x o fx (1)
%f(x)——3~+—4————;J~“L[(n—de—ZI:J (—';llsihnxdx

7 n — 17
_mx ot 2&sin[(2n — 1)x]
7 e N P
+ E (_l)n(coj#> = (‘;‘121)" ) (_1)" .

Inserting the first series for x from formula 2 gives

T 0 (__1):1+1
— 2 :
4( ; n Sin l‘lX)
? 2&sin[@2n — 1)x] & (=1) »
+ .z - COS nx 1
4 n; (@2n — 1)° +Z n? '"Z“z'

n

This is the desired series but in a slightly awkward
Exercise 4, Section 10.2 o ard form. Note that from

T

27T

o0 1 2

" The resulting series is thus
7r2 el 7!:(___1)n+1 1 — (—1)"
== —_— i ~1 "
flx) 2(12 +"=§1{{ o — p— }sm nx +( nz) cos nx}) .

Exercises for Section 10.5 '

o 1. Establish the following in Table 10-5.
(a) Formulas 2, 2a.
(b) Formulas 4, 4a, 4b.

2. Find the half-interval sine series for x2.

» 3. Establish the following:

O (1, o
X COS X == ‘(}L)Sinx +22( 1)'n sin nx
n=2

"2_1 3 —_ < Xx<7n.




378 FOURIER ANALYSIS

4, Compute the Fourier series on [ —n,m] for each of the following functions.
10, x>0,

@ S = {—11, x < 0.
(d) flx) = x* +x +3.

(@ﬂﬂ:{fﬂ x>0,

x < 0.

5. Discuss the Gibbs’ phcnomeﬁon for the function

8, x>0,
f(x)"{—z;, x<0,

on the interval [ —m,7].

2 6. By considering

) =

— -n<x<0,

and the point x = n/2, prove Leibnitz’ formula:

10.6 E‘;ome Further Convergence Theorems.

In this section, we give some additional convergence theorems concerned
mainly with uniform convergence, differentiability, and integration of
Fourier series. -

We have already stated in Section 10.4 that if f is continuous and of
bounded variation, then the Fourier series of f converges uniformly to f.
Let us now give a slightly weaker version which is easier to prove and is
almost as good in practicé. The reader should be sure to fully understand
the notion of uniform convergence (see Chapter 5). For example, in Figure
10-18, why is 5, not uniformly convergent to f?

Theorem 14. Suppose f is continuous on [=mn], f(=m) = f(®),
and f' is sectionally continuous with jump discontinuities. Then the
(trigonometric or exponential) Fourier series of f converges to f
absolutely and uniformly. A similar statement holds for f on [0,27].

In particular, this implies that the Fourier series converges in the mean
and pointwise, which we knew already (see Theorems 8 and 9).
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ThFor example, copsider f(x) = |x| on [—mn,x]|. Here the conditions of
eorem 14 are sa'tlsﬁed (but they are not satisfied on [0,27z] since this is
not the same function), so the Fourier series of f, namely,

ZI: 2n — 1)?

converges uniformly. See Figure 10-20.

Thus, by the definition of uniform ¢ i
s onvergence, there is, fo
an N such that n > N implies : revery e > 0

_ (™ _ A<ncos[@n — x]
|x| (2 n{\j 2 1) )<a

n 4
2 =

forall xe[—m=m,n]. -
One might think that if
99

fo) =2

o0
+ Z (a, cos nx -+ b, sin nx)
n=}

then

S'x) = Z {(—na,)sin nx + nb, cos nx}

n=1

?tteach point where f'(x) exists. Unfortunately, this is not true. For example
e 3

1, 0<x<
f(x)={ .
Then » TESXS

flx) = SHZ———————Sin;in__ Il)x .

So, for x > 0, we would expect

4 =
0= ;Zcos(Zn — I)x.
1

\./ 7
- N
T ~” T

FIGURE 10-20
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But this series does not converge since cos(2n — 1)x does not — 0. (To make
sense out of this, distribution theory must be used. Then it is possible to
differentiate at will under all conditions when suitably interpreted.)
Togeta differentiation theorem one naturally thinks of using Theorem 3,
Chapter 5. However, we can get a better theorem in this case by arguing

directly and the result is as follows.
Theorem 15. Let [ be continuous on [—nm], f(=n) = f(m), and
let f' be sectionally continuous with jump discontinuities. Suppose
f" exists at x € [—n,x]. Then the Fourier series for

Jx) = 922 + Y (a, cos nx + by, sin nx)
n=1

may be differentiated term by term at x,
o
') = Z (—na, sin nx + nb, cos nx) .
n=1

Furthermore, this is the Fourier series of f'.

Thus, just as in Theorem 5, Chapter 5, one must be careful when differ-
entiating series; certain conditions must hold to justify the operations. The
result showld be compared with Theorem 12 above.

ExampLe 1. Consider f(x) = |x| x & [—nx[, x # 0, which satisfies the
conditions of Theorem 15. It has the Fourier series

4 & cos(2n — 1)x

7
2 ﬂz @2n — 1)
Hence ‘
-1, -1<x<0,
f’(X)={
1, 0<x<m,

has the Fourier series

4 i sin(2n — 1)x
4 2m—1 7

which agrees with what we know.

ExAMPLE 2. Give the version of Theorem 14 which is valid on [ —L[].

Solution: 'We want to show that if f is continuous on [-L0, (=)=
f() and if f'(x) is sectionally continuous with jump discontinuities, then
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the Fourier series

a o0
-9+Z{a,,cosﬂx -+ b sin 2%
2 T l " l

converges uniformly and absolutely to f, where

a, = -II*J‘ f (x)cos(ﬂf)dx
-1 1

by =1 || soin( ) a
—1 )

{see Table 10-2). The proof could be accomplished following the method
of Theorem 14, but we can also deduce the result directly from this theorem
as follows. Let g(x): [ —=,%] — R be defined by g(x) = f(Ix/n). Then

1
a, = % f f (x)cos(ﬂr—{> dx
-1 l

1~ (I
= j ] nf(%)cos(ny) dy

}usixl:g x = ly/n). Thus a, is also the Fourier coefficient of g and, similarly
or b, ’
Now g satisfies the conditions of Theorem 14, so

ag e .
> + ) (a,cosny =+ b, sin ny)
=1

n

converges uniformly and absolutely to g on [ ~m,z]. Replacing y b,
we see that the same is true of f. [ 1. Replacing y by nx/l,

EXAMPLE 3.. For each c_>f the following functions, explain whether the
f‘ourler series converges in the mean, pointwise, or uniformly. Determine
if we can differentiate the Fourier series.

(@ f:[0,2z] - R,
1

RS TS ,

f(x)= n=1,2,.,.
1 1< <2
s Z\X\ s

®) fi[-nx] >R,

) == — |x|.

© fi[-nn] >R,
x2+1’ —n<x<0,

f(x)={
x + 1, O0<x<m
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i 3. fix) =n ~ x*on[—nx].

y ¥y
y .
* 4. Use Theorem 12 to find the Fourier series of x* on [—n,x] using that of x* from
P Table 10-5. :
m N
] d I, ! ——"\__/ S~ * 5. (a) Suppose f:[~m,n] ~ R is differentiable on [~=,x], f(~#) = f(r) and [,
N , S are sectionally continuous, with jump discontinuities. Then show that
__- ._-- 1 14 o
+ T T * F f IS () dx = ) a2 +82),
111 1 n -7 T - n=1
437
(@ (L) © where a,, b, are the Fourier coefficients of f.
FIGURE 10-21 (b) Use (a) and Schwarz’ inequality to deduce X ey + b)) < oo,

Solution: The three functions are sketched in Figuxze 19—21.‘11'1 all three
cases, f is bounded and hencesquare integrable (the functionin (a)is integrable
because its discontinuities form a countable set, see Theorem 3, Chapter 8.

i i i in all cases.
Hence the Fourier series converges.1n mean in a . ‘

The Fourier series in (a) converges pointwise to the- fynctxon, mldwagy
between the jumps at a discontinuity and to 1/2 at tl.le origin by Theor.em .

In cases (a) and (c) the convergence is not uniform because f is nc.)t
continuous (for continuity at the end points, one must look at the periodic
extension; then (c) develops a discontinuity). . o .

The function in (b) has a uniformly convergent Fourier series since 1t
satisfies the conditions of Theorem 14.

The Fourier series of (c) converges to f at each x such that —n < x < m,

and at —m and = it converges to
2 4n

Only the series of (b) may be differentiated to give the Fourier series of

1, - <x<0,
f'(x)—-—“{

-1, O<x<m,

which converges to f' for x # O and to O at x = 0.

Exercises for Section 10.6 ‘ .
For each of Exercises 1-3, determine what type of convergence the Fourier series wi
have and if we can differentiate the series.

v 1. f(x} = x* on [—m,7].
3, —-r € x < ~14,
22 fo) =40, —t<x<i
3, igx<m

» 6. Consider the half-interval cosine series for sin x on [—n,x]. Verify Theorem 15
directly in this case.

10.7 Applications

In this section, we briefly describe some applications of Fourier methods
to simple boundary value problems which occur in mathematical physics.
These examples are fairly easy, yet serve to illustrate some basic techniques.
This material is intended solely for illustration and as a link with other
courses in mathematics or physics which the student may be taking. It is by
no means a complete course in boundary value problems. For example, we
use only rectangular coordinates, when in fact polar and spherical coordinates
are also very useful.

The problems we consider are standard ones—the vibrating string, heat
conduction, and Laplace’s equation. Some further applications to boundary
value problems for ordinary differential equations are given in. Exercises
19 and 71 at the end of the chapter. We begin then by considering th
vibrating string. ‘

From standard physical arguments we find that a good approximating
mathematical model for a vibrating string with uniform density and (small)
vertical displacement y(x,t) at x at time ¢ is that y(x,t) should satisfy the,
wave equation,

Py 0%
o~ ¢ ax®

Here c is a constant determined by the physics of the string and represents
the velocity of wave propagation along the string (as will be seen below).
See Figure 10-22.

In order to completely specify the problem it is necessary to give the
configuration of the string at ¢ = 0; that is, how it is initially ““plucked.”

0<x<xl.
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y(x 0

c
.0 :x:-: 2

FIGURE 10-22

This data will be given by giving the initial condition y(x,0). Also note that
it is physically reasonable to assume that dy/dt is zero at t = O (that is, the
string is instantaneously motionless at the instant of plucking). It is also
necessary to specify what happens at the ends of the string. Typically they
are held fixed; for example, y(0,t) = 0, y(l,t) = 0 although other choices
are possible. Such a specification is called the boundary conditions.

. Once we have selected this model of the vibrating string, we have a purely
mathematical problem, and the physics does not re-enter until one wishes
to interpret the answer which the mathematics provides. There is a basic
method used in these problems called separation of variables which yields
special solutions, and from these one can build up general solutions.

Let us consider the case of a given initial displacement. To be more precise,
let us call the initial displacement problem the problem of finding y(x.t) for
0 < x < [, such that

. . Py Ly
(1) {equation of motxon)é—t-i =3
: y(x,0) = f(x)  (for given f)
2) (initial conditions att = O :
@ Ny x00=0 (no initial velocity)

ot A

(3) (boundary conditions) y(0,t) = 0, y(l,t) = 0 (for all 1)
Thus we seek the motion of the string for future (or past) time when
it is initially “plucked” in shape f(x). For (2) and (3) to be consistent, we
assume also that f(0) = 0 = f(I). Other types of initial conditions are

considered in Exercise 3.
Separation of variables means that we first seek solutions to the equation

of motion of the form
y(x.t) = h(x)g(t) -
Thus substituting in the equation of motion, we obtain
h(x)g"(t) = c*h"(x)g(t) .
This will be satisfied if
h'(x) + Ah(x) = 0 and g'(t) + Ac*g(t) =0

for a constant A (why?). A solution of these equations with h(0) = h(l) = 0
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and ¢'(0) = Ois

h(x) = sin(?%) and git) = cos(f%g)

P n?n?
=

where

n=1,2,3....

Thus, for each n, a solution of the equations of motion satisfying conditions
(1) and (3) above is given by '

. [nmx nmct
y,(x,t) = sin - cos\ —— > n=12,....

The initial conditions for this solution are

y(x,0) = sin (ﬂ;—x)

Thus we have the solution for a particular initial condition sin(nmx/l).
However, we know that any f can be expanded in a hali-interval sine series,
and since all the conditions are linear, we should be able to add up the
solutions corresponding to the terms in this expansion. This is done more
precisely as follows.

9y
and e (x,0) - 0.

Theovem 16. In the initial displacement problem, suppose that f
is twice differentiable. Then the solution to the initial displacement
problem is

¥x,t) = %[f(x — ct) + flx +et)]

=2 . (nnx nnct
=Zb,,sm-—-——cos——-—— ,
n=1 ( ! ) ( ! )

where the b, are the half-interval sine coefficients,

b, = sz f (x)sin(zn—x> dx
1o l

and [ is to be extended so that it is odd periodic. (Twice differentiable
means we are assuming that the extended f is twice differentiable.)
See Figure 10-23.

)

It happens in this case that the Fourier series solution could be simplified
to a more easily handled and explicit form. Often, however, one must deal
directly with the Fourier series itself.

Before generalizing, let us note the simple physical interpretation of the
result. We see that the graph of f(x — ct) is just that of f moved over to
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FIGURE 10-23

the right by ct, so we can interpret the function g(x) = f(x — ct) as f
moving to the right with velocity c after time ¢. Similarly, h(x) = f(x + ct)
is f moving to the left with velocity c. See Figure 10-24.

Thus, in Theorem 16, it can be seen that the initial shape of the string
merely propagates away to the left and right with velocity c, each with 1/2
the initial amplitude, and reflections with sign-change at the endpoints.

To use the half-interval sine series, recall that we made f odd periodic.
If we look only on the interval [0,], we see that when f moves to [ it reflects
from the wall; see Figure 10-25. Since the solution is the sum, there will be
complicated cancelling (or “interference”).

To keep track of this, it is useful to visualize a simpler situation first.
Suppose [ were concentrated near a point (possibly a é-function) and we

go=ho=f
t=0

FIGURE 10-24

APPLICATIONS 387

VAN

FIGURE 10-25

watch it move. These motions are called the characteristics of the problem.
They should be visualized as if one were watching a movie. See Figure 10-26.

If we want to use genuine delta functions or functions f which are con-
tinuous but not twice differentiable, then we must generalize the scope of
Theorem 1 and also generalize what we mean by a solution of 3%y/dt* =
¢*(9%y/0x?) for y which are not differentiable. This is done using the theory
of distributions. Admitting them, Theorem 1 still holds for f a distribution
(that is, the formal manipulations can be justified when properly interpreted).

We shall then regard (f(x — ct) + f(x + ct))/2 as the solution for any f,
differentiable or not.

f jﬂ— _R*
T X T
- R S
g

FIGURE10-26 (a)t=10. (b)t=1.
(c)t=2. (d)t=3. (e) t=4.
(f) t = 5. (g) return to (a).
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In 2-dimensional problems (such as a vibrating drum) the wave equation

reads
?y L[y [ %y
w*%m*m-

In this case the general solution can be written in Fourier series but does
not have a simple explicit expression as in Theorem 14. The solution (for
the similar initial displacement problem) on the rectangle [0,1] x [0,0], is
given by

e . (nx,m\ . [mx,n _132 l'_'z
(15X ,L) -"':L;lb,,m sm(—-——l )sm( g >cos[nct (J +(l’>]

where
4 (L[
bnm =17 f(xlaxz)sin il sin mxlz'ﬂ: dxl dxz .
i Jo l l

The reader is asked to go through the derivation of this in Exercise 68.

We now turn our attention to the problem of heat conduction. Consider
a bar whose temperature is T(x,t) at the point x at time ¢. Interpret —(0T/0x)
as the rate of heat flow. Thus the condition of “insulation” at x = 0 is
oT/ox = 0 (evaluated at x = 0). The law of heat conduction asserts that

oT T
9t = ’ 3 b
o 00 = gz ()
where k is a constant determined by the. conductivity of the material. This is

called the heat equation.*
Notice that the above equation differs from the wave equation in that

we have @T/dt instead of 92T/dt>. This difference is very important, for..

solutions to the heat conduction problem are very different in their behavior
from those of the wave equation. For example, in the heat equation one
obtains solutions only for ¢ > 0. Intuitively, for the wave equation the
graph of the solution “bounces around” like water waves. For the heat
equation the solution diffuses out and becomes steady as ¢ — oo (as temper-

ature tends to become evened out).

Thus, to study this simple situation, let us make the following model for
heat conduction of a bar with insulated ends (for simplicity, take k = 1).
Hence, we wish to solve for T(x.t) satisfying

. oT *T
(1) (heat equatxon)—a—t- (x.t) = a;(x,t), 0<x<ltz0

* For a derivation see Marsden-Tromba, Vector Calculus, Chapter 7, W. H. Freeman (1975).
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(2) (initial conditions) T(x,0) = f(x), 0<x<l
and
oT
'5; (O:t) = Oa
(3) (boundary conditions) t
oT
=09 =0,

v
o

F“irst, let us find some special solutions for special f by separation of
variables. Let us try T(x,t) = g(x)h(t); then we must have

7 glxH'(t) = g"()h() .
These equations are:true if, for a constant 4,
g(x) + Ag"(x) = 0 and h(t) + iAW) = 0.

Solutions of these equations satisfying the boundary conditions are clearly

given by
—e)

h(t) = e~™¢ p=0,1,2,...,

where A = n?n?/I2. We use cosine and not sine so that the third boundary
condition will hold. The reader can also see that these boundary conditions
can’t be met if we try to solve for g and h with 2 < 0.

Thus a solution with f(x) = cos(nmx/l) is given by e~ cos(nmx/l),
n=0,1,2,... .Since all expressions are linear and

fx) = Za,,cos nex + %
n=1 1 2

(half-_it}terval cosine series), we expect that the general solution with initial
condition f is given by

4o < —n2n2tf12 nuwx
5 + Z a.e cos -T . )

n=1

and

The relevant theorem is Theorem 17.
Theorem 17. Iffis square integrable, then foreacht > 0

T(x,t) = % + ) e cos(ﬂ?f>
n=1

converges uniformly, is differentiable, and satisfies the heat equation
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and boundary conditions. At t = 0, it equals f in the sense of con-
vergence in the mean, and pointwise if f is of class C'. As usual,

a, = Zf}(x)cos(ﬂg) dx .
I 1

Thus this theorem gives the general solution to our problem. The expo-
nential term makes the convergence rapid for t > 0. For t < 0, divergence

usually prevails.
As t — oo all the terms in the series — 0, and also the sum — 0, leaving

limit T(x,f) = %ao ,

t—* o0

so T becomes a uniform constant temperature in accordance with our
intuition. The proof of this is simple; see Exercise 69 at the end of the chapter.
What happens as ¢t — 0 is answered by the following more delicate result.

Theorem 18. In Theorem 17,
limgt T(x,t) = f(x)

t>0

in the sense of convergence in mean, and converges uniformly (and
pointwise) if f is continuous, with f’ sectionally continuous. More
generally, for any f, if the Fourier series of f converges at x to f(x),
then T(x,t) = f(x)ast — 0.

This is an important result, for it tells us in what sense we recover the
initial value f(x) from those for ¢ > 0. This is not derivable from differ-
entiability of T(x,t) for t > 0.

Our final application will be the consideration of Laplace's equation on
a square. Laplace’s equation in R" is

Vigp =0

n 62
Y 2l-o.
=1 oxi
Such a function ¢ is called harmonic. This equation arises in many problems
of electrostatics, fluid flow, and heat conduction.
The basic problem, called Dirichlet’s problem, is the following. Given

values of ¢ on some closed curve in the plane, find ¢ inside. This seemingly
simple problem is at the core of the vast and deep subject of potential theory.*

or, written out, i

* The terminology arises from clectrostatics, in which ¢ represents the electric potential;
again see Marsden-Tromba, Vector Calculus, Chapter 7 for details. This problem can also be
attacked by methods of complex variables; see, for example, J. Marsden, Basic Complex Analysis,
Chapter 5.
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FIGURE 10-27

Let us use Fourier series to solve this problem for a square in R?. Cubes
in R? are similar. The problem is summarized as follows.
In R?, on [0,a] x [0,b] find a function ¢ such that
(1) (Laplace’s equation) V¢ = 0.
(2) (boundary conditions) ¢(x,0) = g{x)
@(x,b) = g5(x)
#(0,y) = f1(y)
_ o(a,y) = f5(y)
where f; and g, are given functions. See Figure 10-27.

First, let us get special solutions by separation of variables. Try

o(x,y) = ©1(x)p(y) -
Then

P1(x)ea(y) + 0(x)ez(y) = 0,
if, for a constant 4, ¢, and @, satisfy the equations
¢i(x) + @y (x) =0 and  @3(y) — Apy(y) = 0.
Solutions to this are

?,(x) = sin<-'52——’5), n=1,2,...

P2(y) = sinh{ff—(l—’f——ﬁ]

where A = n?rn?/a®. We choose sinh(z) = (¢* — ¢7%)/2, z = na{b — y)/a,
rather than e® or ¢~%, because it will vanish when y = b. Similarly, we choose
sine rather than cosine.

Thus
o(x,y) = sinh(——————nn(b — y)>sin<@>
a a

satisfies the boundary conditions

. (mcb) , <mrx)
g, = sinh{ — Jsin{ — |,
a a

3
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fi = f, = g, = 0. Similarly, we obtain other basic solutions. It can be
expected, therefore, that when f; = f, =g, = 0, the solution of the
problem is

: @ (nn(b — y)) sin(nrx/a)

CD(X,Y) = ”;bn Slnh( }sinh(mcb/a) (1)
where g,(x) = Z:’: . bn sin(nmx/a) (half-interval sine series). Similar solutions
hold for the other sides, and the sum is the solution for all sides.

Theorem 19 summarizes the conclusions.

Theorem 19.

(i) Given g,, let @(x,y) be defined as above. Suppose g, is of class
C? and g,(0) = g,(a) = 0. Then ¢ converges uniformly, is the
solution to the Dirichlet problem above with f, = f, = g, = 0,
is continuous on the whole square, and V*@ = 0 on the interior.

(i) If each of f1, f2, 91, 92 is of class C? and vanishes at the corners
of the rectangle, then the solution o(x,y) is given as the sum of
Jour series like Eq. (1) above, V2@ = 0 on the interior, V is
continuous on the whole rectangle and assumes the given
boundary values. Futhermore, ¢ is C* on the interior.

(i) If fi>f2» 91> 9o are only square integrable, the series for ¢ con-
verges on the interior, V2@ = 0 and ¢ is C®. Also, @ takes on
the boundary values in the sense of convergence in mean. This
neans, for example, limit @(x,y) = o(x,0) = g,(x) with con-
vergence in mean. 0

The results (i) and (ii) are still t-ue if we only assume that f; and g; are
continuous, but they require a different method of proof. The present
procedure is good, however, because it gives the solution explicitly in terms

of Fourier series. The conditions (iii) are probably the most important in '

practice. See Example 3 below and Figure 10-28.%

ExampLe 1. In the initial displacement problem define the total energy
of the string at time ¢ to be

1 i ayz cz 1 ayz
mo =3[ (&) o +5 [ o

(kinetic plus potential energy).
Show that E(f) is constant in t.

* For further applications to problems in mathematical physics, we recommend Duffand Naylor,
Partial Differential Equations of Applied Mathematics, Churchill, Fourier Series and Boundary
Value Problems, and for a more exhaustive treatment, Courant and Hilbert, Methods of

Mathematical Physics.
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Solution: It suffices to show that dE/dt = 0. Now

dE 1o ay 2 2 1 a/ove
B _ry o9(9y & [Mafay
dt 2Lat<at) dx + L a:('a';) dx .

This is justified if y is twice continuously differenti

Chapter 9). Then sly differentiable (see Example 2,

cz 1 a a 2 2 M 2
o 0t\0x 2 J, Ox ot 0x
Integrating the right-hand side by parts and using the fact that dylot = 0

at x =0, | gives
2 dy 9%y
—| ==5dx
2 J, Ot 0x*
which equals, in view of the equation of motion,
L[ty
2], ot or?
Thus dE/dt = 0, since the first term in dE/dt is
l 1 ay azy p
2, 0t ot? x
In case y is not twice differentiable more care i
) : is needed. (F i
y is a é-function, E is not even defined.) (For example, I

For the hea't equation, we do not have conservation of energy because
roughly speaking, the energy diffuses away. (See exercise 6). ’

dx .

ExaMPLE 2. A bar with insulated ends has a temperature distribution given

:)y> féx) =x, 0 <x <latt=0. Find the temperature distribution for

Solution: According to Theorem 17, we sim: i
. _ : , ply take the half-
cosine series for x and insert factors e = Now tﬁe series for xais gl:]vt::;::
_ I 4 &cos[(2n — Dax/l] ’
4 2n — 1)? ’

M8

2

50 the required solution is

]

n

T(x,t) = L —‘}EI- 3 e~ (2n— 1222 cos[(2n — D)mx/I]
2 n=1 2n — 1)* ’

!n general, one.cann.ot reduce this expression to a compact form but must
instead work with this series expansion.
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Gibbs' phenomenon y

FIGURE 10-28

[

ExaMpLE 3. Solve the Dirichlet problem on [0,x] x [0,x] with boundary
values gi =1, f;=0, f, =0, g, =0. How are the boundary values

assumed ?
Solution: Here the sine series for 1 is

4 & sin(2n — 1)x
;n; 2n - 1

According to Theorem 19, ¢ is obtained by inserting factors
sinh[n(z — y)]

sinh(nr)
into this. Thus we obtain

- 4 & sinh[@2n — V(= — y)] sin@n — 1)x
9(x.) = E,,; simh(n — Dn ~ 2n—1

as the solution. By Theorem 19, ¢ is C* and satisfies V2@ = .0 on the interif)r
of the square. Here ¢(x,0) = 1 in the sense of convergence in mean, that is,
o(x,y) - 1 as y — 0 (in mean). The partial sum s, of ¢ is roughly sketched

in Figure 10-28.

Exercises for Section 10.7
1. For the initial displacement problem of a string, consider the “plucked string” with

E]

N~

hx, 0<xs

flx) = /
h — hx, EsJCSl‘
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Show that f does not satisfy the hypotheses of Theorem 16. Find an expression for
the solution and sketch it after time ¢ = /¢, 3//2c.

2. Suppose in the initial displacement problem, f has a maximum or a discontinuity
at xq. Show that, after time ¢, this feature is propagated like a characteristic.

3. (a) State clearly what the initial velocity problem for a string would be (no displace-
ment). If the initial velocity is g(x), then show that the solution is

1 X+t x=ct
yet) = 5 {L 9(2) dz —f 9(2) dZ} -
0

Try to interpret physically.

(b) Combine (a) with the initial displacement problem to get a solution for the
problem with both initial displacement and velocity. (This is called d’Alembert’s
“Solution.)

4. In Theorem 17 prove that for any ¢ > 0,

2 1
—f Tx,)dx = aq .
LJo

[Hint: What are the Fourier coefficients of T(x,z) for ¢ fixed?]

5. A bar with insulated ends has at ¢ = 0 the temperature distribution f (x,0) = x2.
‘Find the temperature at ¢ > 0 and the limit as t — co.

6. Let T(x,f) be a solution of the heat equation (Theorem 17) and set L) =
Jo | T(x,0}? dx. Show that L(z) is non-increasing.

10.8 Fourier Integrals

This section is a short informal discussion of Fourier integrals. We shall
just sketch the main results so that the reader can see a preview of some of
this material and its place in Fourier analysis. ’
~ As we have seen in the previous sections, Fourier series are a very useful
tool for analyzing functions on a finite interval. Since many functions are
given on the whole real line R, it would be nice to have an analogous theory .
on R. Fourier integrals provide this theory.

Let us first argue heuristically. Consider f: [—/I/] - R. Then we can
write f in terms of its Fourier series, using the exponential form,

©
f(x) — Z C"einrcx/l ,
i ” o]

where

| -

c, =

1
l j f(e~™" dy .
-1

[
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Let o = nn/l and introduce

1
) = o | S0 dy.
Then

fx) = _ch(oc)ei“"% .
For [ large, o approximates a continuous variable, and this sum is roughly
a Riemann sum with Aa = =/l. This suggests that

i) = J " e da,

—w

where

27

In short, when we extend our intervals to infinite ones, the Fourier series
goes over into an integral. o .
Exactly the same steps as above can also be used in trxgonomcftrlc form,
except that integrals are taken from 0 to co as.are‘the corr_espondm.g sx'lrns.
The relevant theorem states that if f is sectionally continuous with jump
discontinuities and f'(x,+) and f'(x,—) exist there, and {2, |f(x)| dx < ©
(fis integrable), then

o) = r fpe = dy .

o0

Lipte) + e = | cloesan,

- 00

where

o) = | roray.

One proves this in a way similar to the Jordan theorem (Theorgm 9). .
The above formula is called the Fourier inversion formula. In trigonometric
form the formula is '

' }z'[f (x+) + f(x-)] =J‘w[A(a)cos ax + B(e)sin ox] du ,
]
where e
Alo) = ;J f(y)cos(ay) dy
V]
and

Bo) =2 | f(ysintay) dy .
T Jo

This form is especially convenient if f is even or odd.
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In view of the inversion theorem, the Fourier transform of f is defined as
n 1 [ .
Je) = 5 f fe™= dx..
n - o0
Then if f is continuous, differentiable, and integrable on R,
fx) = f f@)e™ do..
There is a similar formula on R”; that ié,
J() =f Je)e da,
R

where

fe) = (’2:?)' f S(x)e™ = dx

x, & € R" and {x,x) is the usual inner product in R".
Suppose f: [0,00[ — R. Then we can extend f to all of R by making it .
even or odd. Just as with the cosine and sine series, we can then introduce

.the Fourier cosine transform by extending f to be even, and setting

i = 2 | " speoson) dy.
The inversion theorem becomes
fx) = Lw fi(o)cos(ox) de .
Similarly, extending f to be odd leads to the Fourier sine transform,
i = 2 [“ssint v,
and the inversion formula becomes
fix) = J : Fio)sin(xer) de . | '
A standard fact one should know (using Example 1, Chapter 9) is that the
Fourier transform of e™**? (Gaussian function) on R is e~**/2/. /2. Note

that this is consistent with the inversion theorem.
In general, an integral transform is an association of the function

g(x) =Lk(x,y)f () dy
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with the function f for some fixed function k called the kernel, and some
fixed range A of integration. Such operations are cormon in mathematical
physics. _ o ‘

Thus the Fourier transform is an integral transform with kernel

k(x,y) = L gy,
’ 2

Here we come to an important, general problem. The transform maps f
to g; that is, given f we get g. Can we invert this? In other words, given g
can we invert the transformation to find f? _ ‘

The Fourier inversion theorem solves this problem in the case of
k(x,y) = (1/2m)e™. That is, knowing the Fourier transform we can recover

the function using the inversion formula. '
Another common integral transform is the Laplace transform wgth kernel
k(x,y) = e~*, and range [0,c0]. Thus the Laplace transform of f is

L(f)x) = re_"”f ¥ dy.

The inversion problem for Laplace transforms has a solution analogous to,
but quite distinct from the Fourier transform.*
For f: [—n,m] = R we have seen that (see Table 10-4)

"

112 =f S dx = 2 ) e

for the Fourier coefficients ¢, in exponential form. .Singe Cy .is e‘malogouS to
the Fourier transforms we might expect that something similar holds in

terms of f. ‘ _
In fact this is true. If | f]? and |f] are integrable, then letting

LE =r G dx,

we have,

112 =2 | F12 -

More geﬁerally, {fg> = 2n( f.3>. Here the Fourier transform can be any
of the types—exponential, trigonometric, sine, ?r cosm.e. .

This result is variously known as Parseval’s relation and Plan.cher el’s
theorem. To deal effectively with the technicalities involved requires the

Lebesgue integral.

* See, for example, Marsden, Basic Complex Analysis, Chapter 7 for details.
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For f and ¢ integrable on R (or R") we define the convolution of f and
g by

(f * 9)x) =j°° S — Ygly) dy .

This operation enters naturally in many problems. One of its main properties
is that

— ~
frg=2nf-g
(see Example 4 at the end of this chapter).

Fourier transforms have important applications in both pure and applied
mathematics, but especially important in partial differential equations, such
as the wave equation on all of R". The reason is that in terms of Fourier
transforms the equations become much simpler, often algebraic, and when
these equations are solved the answer is obtained using the inversion
formula. Convolutions are then encountered when we invert.

Using Fourier transforms many problems solved above on finite intervals

can be translated easily to problems on the whole real line R. The following
exercises outline how to do this.

Exercises for Section 10.8

These problems can be done informally with little attention to rigor since this section
has been so presented.

1. Show that Rif f(oc) is the Fourier transform of f, then f (o) = iaf(ot) and that
28 [2 o® | 12 do = [ |12 dx.

2. Let f(x,y) satisfy 0%Jox* -+ 9*Jay* = 0. Suppose that f(x,0) = g(x) and
limit f{x,y) = 0 for all x.
y=

(a) Let f (o, ) pe the Fourier transform of f(x,), with y regarded as a constant.
Show that f(«,y) = (e,
(b) Show that e~ is the Fourier transform, with respect to x, of

2y
x% 4y

(c} Deduce that the solution of Laplace’s equation is
Sy =2 | g
O
3. Suppose that f(x,) is a function for which
oy oy af

32 = Sx,0) = g(x), and % (x,0) = A(x) .
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Let f{a,¢) be the Fourier transform of f1 (x,t), with ¢ regarded as a constant.
(a) Show that f(a,f) = §lar) cos at + h(o)(sin ot/ar).
(b) Deduce that the solution of the wave equation is

fx,n) = —;—I[g(x — )+ glx + 0] + %L[h(x — 1) + Ax + )] dr.

4. Suppose that f(x.f) is a function for which

¥ _ o

6t= ) —0 <X < 0, t=0

and f(x,0) = glx). Let fl,#) be the Fourier transform of f.
(a) Show that f(&,!) = Gloe™ =,
(b) Deduce that the solution of the heat equation is

1

e = =L | e .
2k /mt J-

10.9 Quantum Mechanical Formalism

There is a close connection between the theory of Fourier series in an inner
product space (developed in Sections 10.1 and 10.2) and some aspects of the
formalism jn quantum mechanics. Our purpose is to explain some of the
aspects of this connection.

First, let us give a brief indication of the difference between classical and
quantum mechanics. In classical mechanics, a particle’s motion is described
by a definite path with its associated definite velocity. In quantum mechanics,
however, there is always some “uncertainty” about the position or velocity
(or both). For atomic phenomenon this uncertainty is necessary and these
effects are outside the domain of applicability of classical mechanics. For
example, if an atomic particle with a definite initial velocity is prepared and
projected at a screen, we donot know precisely what its future path will be.
Instead, when we look for the particle we can only determine the probability
of finding it in a given region.

In Figure 10-29, we consider™ projecting particles through a screen with
two slits onto a detection plate. Only the probability of location can be
determined, not the exact location. For repeated trials, light and dark
areas on the screen corresponding to high and low probability are obtained.
This is represented by the curve in Figure 10-29. Other physical phenomena,

* This is an imaginary experiment which is used for illustrative purposes only. In real experiments,
the “screen” might be, for instance, a crystal, and the slits. might correspond to interatomic

spacings.
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detection
sereen plate
probability
distributi
particles all istribution
prepared
identically

FIGURE 10-29 Double slit experiment.

like the discrete spectra f
or at i i
doserintions p oms, a}so require a quantum mechanical
Wh'li‘lhe above should not.be Faken to mean that classical mechanics is “false,”
apprz %ﬁ:tt:m rtnechamﬁs is “true.” Both are mathematical models whic;h
nature well in their own limited circumst '
mat s ances. Quantum
mt?lc‘:llllamcs is, however., a more “refined theory” than classical mec(ﬁanics
mCChe quelstlon _then is @ow does one describe the behavior of a quantum
comp?:;csalllala;n;le? tA smgwl(e ;luantum mechanical particle is described by a
- unction, (x), where x € R3. For mor i
A 3 . e particles one must
Sl;azﬁzsﬂ? tg another space (for N particles, R*" is used). If the system
P on time, then we use y(t,x). The probability density for locating

the particle in space is gi i i
who partic havep is given by ¥(x)(x), so if the total probability is one,

i =L,w<x)%c‘5dx =1,

lt:]lct 1;, ¥ should b'e normalized. T»h.is last sentence provides one of the
s between studying the mathematical model (that is studying the i
product space of square integrable functions ¥ and opera;ions on i%d' asod
below) an_d the physical interpretation of this model. tooussed
moI; :Ir:fml; roneasunlng a definite quantity, such as the x coordinate, the
ot n, or angu ar momentum, then, as above, these cannot be measured
mathz;;eggg.s'{ﬁle f.spect fof lquantum mechanics we wish to explore is the
‘ cture of the wave functions an i
objects corresponding. to physically measurable ébuant?ti;lsl.e Ol?é::t::fs]: tlgilé

SUb)eCt gOeS Hluch deepe[ than thlS a d our dlSCUSS!OIl ha O y ’ust be u
I

Consult R. P. Feynman R. B. Le
)
1gh£on, and M, Sands, The I eynman Lectures on [ /Iy.HLS,
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. . . — 2
Let us introduce some rigor into our discussion. Flr§t, suppos? V=%
is the space of functions, y: R* — C, which are square integrable;

lwl® = <y =j!//(x)_t/7@ dx < .

As we have seen before, this is an inner product space with inner product

gy = j 90 dx
Rl

Thus, all the discussion relating to an inner product space (see Sections
10.1 and 10.2) is relevant here. - .

A quantum mechanical state is (by definition) a fu'nctlon, Y € V such thalﬁ
ly| = 1; that is, ¢ is normalized. An observable is an operator A on 4
which is ;ymmetric (or self-adjoint, or Hermitian); this means that 4: V —

is a linear map satisfying

Afg> = {fLAg>
for all f, g € V. Actually, 4 may be defined only on some* elements of V.
For example, if 4 is the Laplacian

o o _6_2 _ 2
M=ot toaz=""
ivatives also lie in V.
is defined on those f e V whose secc?nd c.lerlv'a .
gﬁz ixr:SEheck formally that V? is symmetric using {ntegrat.lon by pagts
twice. On the other hand, §/dx is not symmetric, but i(d/dx) is (the reader
rove this without difficulty). ' ~
Cal:\ﬁ eigenfunction of an operator A is an f € I;, f 9(é) g, sucht ltll:tlti ;1]]: ; :f:
[ Ve
me complex number A called the eigenvalue. Obsen '
te;ci)grgesnc;unction,pthen so is f/Ilfll, so we can assume our eigenfunctions are
. d‘ . . .
no’i‘rtrll:rl;zeexre two important remarks to be made concerning elgenfunctlgns
of symmetric operators. First, if 4 is symmetric and <fx}sfa>n exaeﬁ;unx;ctlgg
ith ei i 1. (Proof: (Aff) = (A fD> = . O
with eigenvalue 4, then 1 is real. ( I ) s
ther hand, CALS) = (fAf> = LA = TUSI%,  that s,
ilel:.lo) S?cond, if< f and g are eigenfunctions with Eflgenvalues A and g, an_d
A ;é‘;c then f and g are orthogonal. (Prgof : Consider (Af,g)o— {f,Ag) =
0 = (Mg) — <fingd = (A — W< fig). Since p # 4, {fg> = 0.) e 1
.If f and g are independent eigenfunctions w1t‘h the same eigenv 'dt,
then we can obtain two new orthogonal eigenfunctions by the Gram-Schmi

has to distinguish between symmetric
* tors are called unbounded and for them o?e 5 ‘ r
ansdu:l;lﬁsg;zint. For further information see Reed-Simon, Methods of Modern Mathematics
Physics, Vol. I, Functional Analysis, Academic Press (1972).
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process. A similar operation can be performed for any number of eigen-
functions. Thus follows an important result. The eigenfunctions of a sym-
metric operator 4 form an orthonormal set. Hence, we have the connection
with Fourier series; for, if ®os P15 P25 . . . are the orthonormal eigenfunctions
of 4 and if they are complete, then we can write V= Z:°= o U000, for
any iy e V.

Unfortunately, the eigenfunctions are often not complete. For example,
the Laplacian operator on R" has no (square integrable) eigenfunctions. In
many important problems (‘‘bound-state problems”), however, the eigen-
functions are complete. This is proved in advanced courses on functional
analysis by means of a theorem called the spectral'theorem.

Let us return to the physical interpretation of observables. Again, let

Vbeas above and let A be a symmetric operator. The main physical assump-
tion is the following.

Physical Interpretation. If 4 is “measured” in a state ¥, only the
eigenvalues of 4 are observed. The value A, 15 observed with
probability [<,@,>|%, where 4o, = 1,0,.

. This interpretation is consistent because (see Exercise 22 at the end of
the chapter) '

L=<ydd =3 oo =Y Kihodl?

so the total probability is one. Furthermore, if the system is already in
state ¢, (which it need not be generally), then we observe A, with probability
one (that is, with certainty).

Thus the Fourier expansion of i exhibits i as a “‘mixture” of the eigenstates
®n, and the squares of the absolute values of the Fourier coefficients are the
probabilities of observing the particular eigenvalues. .

As we have seen before, in a given state y and given an observable 4,
one cannot generally predict with certainty the observed value of A. But
the average value observed, after many trials, is h3d o Ko D12 4, = (A D
(see Exercise 3). This quantity (Ay,y> is also called the expectation value
of 4 in the state . What is this for an eigenstate? '

Let us now give some simple examples of observables. Probably the most
important example is the energy operator, denoted H, also called the
Hamiltonian. For a single particle in a potential U, it is given by

hz
Hfy=—-——vVv? Uy .
W m YV + Uy
The justification of this choice depends on a more detailed analysis of the

foundations of the subject; again, refer to Feynman’s book for details.
Here U is just a given real-valued function representing the potential, m is
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the particle’s mass and h is a certain constant which depends on units*of
measurement (2 = 1.05 x 10727 erg sec) and is called Planck’s constant.
For example, in the hydrogen atom we can observe only discrete energy
levels, which are eigenvalues of the operator
n? /i
= —— Vi) — —
By 2m v r’
where r(x,y,2) = (x> + y* + z%)"/2, and m is the mass of the electron.
’ ’ - . .
A word of caution—any  is an admissible state, not just th‘e e'lgenstates.
But the eigenstates are particularly important states because their eigenvalues
i i ble.
give the values which are observa . . ) ) )
The reason the energy operator is so important is two-fold.. First, its
eigenvalues give the possible energies we can observe. Second, this oI_J.eljator
governs the time dependence of i by means of the celebrated Schrddinger

equation which reads as follows: ’
]
LW g
ih i 1}

(the solution y of this equation using Fourier series is given in Exercise 23,

at the end of the chapter).

Other operators are . o
(1) The position operator (in the x direction),

4 Qx(‘P) = X!//(X,y,Z) .
(2) The momentum operator (in the x direction),
h oy
P.W) =75:-

(3) The angular momentum operator (about the z axis),

hf{ 0 ]
e ]

imi iti d so on.

Similar definitions can be made for @, Q,, an : . o
The eigenfunctions of J, are complete and the eigenfunctions and eigen
values are computed in any quantum mechanics book. The operators

i i tions.
P. do not have square integrable eigenfunc ‘ '
Qxlg’inxally, before looking at a specific example, we examine the 1mpqrtant
notion of the commutator. The commutator of two operators, A, B, is the

tor [ A,B] defined by
operstor [4.5] [4,B] = AB — B4,

where AB means A o B; that is, (AB)Yf) = A(B(/))-

* Actually h = 2nh is usually called Planck’s constant.
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Suppose f is an eigenfunction of both 4 and B. If Af = Af, and Bf = pf,

then
[A4.B]f = (4B — BA)f = A(uf) — B(}f)
= pif — yf = 0.

Thus if 4 and B have the same eigenfunctions, then [A,B]f = 0O for such
eigenfunctions. If the eigenfunctions are complete, we expect [A,B] =0
for all f, but this requires more assumptions than we can go into here.

Conversely, if [4,B] = 0, we can select the eigenfunctions to be simul-
taneous eigenfunctions of 4 and B. This is easy to see if there are no repeated
eigenvalues (the more general case requires a bit more argument). Toillustrate,
suppose Af = Af. Then A(Bf) — B(Af) = 0, so A(Bf) = A(Bf). Thus Bf is
an eigenfunction of 4, so Bf = yuf for some p (since by assumption, A is a
simple eigenvalue). Thus f is an eigenfunction of both 4 and B.

In summary, [4,B] = 0 iff 4 and B have simultaneous eigenfunctions.
Physically this means that these eigenfunctions give exact observables for
both A and B at once, or as we say, 4 and B can be measured simultaneously.
Further justification of this statement is given by the famous uncertainty
principle (Exercise 5), which states that the product of the *“errors” in
measuring A and B for the same y (that is, measuring A4, B simultaneously)
is at least 2 |<Cy,i )|, where C = [A,B]. The definition of “error” is also
given in Exercise 5.

Finally, let us look at a simple example. Other important examples such
as the harmonic oscillator (H = —(h%/2m)V? + kr) and the hydrogen atom
(H = —(h?*/2m)V* — 1/r) are found in standard texts, and are a little more
laborious to perform fully.

The example to be studied is that of a particle in an “infinitely deep well.”
We want to find the eigenfunctions and see if they are a complete orthonormal
set. Here the problem is in one dimension for simplicity. We have

V = 0on [0,]], and V = o outside. Since this is not workable within the
space of square integrable functions, let us reformulate H by demanding

h? 9%y
Hlﬁ = —‘E}; 5?, on [O,l] s
Y and Hy = 0, outside [0,1] .
Thus H is really an 6perator on the functions Y(x), 0 < x < I with
WO = Y() = 0. -
It then follows that y/ is an eigenfunction iff there is a constant E, such that
B h? 0%y — By
2mox* T




406 FOURIER ANALYSIS

FIGURE 10-30

The general solution to this equation is easily seen to be
¥(x) = A sin Ax + Bcos ix,

where A2 = 2mE/h?. Ifyy = 0at0, [, we must have B = O and also, A = nxn/l,

n=12,3,....
Thus, for the problem, the eigenfunctions are {(normalized),

(pn(x) == \/’% sin }.,,x

(see Figuge 10-30) where 4, = nmfl,n = 1,2,...,and the eigenvalues are
h*n?n?
"7 2ml?

Thus these E, are the only possible energy values we can observe.
Here these functions are complete, as has been proved in Section 10.3.

Thus if a particle is in a state i, the probability we will observe energy E,

is given by.
2

1
Kol = %U w(x)sin(i’f—") i

0

Exercises for Section 10.9

1. Let 4 be an operator on V. Define its adjoint A* by {d*x,p> = {x,Ay) (assume such
an A* exists). Prove that (AB)* = B*4*.

9. Let Vbe R"and 4: V — V linear. Prove that 4 is symmetric in our sense if its matrix
with respect to any orthonormal basis is symmetric in the usual sense of matrices,
that is, a;; = ay.

3. Let A be a symmetric operator with a complete set of eigenfunctions @q, @1, P2, - - -
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and eigenvalues 44, A,,.... [ e ¥, argue that the expectation of 4 is given by

o
APy = 3 Kioudl? 4, .
n=0
Interpret this quantum mechanically (that is, probabilistically).

. Suppos <Afg> <fA
] ! C ) h 3 g> ‘0[ au /‘, eV ShOW thd’ t A iS ym, i
. . ‘ g S metric and that

5. (Uncertainty principle.) Let A b i
( : . € a symmetric operator. i i
in observing A4 in a state y is given by b Theuncertainty(or variance

AXA ) = (A = (AP0 .

(a) Show that this equals CA%,W> — Ay d2. .
(b) Let A4, B be two symmetric operators and let C = [4,8]. Show that

AXA) A BY) = 41<Cy2 .

i\Iote the. special case [4,B8] = 0 and interpret it. [Hint: Show that for any two
Aymxlnemc operators' A and B, 2 (imaginary part of B L,AYD) = (CYr
pply the Schwarz inequality and replace A by A — {Ay > and replac’e B

similarly.]
(c) For th = Xl = (hfi iti
o e case A = xyy and By = (h/i) O/ox {position and momentum), show
AY A ) A¥B ) > 4h?

(for |l = 1). This is called the Heisenberg uncertainty principle.

Theorem Proofs for Chapter 10

7 hcol em 1. T he space V ¢ continuous functior . I a;b l ¥ orms an innep 12 OduCt
[ f 0 f 15 f C
space lf e aefi‘le f

(> = T as.
Proof: The properties of the inner pronduct follow from these computations:
@) <af + bghy = f "Tafts) + bg() i) dix
=a f "G e + f T di
oIS + by .
(i) <fig) = f w900 dx = f 0 d

I

b s
= f T@ga) dx
=@l
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(i) Note from (ii) that {/,/> = S fY, so {fi.f> is real; thus (S = 0 makes
sensc, Here

b b
S =Jf(Xf(x) dx =J [fel*dx =0,
i %) = 0. .
Smlg?nlz{l(lxsuppose {Sf> = 0.Use the fact that if h is continuous and h > 0,then

b
j h(x)dx =0 implies 4 = 0

a

(see Section 8.4), so {(f,f ) = 0 implies {21/1? dx = 0 and hence f = 0. B

Theorem 2. (The Cauchy Schwarz Inequality.) Let f, g belong to the inner product
space V; then

KAl < 171 gl
Furthermore, all the properties listed in Theorem 5 (II), (11 1), Chapter 1 hold (II (iii) also
holds for o. complex). .

Proof: We shall only prove that [ J.adl < 11 ligll, the rest being routine as in

Theorem 5, Chapter 1.
First, let us prove the inequality when |gll = 1. Now

0< IS ~ gt = <f = Sdaf = Saded o
= (S = Lgylfg> — gyl fad + L Sg><a.p
= JfY = ST
= /12 = IKfI?

Thus |/, < IS
For the general case [ figdl < {[f1] ligll, we can suppose g # 0, so gl # 0. Let

i = g/llg! so Ik = 1. Then

IS < AN

" K/l
_ g < ,
Kl === < W

so we obtain the result. B

This method is similar to that used to prove Theorem 1, Chapter 5, except now a F)it
more care was needed to keep track of complex conjuggtes. Th.e reade'r should derive
the other properties, taking special care with the triangle inequality ||/ + gll <

I+ lgll-

Theorem 3. Let V be the space of functions f: [a,b] = C, such that | f |2 is integrable
(that is, [2| f(x)|? dx < o). Then the space V is an inner product space with

b ——

O =Jf(X)g( ) dx

a
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b 1/2
112 = (f [SE)? dx) .

The space of sectionally continuous functions is also an inner product space.

Proof: First,if | f| = 0, we have [?| f(x)}*> dx = 0, so by Theorem 4(ii), Chapter 8,
[/ is zero except possibly on a set of measure zero. Since we are identifying functions
which agree except on a set of measure zero, f = 0. Finally, { f,g) satisfies all the other
rules of an inner product space as in Theorem 1. We need only show that { f,g> is finite
(that is, fg is integrable).

If we work only with bounded functions, it is clear that f§ is integrable and bounded,
as are both f'and g (see Chapter 8). However, we also wish to allow improper integrals,
so f and g need not be bounded. If we split f and g into real and imaginary parts, and
into positive and negative parts, this easily reduces to the case of f and g real and
positive (the reader is asked to carry out the details as an exercise). Define, for each
M = 0, (fg)y as in Chapter 8. We want to show

and norm

b
limitj(fg)M < 0.
M-w a
However, for M = 1, one easily sees that

0< (Oy < fudn

" s0

b
f(fg)hf < {udmed < WS aell Ngael

by the Schwarz inequality. But || f | < |lf]| and |igsll < llgll, so

b
J(fg)u Sl lgl < .

Hence we obtain the result (the limit exists as the integral increases with M; we only
needed to show it was bounded above).

Finally, for sectionally continuous functions, observe that they form a vector space
(Exercise 9 at the end of the chapter) and are bounded (Exercise 11). Hence both
functions, f and | f]?, are integrable, since the set of discontinuities is finite (Theorem 3,
Chapter 8). §

Theorem 4. Let V be an inner product space and suppose f = 2,‘:‘; o CxPi for an orthg-
normal family, @o, @y, ... in V (convergence in the mean) and feV. Then c, =

o = {pwf>.

Proof: Lets, = Zz=0 ¢y, o that || f — s,]l = 0. Fix i and choose > i. Form

<f - sm(pi> = <f:(01> - (Sn:(pi> .

This expression approaches zero as n - «, since |{f — 5,0 < |f — s,]. But for

-n = i, we have

n n . 1
) = Z {C@uiy = Z olPP = Z by = ¢ .
k=0 k=0 k=0
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Thus
o — =0

as 1 — 0. Since this expression is independent of n, we have {f,p> = ¢;.

Theorem 5. Let @g, @y, - - - be an orthonormal system in an inner product space V. For
each feV, Z?‘; o< Sp|? converges and we have the inequality

ikf,«polz < If12.

Progf: Lets, = ZL 0 o> We first show that f — s, and s, are orthogonal.
To see this, it is enough to show that f — 5,and ¢, 1 < i < nare orthogonal (why?).
Indeed,

<f_ Sm‘ﬂi) = <fr(Pi> - <qu’l>
G = S

and

since
swpd = 2 Koo =, Loy 8y = (fioo
Jj=0 j=0
(this is the same computation as in Theorem 4). Now if g and / are orthogonal,

lg + Al = lgll* + |Al? (Pythagoras’ relation, Exercise 9, Section 10.1), so, by the
above, ’

1AI2 = IS = 8o+ sll® = Hsal®+ 1S = sl® 5
. Isal® < 1S1% -

hence

Now
2

llsall* =

Zo““")"" ="_201<f,w,>12 Il

since the @, are orthégonal and therefore .
Isal2 = YISl < 112
=0

Thus the series )2 1€ f.@:>1? has partial sum ||s,}|?, which is an increasing sequence,

=0 )
since the terms of the series are = 0 and the series is bounded above by | f1i?; hence the

series converges with sum < || f1%. @

Theorem 6. Let V be an inner product space and @4, @y, ... an orthonormal system.
Then @g, @, - - - is complete iff for each f €V, we have

117 = iﬁw«mz .

Proof: Let
Sy = Z <f’(pl>(pl .
i=0
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In the proof of Theorem 5 it was shown that

”f"z = "f - Sn”z + "Snnz .

Now SUPpPOSE g, @1, - - . is complete. Then 5, — f, and so | f — 5,2 — 0. Therefore,
since

Isul® = Y1l s
i=0

we have, letting n — oo,

ik =2:01<f,rp,>|2.

Conversely, if this relation holds, then [f[* — .ils,,[lz —+ 0 as n -+ o0. Hence
If-= sli* = 0, that is, s, ~ f, which means that

J =‘z<f:(l7(>‘ﬂz . I

Theorem 7. Let V be an inner product space and ¢q, @4, ..., @, a set of orthonormal

vectors in V. Then for each set of numbers tg, ty, .. ., t,
n n
S= Z el 21— Z Lo
k=0 k=0

with equality iff t, = {f,0>.

Proof: Let ¢, = {fip), Sa = Lo, i, and hy, = 3 4. Then it is required
to show that

I = sl < IS = hl?
with equality iff ¢, = ¢,. For this, it shall be shown that
0= mll? = 112 = 3 led? + 3 le = 1%,
k=0 k=0
which evidently suffices to prove the theorem. Now to prove this equality, note thé.t
“[ - hnnz = <f - hluf - hn)
= LD — LS — Khf D + () '

First,
Crashad = 3, U@ty
[
= Z L 0y = sz .
Y] i=0
Second,

Sl = <f,Z’k‘Pk> = ickfk .
k=0 k=0
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Thus " " n
1S = hl = 120 = Yed = ) nac+ Y4l
k=0 k=0 k=0

11 = Sl + Yl — 1
k=0 k=0

as required. J§

Theorem 8. The exponential and trigonometric systems on [0,2z] (or [—n,n] are
complete in the space of functions f:[0,21] = € with [3¥| f(x)|*> dx < oo (the integral
may be improper).

Proof*: By our remarks in the text and Exercise 1, Section 1Q.3, it suﬁices. to
consider the exponential case. Two necessary facts are contained in the following
lemmas.

Lemma 1. (Stone-Weierstrass theorem in a special case.) Let f: [0,2n] — C be con-
tinuous and let f(0) = f(2n) (periodicity). Then for any ¢ > O there is an n and constants
cpi= —n,...,—1,0,1,...,n such that if we form the function

Pix) = co + e o cpe 4 e
oo™ o oigem e el eT
then
) — plx)l <€
Jor all x e [0,2x].

The StonetWeierstrass theorem was proved in Chapter 5. See also, Exercise 44(b),

Chapter 5. The proof of the next lemma is technical; it may be omitted on a first reading
of the proof.

Lemma2. Letf: [0,2n] — C be square integrable, and e > 0. Then there is a continuous

Junction g: [0,2n] — C with g(0) = g(2n) such that
2n
I = gll? =J ) — g dx < .
. 1}

Proof: First suppose that fis > 0 and bounded by M. Given ¢ > 0 choose a par-
tition P of [0,2] such that, setting & = 2,

l'f’l - ih(cl)(xl-n - X;)
i=1

and a similar estimate for f. We can, by drawing straight lines, construct a continuous g
such that g is constant = f(c;) on [y,z;], where [y,,z]] « [x;,x4,] and |y, — x| <

&
<§,

* A proof due to Luxemburg and not relying on the Stone-Weierstrass theorem is outlined in
Exercise 75. Another prool due to Lebesgue is given in Exercise 76: Both proofs, however,
rely on the converse of Example 2, Section 10.2 (see Exercise 14), which uses completeness of
%2, that is, the Lebesgue integral.
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e/8M?n, |x,.; — 2} < &/8M?n, and g is bounded by M. It is then easy to see that

g &
jlf-g]2=J(f2+g2-2fg)<5+4M2 X iR XM=
by adding and subtracting the approximations for ff*={handfand using the
definition of g. The details are left to the reader.

The general case may be dealt with by writing fas f = /* — [~ (see Chapter 8),
50 we can assume f > 0. Then we can form Jae as in Chapter 8 and choose M large
such that {|f — fil® < &/4 which is possible by Corollary 4 of the monotone con-
vergence theorem (Chapter 8). By the above we can choose gsuchthatflg — f,,1* < ¢/4,
and thus [ |f — g]?> < g, since .

2
To prove the theorem from these lemmas requires two steps.

lff—g!ISNf—fml}+llg—f,ull<£+§=\/e—- B

Step 1:  Proof of the theorem for f continuous and periodic.
Let )

{xk

Se= 0. (/> where p,(x) =

% T

Then for ¢ > 0 we must show there is an N such that n > N implies || f — s < e
Tt suffices to produce a single », because by Theorem 7, IS = Susill < IS — 5,]| (we get
a better approximation by taking more terms—see also, Exercise 21, p. 436). Now

choose p, as in Lemma 1, so | f(x) — Px)| < &/y/2n and form the corresponding s,.
Now

o 2n
IS = pal? =L [fx) — py(e)? dx

JZW e )2
< — dx = g .
o (./275

Thus | f — p,| < & However, by Theorem 7,
"f—' Sn“ < ”f_pn" <eg,

since the Fourier series gives the best mean approximation to f. This proves Step 1.

Step 2:  General case. !

In view of Lemma 2 and Step 1, it suffices to prove the following fact. Here V is the
space of square integrable functions, but the lemma is stated in general terms.

Lemma 3. Let V be an inner product space and let ¢y, @y, . . . be an orthonormal family.
Suppose f e V and f, — f. If we have

=3 oo,
K=o

for each n, then

7= oD
¥=0
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Proof: Given ¢ > 0, choose N such that k > N implies || f, — f|| = &/3. Choose
M such that n 2 M implies

<&
3

ji(fm(l’j)‘l’j s

Then using the triangle inequality,

,Z,“"Wf -f
Y <f000s = Y. S,
j=e j=0

By Bessel's inequality, the first term is < ||/ — fyll (see the proof of Theorem 5).
Thus n > M implies

+ -1

+l Y o005 — I
i=o

<

= 8.8 8
L chere =~ <3tz tg=cs
which proves our assertion. §

Theorem 9. Let {2 [022] — R (or [: [—n,x] — R) be sectionally cantit?uous, have a
Jjump discontinuity at xo, and assume that f'(xq+) and f'(xo—) both exist. Then the
Fourier series of [ {(either in exponential or trigonometric form) evaluated at x, Cfmuerg.es
to [f(xo+) + flxo—)1/2. In particular, if fis differentiable at x,, then the Fourier series
of f converges at x4 to f(xg).

1t is convenfent to first prove the following special case:

Lemma 4. Let f: [—n,x] — C be square integrable and differentiable at x, (as usual,
extend [ so it is periodic). Then the Fourier series of f at x, converges to f(x).

Proof: (The proof of Lemma 4 was pointed out by P. Chernoff.) By translating
and adding a constant we can assume x, = 0 and [(x,) = 0 (why?). Define a new
function g(x) by setting

Jx)

e — 1’

'LO) , x=0.
; ‘
By the quotient rule of calculus it follows that g is continuous at 0. Since 1/(ef" - 1)is
bounded in absolute value outside a neighborhood of 0, it follows that g is square

integrable (why?). . .
Now f(x) = (" — Dg(x). Let c,(f) be the nth Fourier coefficient of f and c,(g) that
for g. Then from the definition

x#0,
gix) =

e} = cuuilg) — cilgy) -

So M

2, ) = con-1g) — enld)

n=~N

THEOREM PROOFS FOR CHAPTER 10 415

since we have a telescoping sum. Since Xg =0,3" » &(f) is the Nth partial sum at
x =0 of the Fourier series of f. But cn(g) ~ 0 by Bessel’s inequality. Hence

TN elf) = 0= fxo).

Actually, we do not need the fact that f is differentiable at xq. If f is Lipschitz at x,
(that is, there is a constant M such that |(f(x) — JOxllx = xo)l < Mforix — x| < 6,
X # xo) we could obtain the same result by a similar proof(we only need g in the proofto
be square integrable—or even just integrable). For example, if f is continuous and
J'(xo+) and f(x,—) exist, then this condition is satisfied (why?).

It is now quite easy to prove Theorem 9 from Lemma 4 and the above remarks.
Now, consider

f(xo“)» X < Xgy
h(x) = < flxo) X = Xg ,
< f (x0+) ’ x> Xg .

Then /1 is a step function and we can easily compute its Fourier series directly (see
Section 10.5). We know this series converges to [flxo—) + fxo+)]/2 at x,. Now
consider

k(x) = f(x) — h(x).

Then k{xg) = 0 = k{xo+) = k(xo—) and K'{xg+), k'(xq—) exist. Hence, by Lemma 4,
the Fourier series of k converges to O at xg. Therefore, the Fourier series for f converges to
[fGxo+) + f(xg—)]/2 at x,. This proves the assertion. J

Now we turn to the longer classical proof of Theorem 9. Later it will be convenient
to have this longer proof at hand, despite the fact that it is more complex than the one
just given. First, let us explain the basic idea behind this proof. Let s5,(x) be the nth
partial sum of the trigonometric Fourier series. We shall write

T

S x — &) d¢

2
5,(x) =
0
for some function D, specified later (Lemma 9); we say s, is the convolution of f and D,.
Then we show that D, has unit area and “concentrates” around 0; that is, behaves like a
Dirac delta function. As #n — co, the convolution will then pick off the value of f at x.
See Figure 10-31. For this reason, D, is also called an approximate identity.

Y

D, )

ha ¥

Vf\\/ UAV" x

FIGURE 10-31
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Before we can formalize these ideas, we need some preliminary results. T.he first
lemma is a generalization of Example 4, Section 10.2, and is called the Riemann-

Lebesgue lemma.

Lemma 5. Suppose f is bounded and (Riemann) integrable on [a,b]. Then

b
limitj Sf(x) sin(ex) dx = 0

(where the limit is taken through all real o > 0).

Proof: First, suppose f is a constant M. Then

= |M]

b
J sin ox dx

a

J‘ff(x) sin ox dx

|cos(xa) — cos(ab)]
o

= |M]|

2M
o

< - 0 asa — oo .

Thus the resuit is true for constant f. - .
Now, for the general case, given ¢ > 0 choose a partition P = {XosX1y « X} O

[a,b] such that U(f,P) — L(/,P) < &/2. Then
unre) = Z":Mz(xt = Xi-y)
i=1
and

LUP) =Y mbs = %iet) s
=1

where M, is the maximum of f on [x;_{,x;] and m is tl}e minimum. Let m be the step
function equal to m; on Jx;_,x,]. Then choose N so that

b n xi . €
J m(x)sin(ex) dx = Z J m; sin{ox) dx < 3
a =1 Jxpey

if o > N, which is possible becduse m, is constant and n is fixed and finite. Then, by the
triangle inequality, fora > N

< +

jb[f (x) — m{x)]sin ox dx

b
j m(x)sin ox dx

a

jbf(x)sin(oax) dx

£ b
< 3 +J |M(x) — m(x)] dx ,

where M equals M, on Jx,_,,x;]. (Here we have used the fact that [sin ax| < 1.) But
M(x) — m{x) = 0and

J‘bM(x) — mx)dx = U(f,P) — L(/,P) < -g
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so, foro > N,

<ée

b
f Sx)sin(ox) dx
by the above. § o

Lemma 6. Suppose g: [0,a] — Ris sectionally continuous, and g'(0+) exists. Then

limitJ‘ g(x) SI_nkx—dx =z g(0+).
ko 0 x 2
Proof: Since

“ sinkx dx asinkxdx [ _
f glx) ——— = g(0+) J smixax j [Q(X) 9(0+)]sin ox dx
[} X 0 x o x

it sufficés to show that .

? sin kx n
. x dx - 3 ask — oo, and ) (1)
“ — g(0+

f l:.g(i)%g__)]stn kxdx — 0 ask — oo . (2)
[

To clarify Eq. 1, -

9 sin kx ka gin ¢
f dx =| ——dt,
0 X 0 t

which converges to n/2, as k — oo, since & (sin Y/t dt = 7/2; see Example 1, p. 271
and Exercise 29, p. 437.

To prove Eq. 2, observe that [g(x) — g(0+)]/x is bounded and integrable (since, as
x — 0, this approaches a limit ¢’(0+)). Therefore

fﬂ [M]sin kxdx - 0

0
ask — oo by Lemma 5. J

Note that Lemma 5 is needed for « real and an arbitrary interval [a,b]. This case
does not follow at once from Example 4, Section 10.2, but requires the direct argument
we gave.

Lemma 7. Let g be sectionally continuous on Ja.b[ and have a jump discontinuity at
Xo. Suppose g'(xy+) and g'(xg—) exist. Then

(sin k(x ~ x(,)) dr = n[glxo+) + glxo—)]
(x = xo) 2 '

b
lkimit f g(x)

a

Proof: Write the above integral as a sum,

b X0 b
a a X0
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and note that

dx =

j ""g(x) sin k(x — xg)

J"‘O"" sin kt dt
a (x — xo)

glxq — 1) !
0
and

; b : _ b=xg sin kt
gx) sin Kox — Xo) dx =_f glxo + 1) t a.
o (x — xo) 0

Now let k — co and employ Lemma 6. We then get (ng(x,—))/2 and .ng(xo +)/2 for the
limit of these two integrals, respectively, as k — co. (See also, Exercise 40, p. 440). §

Lemma 8. Let f: [0,2x] — R. Then the nth partial sum of the Fourier series of f may
be written as

5,00 = — J o+ LY r“f(z)cos[k(z —x)]dt.
" 2n Jo T k=1J0

Proof: This is clear if we remember that

cos[k(t — x)] = cos(kt)cos(kx) + sin(ke)sin(kx) . §

Lemma 9. Let 5,(x) be the nth partial sum of the Fourier series of f. Then

2n
si6) = 5= | 0Dt = e,

where
{sin[(n + 1/2u]}
D) = ey

Proof: ‘This follows from Lemma 8 and the identity

& e Sin[(n + 1/2)u]
T sin(w/2) ”

k= —n

(Exercise 6, Section 10.2). §

We are now ready to prove Theorem 9. We must show that

$x0) — >

as n — co. We shall assume 0 < x, < 2n. The reader is asked to consider the cases
xg = 0, %, = 2n separately. By Lemma 9,

1 (= in(n + 1/2)(¢ — xo)
Su(x0) = % f g(t){w} d,

0 t — X
where
{t — x0)/2

sin[(r — xo)/z]} o ol

9() = f1 (t){
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By Lemma 7 (which is applicable by Exercise 41 at the end of the chapter), we have

5,(%0) — [g(xe+) ;Q(xo")] i

Now it is a simple matter to see that

gxot) = flxo+) and  glxo~) = flxo—),
and so the theorem is obtained. [

¢« Theorem 11 (Fejér) Let S be piecewise continuous on [0,2%] and suppose f(xo-+) and

S(xo~) exist. Then the Fourier series of f converges (C,1) at x4 to [ f(x, +) + flxe—)]/2.
If f is continuous, the Fourier series converges (C,1) uniformly to f. -

Proof: For notational reasons it is slightly more convenient to use ~1,1} rather

than [0,27] for this proof. Of course, this does not effect the conclusions.
With our usual notation,

L]
(%) = ) e,
k=—n

the nth partial sum of the Fourier series of J. To discuss (C,1) summability, we must
consider
1 n
o,(x) = TE1A Si(x) .

Using Lemma 9 we obtain

1 I O
ox) = —~ ,;o = f Sl = opg)ar
that is,

1 L]
Jn(x) = _f f(x - I)Fn(t) dt H
2n ) .
where by definition the Fejér kernel is

1 n
Fil = 7 200

We shall need the following lemmas.

1 sin*[(n + 1)¢/2]
+ 1 sin?[y2]

Lemma 10. F1) =
n

Progf: By the formula for D, (Lemma 9), we have

(n o+ I)F,,(t) = iw

K=o sin 1/2¢

1 n
=] et 1/2)t = imagi
sin 172t m{kgoe } (Im = imaginary part)
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= 1 Im e“’z . El(u+l)‘ - 1}
sin 1/2t e —1

1 ei(n+l)l — 1
sin 1/2t Im{e"’z — e'“’z}

1 — cos(n + 1)}t ,— sin® 1/2(n + 1)t
T 2sin? 12t sin? 1/2¢

Lemmma 11. The Fejér kernel has the following properties:
(i) F.(2) is 2n-periodic
1 .
if) — [T F(t)dt = 1
(i) o= [ F, (1)
iiiy F () = 0
(iv) For each fixed 6 > 0, limit Fdt=0.

LEIIES

Proof: (i), {ii) follow from the definition of F,; (iii) follows from Lemma 10. (iv) for - ]

& < |4} < m we have 1/(sin? 1/2) < 1/(sin? §/2). Hence

1 1

< €———, &<l <m.
0 < Fio) n + 1sin?§/2 I
Since this — 0 uniformly as n — oo, the integral jasm sa F(ydt - 0. B

Let us now prove Theorem 11. By using the same technique that was used in the proof
of Theorem 9 (see the arguments following Lemma 4} it suffices to prove the last part of
the theorem. Thus assume f is continuous, We have

o) = 5= || gt = R0t

Hence by (ii) of Lemma 11,

16) = o) = - | (9 = s6x = D0 .
Accordingly, by (ifi) of Lemm 11 (positivity of F,)

11600 = oo < 5 | 170 = fix = N Fio .

Given & > 0 we can, by uniform continuity of f find § > 0 so that|f(x) — f(y)| < ¢
if |x — y] < 6. Then

If(x) — fix — i F{e)dt

ftj<o

1
]f(x) - 0'"(x)l < E;

+ = £} = fx — 0] Fy(e) dr .
27 Jsgplen
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The first integral is
1
< — eF (8 dt
27 Jyy<s )
< L F(2) dt =
<5 _,,8 . =g,
The second integral is

< 2M F,(1) dt

< —
2n <<

M
= —f F. () dt
T Jssisn

where M = sup 17(5)]. Now, by property (iv) of Lemma 11, we may choose N so that if
n = N this last integral is <e. Accordingly, ifn > W, [fG) — o)l <e+e=2. [

For an integrable function one can prove that the Cesaro sums converge to the
function except possibly on a set of measure zero (see Hewitt and Stromberg, Real
and Abstract Analysis, p. 294). This result is not as deep as that of L. Carleson mentioned
on p. 353.

Theorem 12. Suppose = LS (0P dx < oo, and f has Fourier series
)

o0
0 + Z (a, cos nx + b, sin nx) .
n=l

Then, letting g(x) = [, f(y) dp, we have

g(x) = Ezg(x + 7)) -+ i (a,,j
n=t

x

x
cos ny dy + b,,f sin ny dy)

-n

o0

= fg(x + )+ {fﬂ sin nx - ﬁ(cos(mc) - (-—1)")}
2 tln n

ne=
and the convergence is uniform.

Proof: 1t is enough to prove the following lemma, as we shall see below.

Lemma 12, Suppose f,: [a,b] = R is such that J2 150 dx < co and f, — f in mean.
Let )

gi) = J Tdy  and g =fo(y) dy.

Then g, ~ g uniformly on [a,b].
Proof: We have

loux) — g0 < ( fxm(x) gy dx)

< ( f 1) — fou)? dx)(x ~a)
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by the Schwarz inequality. This is bounded by
Ifu = fIP6 — a)
from which the result is obvious. §

For the theorem, let 5,(x) be the nth partial sum of the Fourier seriés and take f, = S
in the lemma. We know f, — f in mean (Theorem 8), so g, — g uniformly. Here g, is
the partial sum of the integrated Fourier series, so we have the result. [

Theorem 13. Consider

a, -r<x<0,
f(x)={b, o<x<m,

and suppose a < b. Let 5,(x) be the nth partial sum of the trigonometric Fourier series.
Then the maximum of s, occurs at n/2n and the minimum at —w/2n and

. b3 b — a\f2 ["sint
ol (?) = ( 2 )(‘ J e 1) L

~ (b — a)(.089) +b.

T b~a 2 (*sint >
imi = R s 1) +a
155“«1»”"(""2?)'< 2 )( nL FeT
) ,

~ a — (b — a)(.089)

Similarly,

and the difference of these limits is

<b - “)(f‘-rfi—“-fdz) ~ (b — a)(1.179).
2 o ¢

Proof: Let us first prove this for the special case a = —1, b = 1. We have seen
that if 1, < x<0,
g(X)._—{la OQJCSTC,

the Fourier series of g is
¢ 4 & sin[(2n — 1)x]

ey -1
bet 4 i sin[(2k — 1)x]
S) =2 LT 1

By diffe;entiating, we see that s, h.as its maximum at x, = n/2n (some details here are
left to the reader). The value here is
o 4 & sinf(2k ~ L)m/2n]
2 & sin[(2k — 1)m/2n] (E)
TR& (k= Da2n) \n)
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This sum is a Riemann sum for the function sin y/y on [0,x] with partition
{0,n/n,2n/n,. . ,n}. Hence if we choose n even and let n — oo, this converges (by
Theorems 1 and 3, Chapter 8) to
2 {"sin
2 [rsiny
TJo Y
The case of the minimum of f for x < 0 holds as [ and s, are both odd.
The numerical value of the integral is approximately 1.179 and is computed by
numerical methods such as the trapezoid rule (we omit the details).
The general case for f follows by observing that its Fourier series has nth partial sum,
W —-ays, +1) +a (why?). B

Theorem 14. Suppose f is continuous on [—mz], f(=m) = [ (w), and f* is sectionally
continuous with jump discontinuities. Then the (trigonometric or exponential) Fourier
series of f converges to S absolutely and uniformly.

Proof: We can write

a, e
Sx) = 70 + Z {a, cos nx + b, sin nx)
n=1

by Theorem 9. Also, the Fourier coefficients of f'are

1 " 1 T
&, = ;f S'(x) cos nx dx | B, = _7;J. S'(x)sin nx dx |

and we have
o, = 7% Sf(x)cos nx| ’:x + %f; J(x)sin nx dx
= nb, ,
since we can integrate by parts, and Sin) = f(—n). Similarly, 8, = -—na,.

Some care is needed above in justifying integration by parts, since S exists only in
sections. But if it is applied on each section using the fact that it has jump discontinuities
only, and noting the continuity of f, then we get the above results. The reader should
write out the details if they are not clear.

Now, a lemma is stated.

Lemma 13.  Under the conditions of Theorem 14, we have

Dol <o, Yl <ow,
n=1 =g
and na, — 0, nb, — 0.

Proof: We know that Z:D= . BZ converges (by Bessel’s inequality for /). Now let
§, = ) |ay/. Then

_SIBl_ & B
s"~zl:lc - T e
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by the Schwarz inequality. Since this is bounded, so is s,, and therefore it converges (an
increasing sequence converges iff it is bounded). Thus ). * 'la,) converges. Since
B, — 0, we also have na, — 0. The case of the &,s is similar.

To prove the theorem, we need only show that ao/2 + Z:; | (@ cos nx + b, sin nx)
converges uniformly, since we know the limit must be f(x). Thus it suffices to show that
= (a,cos nx + b, sin nx) is uniformly convergent.

=

This is simple using the lemma. Note that

|a, cos nx + b, sinnx| < |} + 1b,] = M,

and by the lemma, Y. M, converges. Hence by the Weierstrass M-test (Theorem 3,
Chapter 5), the series converges uniformly and absolutely. J

Theorem 15. Let f be continuous on [ —n,n], f(~n) = f(n), and let f* be sectionally
continuous with jump discontinuities. Suppose f" exists at x € [ —n,n]. Then the Fourier
.series for [

oo
Sflx) = az_" + Z (a, cos nx + b, sin nx)
n=1

may be differentiated term by term at x:

0
[x) = Z (—na, sin nx + nb, cos nx) .
n=1
Furthermore, this is the Fourier series of f'.
Proof: The proof of Theorem 14 showed that the Fourier coefficients of [ are

given by

" o, =nb,, f,= —na,.

This remark suffices to prove the theorem, since if £ exists, f’(x) will be the sum of
Fourier series (Theorem 9). i

Theorem 16. In the initial displacement problem, suppose that [ is twice differentiable.
Then the solution to the initial displacement problem is

o) = 5 L1 = o) + Sl + a0

; &, . {nnx nrct
=Zb,,sm —— |cos| ——
n=1 ( 1 ) ( l >

where b, are the half-interval sine coefficients of f.

Proof: First, note that the series for y(x,f) converges because ZT b, sin(nnx/!l)
converges uniformly and absolutely to f (Theorem 14).
Let us now show

i b, sin(?)cos(@) = -1?: [fex — ct) + fix + ct)].
n=1

For this, note

., [nmx nmnct . I na(x — ct) . | nnlx +ct)
2sin T cos T = sin — -+ sin T
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so that
& ., [nmx nmet 1-& nn(x — ct) 2
b ket hiidiudd I : . | nalx + ct
% . sm( l)cos( 7 > 2 El b, sm[—-—*l ]-%— Ex b, sm[__.T__)}

[flx = et) + flx + ct)].

N

Now we verify that

1
Hx,t) = 5 [flx = ct) + f(x + cr)]
satisfies all the conditions. First,

azy 2 ru 62y
52 = 120" — et) + ["(x + e)] = CZW,

Second, at ¢ = 0, p(x,0) = f(x), and
‘< dy '
5;(96,0) =1/2c[~f'(x) + /()] = 0.

Third, y(0,t) = 1/2[ f(~ct) + fi (ct)] = 0, because f is odd (whén extended) and

YO =12[fl—et) + fl+ ct)] = 0
because /(I — ¢t) = —flet = I) = —f(ct+ 1), since J(x) = flx + 2I) by periodicity. §
Theorem 17. Iffis square integrable, then for eacht > 0

T(x,1) = 523 + ila,,e'"z"z‘”Jt co‘s(%)—c)

convgr.ges uniformly, is differentiable, and satisfies the heat equation and boundary
conditions. At t = 0 it equals f, in the sense of convergence in the mean, or pointwise if

S is of class C1. As usual,
2 1
a, = -J f(x)cos amnx dx .
7)o 7

Proof: To s.how th?.t T'(x,1) satisfies the heat equation, what we must do is Jjustify
term-by-term differentiation in both x and ¢. For this we use Theorem 5, Chapter 5
What we must show is that the series of derivatives .

—_ i _a"n;nz e mnIR cos(’_lﬂ:_x)

n=y / /

(w‘hich represents both 6T/dt and 82T/dx?) converges uniformly in ¢ and in x. For

this we use the Weierstrass M-test in each case. Since la,| is bounded (a, — 0, in faci) we

can omit the terms a,n?//*. Now in x, let M, = n% ="/ By using"the raitio test, we

see th.at ¥ M, < o0, s0 the series will converge uniformly in x. ’
Uniformly in ¢ means uniformly for all ¢ > ¢, where & > 0 is arbitrary but fixed.

. : R PR Nyt |
In this case we let M, = n?e~""*" and note that > M, converges. (We cannot allow

t = 0.) The rest of the theorem is obvious. J§

Theorem 18. In Theorem 17
1%&“3‘ T(x,t) = f(x)

>0
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in the sense of convergence in mean, and converges uniformly (and pointwise) if f is
continuous, with f' sectionally continuous. (We do not require f(0) = f(l) here.) More
generally, for any f, if the Fourier series of f converges at x to f(x), then T(x,t} - f(x) as
t— 0. ‘

Proof: For the first part, it will suffice to show the following.

Lemma 14. For each t > O suppose f, € V, an inner product space and @q, @y, ...i5a
complete orthonormal basis. Let

fi= 3 el

n=0

imit Y le,(f) = ¢/* =0,
I%l"!‘]‘;t"—_-oicn( ) ‘
then f, — [ (in mean).

Proof: The result is clear, since by Parseval’s relation

: \\, )

- ‘
[ =2 cuu-

n=0 ‘
If

M~fW=me—mil

In the case of Theorem 18, we must show that

o0
limit )’ la)? (1 — e”2"™F)2 = 0.
=0

n=1
.

To do this, it is enough to show that the function
< —ntaf12y2
g() = ) la)* (1 — e™*™")
n=1

is continuous in ¢, for.g(0) = 0, and hence we would have I%Tét g() = 0. To show that

g(t) is continuous, we shall show that the series converges uniformly in t. To do this,
Abel’s test will be used. The form we needed is the following. .

Lemma15. Lety ™ , Cnbea donvergent series and ¢,{t) a uniformly bounded, decreasing

e ., 7 o7
(respectively, increasing) sequence; t > 0. Then g(t) = }.°_ c,@,{1) converges uniformly
in t. In particular, g is continuous and g(0) = hglét g(2).

See THeorem 13, Chapter 5 for the proof. One deduces the increasing case fro;n the
decreasing case by conmsidering —g(#), instead of g(f). In our case ¢, = |a,* and
@,(t) = (1 — e~=*2 Now @, < ¢, ifn < m,and Jg,(t)] < 1. Thus from the lemma
"

and the fact that 3 ¢, converges, we have our result.
Now suppose f* is sectionally continuous. Then, from the proof of Theorem 12,
® la,| < oo.Thus for a given x,

n=1

116) = Tl < lad (1 — €=y

n= g
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g By an argument like the above, the series on the right converges uniformly, so we can let
¢t = 0 in each term to conclude that

T(x,t) = f(x)ast — 0.

Indeed, note that the convergence is uniform in x because we have the bound

o0
*anl (1 — e-nletll’) ,
n={

which — 0 as 1 — 0, is independent of x.

Finally, suppose
& <mrx>
Z a, cos| ——
n=1 I

converges for some fixed x. Then we wish to show that (for this x fixed)
el cos(g—nj) =0,

!
1

Here we cannot make the same estimate as above because the factor cos(nnx/l) is
essential for )" a, cos(nnx/l) to converge. However, Lemma 15 can again be applied
with ¢, = a, cos(unx/l) and @,{t) = e™™*** 1o yicld the desired conclusion, since the
¢, are decreasing and are bounded by 1. J

< o
limit g(¢) = limit
=0 =0

n=

Notice that from this we also conclude that
limit T(x,0) = T(x,,)
1=lg

that is, T'is continuous in ¢, in each of the three cases of Theorem 18. Indeed, we already
know that for ¢ > 0, T{(x,t) is differentiable and hence continuous. However, T(x,)
may not be differentiable at 1 = 0, but the above theorem does show that we have
continuity at 1 = 0,

These same methods using Abel’s and Dirchlet’s test are important for establishing
convergence in other problems (such as Laplace’s equation) as we shall see below.

Theorem 19 :
(i) Given gy, let p(x,y) be defined as on p. 392. Suppose g, is of class C* and g,(0) =
gu@) = 0. Then ¢ converges uniformly, is the solution to the Dirichlet problem
with fi = f, = g, = 0, is continuous on the whole square, and Vip = 0 on the
interior.

(1) If each of f1, [, 91, 92 is of class C* and vanishes at the corners of the rectangle,
then the solution @(x.p) is given as the sum of JSour series like those in (i), Vg = 0
on the interior, @ is continuous on the whole rectangle and assumes the given
boundary values. Furthermore, ¢ is C* on the interior.

(iti} If f1, f2, 91,9, are only square integrable, the series Jor @ converges on the interior,
V2 = 0 and ¢ is C®. Also, @ takes on the boundary values in the sense of con-
vergence in mean. This means, for example, limit p(x,y) = o(x,0) = g, (x) with
convergence in mean. =0

Proof: For simplicity, let us take the case a = b = =, the general case being just a
change of coordinates. To prove parts (i) and (ii) of the theorem, we show that ¢(x,y)
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converges uniformly {n x and y and that we can differentiate twice, term by term, on the
interior. In view of pre efﬁng remarks, this suffices to prove the theorem. Part (ii) is an
immediate consequence of (i) and linearity; the boundary values are assumed simply
because g, is represented by its Fourier series.

Now by Theorems 14 and 15,

[

g,x) = Z b, sin nx , gi(x) = Z nb, cos nx
1 1

and these series converge uniformly and absolutely. Here we use the fact that
94(0) = g,{m) = 0.

To show that ¢ converges uniformly, as in Theorem 18, we use Abel’s test (Theorem
13, Chapter 5) on the square [0,x] x [0,%]. Thus we must show, since the series for g;
converges uniformly, that ¢, = (sin n(m — y))/sin nn is decreasing with n and these
functions are uniformly bounded, If we can show that they are decreasing, then uniform
boundedness follows easily because 0 < ¢,(») < ¢,{») and ¢, is bounded, since it is
continuous. In fact, ¢, < 1, in this case.

To show that @,.; < @,, let us fix y and consider (¢} = (sinh #(n — y))/sinh tm,
¢t > 0. It suffices to show that () < 0, for then i decreases as ¢ increases, and, in
particular, (n + 1) < y{n). This is a special case of the following lemma.

Lemma 16. For constants o, B if B> 0, f = a, and (t) = sinh(xs)/sinh(Bz), then
W' <0, fort = 0.

Proof:

. sinh?(BOW'(f) = o sinh(Br)cosh(at) — B sinh(xs)cosh(f1)

p* — o?[sinh(x + B)r  sinh(f — )¢
h 2 | a+p f—a

using the identity sinh(u + v) = sinh u cosh v -+ sinh v cosh'u. If the term in brackets
is >0 we are finished, since 2 — a? > 0. This is in fact true. To see it, let
o) = sinh(e + B sinh(f — o)t
PO="F B pf—o

Now p(0) = 0 and p'(#) = sinh{(er + f)) — sinh((f — &)1} 2 O, since sinh is increasing.
Hence p(f) = Oforall ¢ = 0.

This establishes the first part of the proof, which says that the series for ¢(x.y)
converges uniformly. §

For the differentiability part, Theorem 5, Chapter 5 is employed. Thus we must

show that

& sin nx
Axy) = ) n?b,sinhn(n — y) ————
() Z " (m = sinh(n7)
converges uniformly (this is the second formal y derivative; the second x derivative is its
negative).
Here it is important to realize that we can get uniform convergence only if we stay
away from the boundary; in fact, for any & > 0 we shall establish uniform convergence
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on0<es<y<gmand x arbitrary. With this extra

) restricti . s
test is no longer needed; the Weierstrass M- T We bavo 5 o oacy of Abels

test will do. We have |5,] < M. Let

M, = niu sinh[n(z — ¢)]
sinh(mn) °

Then M, bounds the terms in 1. But 2 sinh[n(r — g)] < e

T t}:4 —c> i
€"(1 ~ ¢"™) from the definition of sinh. Thus e 2sinblom) >

e—m:
[1—e?]"
Sn;;‘e te >h0, M, converges, so we have uniform convergence.
o fa::)t e “fe z(l:ta I:v; .Eouldtpse n* instead of n? for any k here and still have convergence;
, 1ierentiate any number of times, that i isC®(ali ,
that ¢ is analytic—see ‘Example 2, p. 181). ’ ¢ 7 ile thought shows
hT!le p?oof of part (iii) is now routine. To show VZ¢ =0and g isa C®
the interior, the proof is the same as that above (all th

bounded). For convergence in m
ean we
18, using Lemma 15. proseed exacl

M, € Mn?

function on
at was used was that the b, are
y as with the proof of Theorem

Worked Examples for Chapter 10

L Letf: i i
et f: [0,x] — C bea continuous function. Prove that the following inequality holds

U”f(x)sin xdx
4]

2
4 +

fnf(x)sin nx dx
0

2 x [
s 'Z'J; [F(x)* dx .

Solution: This follows immediately from Bes

Solut sel’s inequali i
ing (incomplete) orthonormal system on [0,x] Ay applied to the olloy.-

2 . 2
—SInX,..., [—sinnx.
n i

Notice that if we had used an infinite sum,

theorem (see Table 10-4). we would have equality by Parseval’s

2. Let V be an inner product i i
o P space. Show that if f, ~ f (in mean) and g, — g (in mean),

{fus8ud = {Sg) .

Solution: F . .
ution: First, make an estimate using the Schwarz inequality and the triangle

inequality:

<S> = <Dl < Kfognd = <fongd] + IKJmg> = <fig)l
= I(j;l’gll - g){ + I(.f;l - f7g>l
S WAl g — gl + 1£ = £ gl
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The result follows from this. Given ¢ > 0 choose N so that n > N implies each
of the following estimates.
€
M = S < 5 lglls
@ Ifu = flI €1;and

&
3) llg. — gl < N+

(Why is this possible?)
Then || f, — f1| < 1implies | £l < I/l + 1(why?),and forn > N
K Sy — <SS SN+ 1) lgn = gl + 15— SN gl

¢ gl

<A1+ D A0+ 07+ 5 o

=&.
This proves that { f,,g,> — {f.9>.

3. Let f:[0,2n] —» R be square integrable and define g(x) = [5 f(y)dy. Find
Fourier expansion of g and state where it is valid.

the

Solution: From Theorem 12,

21
g(x) = g;_x + Z;z- [a, sin nx — byfcos nx — (~1)],
i

.
which converges uniformly (and hence, pointwise) and in mean. Now

&, sin nx
x=n—22
T n

(Table 10-5), which-converges in mean and pointwisé for x # 0, 2n. Thus

] i @ 1
g(x) = ‘—l-;-y—r + <Z it - b ) + Z - [(ao + aysin nx — b, cos nx] ,
1 1

. i . . . . . .
which converges in mean and pointwise if x # 0, 2n. Since the Fourier coefficients

are unique (Theorem 4) this is the Fourier expansion of g(x).

Since g is bounded by f2"|f(x) dx, which is finite, g is square integrable, so it
certainly has a Fourier series. Note also that g is continuous but need not be
differentiable (see Exercise 61).

4. Let f:[0,2n] - R, g: [0,2n] — R and extend by periodicity. Define the convolution
of fand g by
2r

(o) =| fOWelx -y dy.

0

Compute the Fourier series of f * g in terms of that of f and g, using the exponential
form of Fourier series. :

. Let us consi = ’
onsider f(x) = cos Ax, —n < x < n, where A is real and non-integral
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Solution: The Fourier coefficients of S * g are given by

1 2r
& = o L (f * g){x)e~i"= dx

1 2% ("2
=), JWglx — ye=" dy dx
2n (*2n

=2m ), ), TOeTelx — e dy g

since e~ % = g~y p=inxting oo .
S . ging variables (y ++ y and x — .
periodicity (we may interchange th i : ¥~ f) and using
Sestion 9.2) leads to ge¢ the order of integration by Fubini’s theorem,

2
_1_ }(y)e—lnyd o ) —int g
2n J, )y . glije t.

L t - -] inx
et f(x) Z_W a,e"™ and g(x) = Z‘fm b,e™* be the Fourier series of Sfand g, so

2n
a, == —— f(x)e—inx dx
and 2 Jo
b 1 2n
[ - )~ inx
"=, g(x)e™ " dx

Then the above computation shows that we have

and thuS Cy = Znanbn H]

(/*g)x) = 2= i a,b,e™

cm/:; ps:tr:tlia;n:per;ttilon couid be done with the trigonometric series, although the
and the results are much more awkward. Suffici iti
and g for the above to be valid are onally contimuons oo/ |
that f and g be sectionall i ”
generally, square integrable. If we want i S Sintmise e o |
, . the series to intwi
e hypuchenss o peable. 1 converge pointwise we must add

Compute

cos Axe”™ "= dx

c, =
T

- -

[}

(el/b: + e*llx)e—inx dx )

I
I

o4

'

1 [em—n)x e“‘“"”‘ n
SN ~ +

4 I(A - ’1) _l(}' + n)]x=—n

(=1 1 1
= — - 2i sin A _
4ni 7t('l”‘fl.*-/l+n)
(=1 24

sin Az + e i
2 FrRp—r ;
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By Theorem 9 the fourier series converges to f(x) at all points. Hence, for x| < =,

i @ 24
cos Ax = i > (—l)kzz’j'k'i el

2 k=~

In particular, il we set x = = then

sin tl & 22
cos A = —— > (—1)"1’5‘—_,‘55("1)"

2 k= -
sinmAfl & 22
- E vt
Hence P 24
cOS T &
_ = , A # integer.
TsnmA A ,‘Z'l P % 7 inice

Note that the series on the right converges uniformly for 0 < 1 < 4, < 1. Note
also that m(cos nd/sin nd) — (1/4) = 0 as A — 0, and so is Riemann integrable. By

sin 74 = A2
- —_—— 1.
Iog< - ) hy Iog(l k2>, i <

integrating,

By exponentiating,

7k k=1
or . 2 W 12
sin 7.
= -2}, <1,
. — AE (1 k2> A<

Actually the product on the right defines a function of A of period 2 (see Exercise 75)
as does the left side, so the above formula holds for a/l real values of A. This product
formula for the sine was discovered (though not rigorously proved) by Euler.*
If we take 4 = 1/2 then - )
1 ) _m A2k - D2k + 1)
T2

,nrn
=501 (-qw) =5

=1 2k 2k
or
om _ﬁ v 2k 2k
2 2k — D2k + 1)
T .. (2-2)4-46-6)(2n-2n)
— = limit

nmw (133 55 T (@n—1:2n+1)
which is called Wallis® product formula for n/2.

6. An interesting application of the Parseval relation to the isoperimetric problem is
as follows: show that among all plane curves of a given perimeter, the largest area is

enclosed by the circle.

* For another method of proof, see J. Marsden, Basic Complex Analysis, Chapter 7.
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Solution:

c}zl;c;éogilrv:e\t’v(;cgi,sﬁ(t)), 31 <t t(? 2(7!.', be a parametric representation of a simple
. . me that x(¢), y(¢) are C! functions of ¢, and that th

1 is arc length. Thus the total length ; X , piriirie
is 2 gth is 27, and 2l =1, (=

0t o e e and X(t)* + y(0)® = 1, (- = d/dy) so
The enclosed area is given by*

2r
A4 = f x(0)y(e) dr .
4]

1 < = .
W ¢ Cla m that A T, aﬂd A T Only lf the curveis a Clrcle TO prove thls we Wlu
EXPIESS A in terms 01 the I;OUIISI Coeﬂiclents 0‘ X and y. Wllte

ap 2
x(1) = 3 +kz (e cos kt + b, sin ki)
=1

o o0
Sy = E"- +kZ(ock cos kt + fi, sin k) .
=1

All Coeﬁlcleﬂts are real. By p we ay .
a chaﬂge 01 or 1210 1n the Iane, m assume
Ihe F ourier series Of the derlvatlves x(t), y({) are thEU

&0

X(t) = ) (kb cos ki — ba sin ki)
. k=1 "
and

o0
) =k‘{___:l (kpy cos kt — bay, sin kr) .

Accordingly, by Parseval’s relation,
) jZn . ©
o= %2 4 2 - 27,2
. ( y?) dt nk;k (af + b + of + B3
and the area is

2n o
A =f xydt = nZ ka3, — by} .
Hence ° k=t

2= 24 = 1S (2
n T IZ {l*(af + b} + o + B2) — 2k(a,B, — b))

=720~ RaE + B+ o 4 B+ m Y kfla, — B + (o + 87
1

'Ithusn—A?O,andn—A:O«»
@ak=bk=°‘k=ﬂh=0 fork =2
() a, =), o = —b,.
In this case,

x(#) = a;cos ¢t + b, sin ¢

W) = —bycost +a,sint = —x(t + n/2).

*This is a standard caleulus formula:
Chapter/ﬁ. mula; see, for example, Marsden-Tromba, Vector Caleulus,

3
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Equivalently, for some R and &
x(¢) = Rcos(t + )
() = Rsin(t + 9) .

y impli ircle of radius 1.
The condition #* + y* = 1implies R = 1 and therefore we have a ci

Exercises for Chapter 10

2 1. Let V be an inner product space and M < ¥V a vector subspace. Define the
orthogonal complement of M by

Mt = {feV|{fg) =0forallge M}.

Show that M is a vector subspace of ¥ and is closed (that is, if f, € M, and L= f
(in mean), then f € M). [Hint: Make use of Example 2 above.]

H 2
2. Prove that the Legendre polynomials (sce Section 10.2) are comple.te ;Kj £ dgef
' [-1,1]. [Hint: First show that any polynomial can be expanded in Legen
polyr,lomials, and then employ the method of proof of Theorem 8.]

o 3. (a) Use the Fourier series for e* on [—n,x] in order to prove the following identity:

oo

(mcothm — 1)/2 = Zn—f;—l
(b} Use the half interval cosine series for cos ax where a is not an integer in order to

prove the following identity: )
o a
i

ncot wa = ~ +
a 1 4

A ?
¢ 4. Prove thatif f, —» f (in mean), then || f,§ — [ f]. Is the converse true?
» 5. Prove that uniform convergence implies mean convergence (on finite intervals).
+ 6. Consider the space [, of all sequences x = (XX, .'.) of real jummbeszc W|t[l:1
Y@ x? < co.Show that /, is an inner product space with (x> = 12 | Xy,

ad‘giltion show that this spae is complete (Cauchy sequences converge).

¢ 7. Let ' w
Zx,z < oo}
=1

i i i L.n=1,2,...be defined as
ich, by Exercise 6, is a Hilbert space. Let ¢, € {3, L,
Whlihiog ,1,0,.. ) with the 1 in the nth spot. Show. in two ways that ({)1,
Z;" ,is’a c;mplete orthonormal set: (a) directly, (b} using Theorem 6 (see also
P

Exercise 14(c)). |
« 8. Find functions f, and f on [—1,1] such that f, — f (pointwise) but not in mean.

+ 9. Verify that the sectionally continuous functions f* [a,b] — C form a vector space.

[2 = {(x,,xz,. . .)
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10. Find a sequence f, of sectionally continuous functions with Jo = [ pointwise
(respectively, in mean) such that J'is not sectionally continuous.

#11. Prove that if f: [a,b] — C /s sectionally continuous, then so is |f]. Show also that
|71 is bounded.

#12. Prove that if f and g are square integrable on [ab, 1/ ~ gl =0ifff = g except
on a set of measure zero.

¢ 13. In the proof of Theorem 7 we showed that

" 2 n n
F=2 00| = 1117 =Y Kfodl? + Y Ko — 1.
k=0 k=Q k=0 .

Use this equality with £, = ¢ Ji9,) to prove Bessel’s inequality.”

¢ 14. Suppose Visa Hilbert space (that is, is a complete inner product space). Let ®g,
@y, . . . be an orthonormal set in V,
(a) For each f e V, show that

Sy = Z": o> on
k=0

converges to some element of V. [Hint: Show that

m

“Sn - Sln”z = Z !<j;(pi>‘2
I=n+1
and use Bessel’s inequality to show s, is a Cauchy sequence. ]

(b) For each eV show that, if 5 = Z;‘;D {f @9 [ — s is orthogonal to each
o;and f — sis orthogonal to s.

(c) Show that if whenever [ is orthogonal to each ¢, we have S =0, then ¢,,
@1, .. . is complete. [Hint: By (b), f — sis orthogonal to each ¢, so f = s.]

.@15. Show that in ¥ of Theorem 1, we do nor have the Bolzano-Weierstrass theorem;

that is, in a closed bounded set, a sequence need not have any convergent sub-

sequences. [ Hint: Consider the elements @.{x) = (sin nx)/ﬁ on [0,2n] and show
that d(¢,,p,,) = ﬁ, n#m]

. . x + x?

¢ 16. Compute the Fourier series of S(x) =

2

,0 <€ x < 2m.
#17. (a) Let @g, @y, . . . be orthonormal vectors in an inner product space, ¥, If

Cpy =0

1

K
thenshowe, = 0,k = 0,1,2,....

(b} If @y, @y, . . . is a complete set, and {fe = {g,0,) for all i, then prove f = g.
(c) If ¥ is a space of integrable functions, prove that (b) implies J(x) = g(x) except
possibly on a set of measure zero.

I

0

¢ 18. This is an exercise on Fourier series in several variables.
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(a) We have seen that ¢™/\/2zn =0, +1, ... are orthonormal functions on

[0,27]. Consider now the functions
einx+1my einx elmy

(pv.m(x9y) = ey ——ay——2
' 2n 2 /21
Show that ¢, are orthonormal on [0,2n] x [0,27].
(b) Generalize {a) to construct @, given general ¢, which are orthonormal on

[a,b], rather than just the case "*/\/2x.
Remark: The e"//2r are complete and so are the ¢, ,. This is proved in

Theorem 8 for ¢"*/./2n and the proof for ¢, , is similar.
(¢) For f:[0,2n] x [0,2x] - C, write the Fourier series for [ (with respect to

@,,m above).
¢ 19. (Sturm-Liouville problems.) Consider the differential equation
. ey
i [q(x) + Ap(x))f(x) = O

to be solved for f(x), with boundary conditions f{a) = f(b) = 0anda < x < b.
The functions g, p are fixed and assume p(x) > 0. The 4 for which solutions / exist

are called eigenvalues.
(a) Show that if f and g are solutions with cigenvalues A and p and A # u, then

b
fp(X)f (x)glx) dx = 0.
[Hin.t': Use the differential equations to show that

d
(@ = wpx)/x)glx) = — [ ) = f ()g(x)]

and then integrate.]
{b) Interpret (a) as orthogonality of f and g with

. .
% =J P)f(x)g(x) dx .

Show that this is an inner product.*

3 20. Show that {/2/n sin nx |n*= 1,2,.. .} is an orthonormal family on [0,r]. What
is a Fourier series for this family? Is it complete?

21, Let ¢bg, @y, . . . be an orthonormal system in an inner product space Vand f € V. Let
5, = ZL o < SO0y, the nth partial sum of the Fourier series. Show that for any
integer,p 2> 0,

1S = swapll < IS = sall -
[Hint: Use Theorem 7, or a direct argument. Deduce that limit || /' — s,) always
e o
exists.]
* Many orthonormal systems arise this way. The trigonometric system arises withp = 1,4 = 0.

There is an advanced theorem which asserts that such systems are complete. Sce, for example,
Coddington and Levinson, Theory of Ordinary Differential Equations.

2
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922, Let V be an inner product space and ©os P15 -
For f, g € ¥, show that

. . a complete orthonormal system.

{fad =k;)<f,rpk><«pk,g> .

Of coursg, p'art of this problem is to show that the sum converges. [ Hint: Write f
and g as limits of Fourier series and apply Example 2 above.]

Exercises 2328 refer to quantum mechanical systems (Section 1 0.9).
23. Show that the solution of i{(@y/d1) = Hy, if y = Yyat s = 0,is given b}"
l// = Z <|/’0’(pn>e*m"'m(pn H
n=0

where Pu€ V are the eigenfunctions of H with eigenvalues E, (you may -assume
the series can be differentiated term by term and that the eigenfunctions are
complete). What happens if y is already an eigenfunction?

24. Suppose ii(0y/0r) = H\y. Prove that (,Hy) is constant in time. This result is
called conservation of energy.

25. Compute the commutators of the operators, Qs @y @2y Py, Py, P, and J,, J,
y 3 £ x5 xy Yy

J. give.n in the text. What is the uncertainty principle for these operators (Exercise
* 5, Section 10.9)? .

26. If 4 and B are symmetric, is [4,B] symmetric? What about i[4,B]?

27. Solve for the eigenfunctions in a deep box if we replace [0,/] by [— L.

.28, If 4 is. symmetric, then show (A i) is real for any i ¢ V. Interpret this result using
Exercise 3, Section 10.9.

¢ 29. In the second proof of Theorem 9 we used the fact that

(recall that this integral is conditionally convergent; see p. 271). Prove this fact as

follows. Let
F() = f emx X 4y

o X
Then show that !

F@) = —f e"Fsinxdx = (12 + 1)7!
4]

{see Example 2 at the end of Chapter 9), Hence F(1) = —tan~! ¢ + C. Show that

E(») - 0 as‘t = 00,50 C = n/2. Then look at F(0) for the result. (The main difficulty

here is the justification of these steps.)*

* This integral can also be evaluated using complex variables methods; see J. Marsden, Basic
Complex Analysis, Chapter 4. ’
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s 30. Convolutions were defined in Example 4 on p. 430. Show that fxg =g » f. Use
Fxample 4 to write out Parseval’s relation for f * g.

# 31. The derivative of the delta function is defined by =, §'(x)f(x) dx = —f(0) (see
Section 8.9). Compute the Fourier transform of §'; how is it related to that of 67

o 32. (The Riesz-Fischer theorem.) The Riesz-Fischer theorem represents one of the carly
and most important successes of the Lebesgue integral. For this problem we do not
assume a knowledge of the Legesgue integral, but take for granted that the set of all
square integrable functions forms a Hilbert space. Assuming this, the Riesz-Fischer
theorem is quite easy. Sometimes, depending on how you read the history, the fact
we just took for granted is called the Riesz-Fischer theorem!

(a) Prove the following theorem.

Riesz—Fischer theorem. Let V be a Hilbert space and @, ¢y, ... a complete
orthonormal set. Let cq, ¢, . . . be complex numbers and suppose 3'°_ |c,|* < co.
Then there exists an [ € V with

LoD = ¢
Thus every series
o0
C""'l!
n=0
with
w0
Y led? < e
=0

is the Fourier series of some f.

[Hint: Let f, = h o S and show that £, is a Cauchy sequence, by showing that

= LF =20 el

(b) Use (a) to prove that for every sequence, ¢, k = 0, +1, +2,...with

o0 N

2 it 2
E c? = limit E ol <
_wl kt N “N‘ k] E}

there is a square integrable f on [0,2x] (or [ —=,%]) such that

fz_zck(Pka

where ¢, = ¢ and the convergence is convergence in the mean.
() Is).™ __ (1/n)e"™ the Fourier series of some function?Is 3= _ (1//m)e™=1
n#0 n#0
233, If f: [a,b] — R has a discontinuity only at x, € Ja,b[ and f* is bounded on Jxo,b[
and on Ja,xo[, then prove f is a function of bounded variation. [Hint: Use the
mean-value theorem and arrange the partition P so x, € P.] Show that one can
apply the Jordan-Dirichlet theorem.

34. Find a function which is continuous and periodic on [0,2z], and whose Fourier
series converges at each point, but for which the hypotheses of both the Jordan and
the Jordan-Dirichlet theorems fail. [Hint: Consider the function x sin(l/x) for

¢ 39. (a) Suppose f is diff i 4 imit f i
pose f is differentiable for x > xq and xlg&zi JS'(x) exists. Then show that
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x > 0 and extend this functi P Z A0m fe 2;{
Section 10+41] unction to be odd periodic. Make use of Exgcim%),
o

L5
¢35. Investigate the nature of conver

ence of th i i .
functions on ]—rz]. g ¢ Fourier series of each of the following -

(a) flx) = x"‘.3 {b) f(x) = (sin x)*.
x3, x>0 2
(C)f(X={ ’ FrLooxz,
-x*  x<0. @ 16 = {o
, x < 0.
1, x <0,
(€ flx) = 1

x?sin—, x > 0.
‘ x
[Hint: Use Exercise 33.]
¢ 36. Suppose [ is real, sqaare integrable on [—/,/], and
{

anz’l‘

nnx

{
f(x)cos<—1—> dx , n=0,1,2,...
-1
b = I . [nnx
W=7 f(x)sm—[—dx, n=12....
-1
> Show that
ag o o0 1 {
5 +Zlaf +Y B = 7| S0 dx.
n= nw= | -1
#37. Form the function
o(x) = asinx + bsin 2x + ¢ sin 3x

on [0,x]. For what values of a, b, ¢ is

. @ closest in mean to the co i
What about on the interval [ —z,z]? netent fanction 11

¢ 38, iI;E:tbgo u ]t;,bg —»{Iﬂ;be cglt;inuous and suppose g(a-+) and g(b—) exist. Then prove g
nded. nt: Define 4:[a,b] - R by ha) = '
! ‘ , = gla+), Mb) = g(b— d.
h=yg on Ja,b[. Show that / is continuous -] What does this say about thz(deﬁx)litz} o
of a sectionally continuous function? o

S{xg+) exists as well.
(b) If xl_lg‘f)ii J'(x) exists, show that it equals

Jimit {f(xo +h) - f(xo+)}
b0+ h ’

[Hint: Extend f so it is continuous o i

n an interval [x,,x]. Th
. gean.-;falue theorem to the above difference quotient ][ ore) Then apply the
¢) Consider the functions f(x) = x sin(1/x), fy( j s ‘
. : = , x) = x%sin(1/x), =
x3 sin(1/x), for x > 0. Which of Iin"(n,it Sfix)and f 5((§+) exist? ()
X0+ ! ’
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240, Let x, be a jump discontinuity of /. Define A(x) = f{x, — %) and g(x) = flx, + x).
Show that h0+) = f(x,—)and g(0+) = f{xg+).

+ 41. Let f:[a,b] — R have a jump discontinuity at x, € Ja,b[ with f'(xo+), f'(xo—)
existing. Let ¢: Ja,b[ — R be differentiable and suppose

o) = S0 . ) o =

Then prove g has a jump discontinuity at Xg, (%o +) and g'(x, — ) exist, and we have
glxe+) = flxg+)p(xo)
glxo—) = flxo—)p(xo) .

Apply this when
il Cox2
o(x) = { sin[(x — x0)/2] °
1 s X = Xg,

to complete the proof of Theorem 9.
42, If f, - f in mean on [a,b], then prove f, — f in mean on any subinterval.

i . Let i(x) = [3 f/(»)g(») dy and let ,
»43. Suppose f, —+ f and g, — g in mean on [a,b]. Let !
be defined similarly by A,(x) = [ £,(»)g.(») dy. Then prove that /i, —> A uniformly.
[Hint: Modify Lemma 12.]

44, Establish the following formulas.

. coS X 2 (—1)'cos nx ey
o(a)xsu:x:l————— %—F_-—l—, T<x<T.
&, coS nx
(b) log[sin 4x] = —log2 — Z —, on 10,2x[.
i

* 45, Establish formulas 5 and 6 in Table 10-5.

46. Apply Parseval’s relation to formulas 4a and 6 in Table 10-5 to‘obtain some
arithmetical identities. What justifies reading off a, and b, as the coefficients of cos nx

and sin nx?
47. Discuss the Gibbs’ phenomenon for f(x) = 2,x > 0; f(x) = 0,x < 0.

48, Let f have a jump disconti}mity at x, and let f(xo+), f(x¢~) exist and f‘ :(x) e.x%st
and be continuous for x € Jxo — &%o[ and x € Jxo,xo + &]. Show that f “exhibits
a Gibbs’ phenomenon at x,” and the “overshoot™ is = (f{xp+) — fxe—=)) - (1.179).

[Hint: Let {f(xo -y,
h(x) =
(xo + ) L]

and consider k(x) = f(x) — h{x). Use Theorem 9 and the fact that near x,, the
Fourier series of k is uniformly small.]
s 49. Use the Fourier series of |sin x| in Table 10-5 to show that

1 & (= 1
= and Z =3

X < Xg,

x> Xg,

o

2 50.

¢ 51,

» 52,

53.

+ 54,

v 55,

» 56.

¥ 60.

061,

8 62,
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Use the Fourier sine series on [0,z] to show that

0

8
COS X == — Z _ sin(2nnx) ,

O0<x<1.
T 4n? — x

In Table 10-5, state the discontinuities of all functions (including endpoints of
intervals) and the values of the Fourier series at those points.

Derive formula 2a of Table 10-5 by noting that fi (x) = (x + |x])/2 and observing
that the series for |x| is just the half-interval cosine series for x. '

Use the Jordan theorem at x = 0 in Example 3, Section 10.5 to prove that
n?/8 = = 12n = 12

(a) Let f be smooth (C*) on [—n,x], and suppose f(—n) = f(x), f W) =
S®(m), ke = 1,2, .... Then prove that the Fourier series of Jf may be differen-
tiated any numbbr of times and will still converge uniformly.

(b) Show that for any integer p, n”a, — 0, nb, — 0, where a,, b, are the Fourier
coefficients of f. .

{a) Let f: [0,x] — R be continuous and let f* be sectionally continuous with jump
discontinuities. Then show that the half-interval cosine series of [ converges
uniformly and absolutely to f.

(b) Justify the same conclusion for the half-interval sine series if we assume also
that f(0) = f(n) = 0. Explain. ——

{c) Show that without the condition f(~=) = f(n) in Theorem 14, the conclusion
is false.

Let

0, n<x<0,
fx) =
1, 0<x<n.

Then show that if we differentiate the Fourier series of J, we get the Fourier series
of (x) — &(x + m)(6is the Dirac & function). Can you explain in what sense f* = §7

. Give the theorem that is obtained by combining Theorem 14 and Corollary 3

(p. 109} and show why Theorem 15 is better.

. Use Theorem 15 to derive a differentiation theorem for half-interval cosine series.

If /'is square integrable on [ —n,n] with Fourier coefficients, a,, ,, then prove that
22, a,/n and 2.2 | bu/n converge absolutely. [Hint: Use the method of Lemma
13,

(a) Let f:[~mn] - R be square integrable, and g(x) = J*x /() dy. Find the
Fourier expansion of g and state where it is valid.
(b) Repeat part (a) for the half-interval cosine series of S:[0x] - R

In Example 3, p. 430 show that g is of bounded variation (hence the Jordan-
Dirichlet theorem applies).

Use Example 3 to find the Fourier series of x> on [0,2r] using that of x? from
Table 10-5.

i
;
8
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v 63. For each of the following, determine what type of convergence the Fourier series
has and whether or not the series can be differentiated termwise.

{a) f(x) = x* on [—m,x]}.

3,y —n<x<-—%
(b) fx) =<x, - < x <1,
1, I1<x<m
(©) fx) = 7 — Ix° on [—m.m].
¥+8 —r<x<0
(d)f(x)={x2+ 8, OSXSR.
0, -7t < X s 0,

(e} flx) = ) Siﬂ("lz)a 0<x<m.

1 1
—2n(x + Dx + 2n + 1, mesg,
N f&x) = 0 m<x<0,
1 otherwise on [ —7,7].

(g) log on ]-ma[.

. x)
sin| 5

i i ith Fourier coefficients a,, b,. If f(0+),

64. Suppose [ is square integrable on [0,2z] wit :

' f (é) -lj), ﬁ{O +), and f(0—) all exist, then prove Z:‘; o Gy CONVErges. What assump

tions guarantee that Z:°= L bn converges?

Exercises 65—71 are based on Section 10.7.

65. If the temperature at the ends of a bar is kept cons‘tan§ at zero, show that the
temperature T after time ¢, if T is equal to f'at £ = 0, is given by

= nmnx
—{ 2, 1,/,) .
T(x,1) =,,Z1 be sm(—l > ,
where the b, are the half-interval sine series coefficients of f.

66. Show that the solution to the heat equation is always C® for f > 0(see Theorem 19}.

67. (a) On [0,x] x [0,x] find a function ¢ such that VZp = 0and

o(x.0) = (" 3 ")2 2 00 = 0, 0() = 0, osim) = 0.
Explain in what way the boundary values are assumed.
(b) Repeat the problem with ¢(x,0) = x.
68. Show that the solution in the text is correct for the_2-dir.nensional wave equgtion.
Derive the fundamental solutions by separation of variables. You may wish to
use Exercise 18.
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69. In Theorem 17, prove that

P = nnx '
imit 3 e~ cos ) < g
1

[aud- ]

n=

(uniformly in x). [Hint: Let |a,| < M. Then the sum is, in absolute value,

w© — e,—nzl/l;l
= (n2n/i2) .
sanle Ry S M [1 - e-—nzl/lz] ]
70. In Theorem 19(iii), show that ¢ converges uniformly on any compact set in the
interior of the square. [Hint: The distance from a side is >0.]

71. (Boundary-value problems for ordinary differential -equations.) Suppose f on

—m,n] has f(—x) = f(n) and Fourier coefficients a,, b,. The fact that f' has

coefficients «, = nb, and §, = —na, (see Theorem 14) is useful in solving certain
boundary-value problems.

(8) Solve the equation f“(x) + kf(x) = g(x) for given g on [—n,x] if we require

S (~n) = f'(=), and f(—n) = J(m) by noting that —n?a, +ka, = d, and

—n?b, + kb, = b,, where &, and b, are the coefficients for g. Hence show that

n
— n?

sin nx,

& §
Jo) =5 +y

a,
n=1 k

P cos nx + %
(b) Solve the equation corresponding to (a) for [—1/].
072, Let § be a given real number, 0 < § < 7. Define
1, |x<3é,
f(x)={0, d<lx <.

(a) Calculate the Fourier series of f.
(b) By evaluating at x = 7, show that

< sin ko
- —1 k1 .
2 k:-:Z[( ) k

(c) What does the Parseval relation say in the case of f?

73. Evaluate

limit f J/x sin? kx dx .
0

ko0
#74. Verify that the infinite product in Example §
L] /12
SOy = 1H<1 - 7)
n=1 n
is periodic with period 2, f(A + 2) = S(A). First show f(A + 1) = —f(4).

75, (From notes of W, A. J. Luxemburg.) Let ¢, be a set of orthonormal functions in
%% of the interval [a,b]. Show that (a) ¢, is complete iff x — g = = o) dif?
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76.

for all x e [a,b] and (b) @, is complete iff

b — ap2 = i f

[Hint: (a) For =, apply Parsevals relation to the characteristic function of [g.x].
For <, assume {g,p,> = 0 for all n, ljg| = 1. Apply Bessel’s inequality to the
characteristic function of [a,x] using the orthonormal system {¢,} v {g}. Conclude
that [* g(f) dt = 0 for all x € [a,b] and hence that g is zero (except on a set of
measure zero). Now use Exercise 14(c) to conclude that {¢,} are complete. (You
may assume that %2 is complete, that is, is a Hilbert space, for this problem). (b) For
=, integrate the result in (a) term by term (using the monotone convergence
theorem). For <=, show that [% {(x — @) — 1= |5 @,(1)d4*} dx = 0 and use
Bessel's inequality to show that the integrand is = 0. Hence apply (a).

Now verily that (b) holds for the exponential system on [0,2] and deduce its

completeness.]

2
dx .

f g0 di

(Lebesgue’s proof of completeness of the trigonometric system from A. Zygmund,
Trigonometric Series.) Give another proof of Theorem 8 as follows. Let [ [~nn] —
R be continuous and be orthogonal to cos nx, sin mx. Prove f = 0 as follows:
assume f(x) > & for xel = Jxg — 0,%p + O[. Let T,(x) = [¢x)]", slx}) =1 +
cos(x — xg) — cos & and show T,(x) = 0, on I, T,(x) — co uniformly on every
closed subinterval of 1, and T, are uniformly bounded outside I. Use this to show
{f;T> = 0 is impossible for n large. For general f, attempt to apply the results
just obtained to F(x) = [~ f(t) dt.

”
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Appendix A

Notes on the
Axioms of Set Theory

By Istvan Fary

A.1 Introduction

There is no rigorous mathematics today which does not use concepts of set theory. For
this reason we started with set theory in this text. The purpose of this appendix is to help
bridge the gap between the approach in this text and that in more formal set theory
courses using a book like Halmos [18].* Any introduction to set theory has to take into
account the following facts.

(a) The concept of set is so basic that it is impossible to define it in terms of more
basic notions.

(b) Because of (a), we specify the concept of set with axioms, but the axiomatic method
may not be familiar to the student.

{¢) Axiomatic set theory involves logic, but some concepts of logic. may not be
familiar either.

In view of these circumstances, the most effective approach and the one used in this -
text, is to start working with the intuitive concept of set (Introductory chapter) and come
back to foundations later on. When this method is used, the question arises whether to
take up logic first, or else to treat the axiomatic set theory without formal logic, like
any other chapter of axiomatized mathematics. We chose the second approach.

This plan corresponds to the historical development: set theory, based on intuitive
concepts came first, then criticism of this inspired the axiomatic foundations, and
finally an intensive discussion of this method heralded new developments in logic. It
may be useful, therefore, to say something about the history of our subject.

A.2 On the History of Set Theory

Set theory is possibly the most important chapter of mathematics. It includes facts
about finite sets, but the importance of the theory comes from the fact that it can deal

* See the references listed on p. 473.
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with infinite sets. The theory dates from the moment when characteristic prope‘rties of
infinite sets were recognized and the mathematical consequences pursued. ‘In.thls sense
the founder of the theory was Georg Cantor (1845-1918). He published h}s important
papers just before the turn of the century. There was a heated debate of his work., and
famous mathematicians disagreed about fundamental questions. In the recent history
of mathematics this is rather unusual. _

Cantor was led to discover facts about infinite sets in connection V&./ith' his work on
so-called trigonometric series. Let us mention that a trigonometric series is of the form

(see Chapter 10) © i
Z (ay cos kx + by sin kx) .
k=0

Convergence properties of these series are delicate questions, and distinguishing points
according to the behavior of the series leads to very general types of sets of numbers.
For this reason Cantor dealt with sets of real numbers first, but discovered soon that

he had to deal with infinite sets in general. L
In one of his papers, he gave the following “definition” or “description” of the concept

of set:

We understand by “set” any gathering M of well-defined, distinguislfable
objects m (which will be called “elements” of M) of our intuition or our ideas (1)

into a whole.*

It is customary today to be “ashamed” of the original definition of Ca‘.fltor, ?.fld t?’
say that it is not a definition. As a point of fact, there are man'y.so-called definitions
in other fields which do not come close to the clarity and precision of (1). Neverth.el‘ess,
the concept of set being so important, we will not accept ultimately Cantor’s definition.
However, for the moment we will use (1) to clarify our ideas about sets. . '

The first point is that we “gather together” objects, and we do not care in w,l,nch
order they are taken. For example, if we talk about “the set of nztfural numbers” we
do not imply that the elements of this set are given in some “order, even though theFe
is a “natural order” for integers. For practical purposes we may give the elements lfl
some order, but this has nothing to do with the set itself. Better yet, we define “order”

in terms of sets.

The words “well-defined, distinguishable objects” in (1) point out another aspect

of the concept of set. That is, the elements of the set “do not appear twice,” thui, fo,r’
example a set consisting of 2, 2, 2, 3 contains 2 and 3 and nothmg else. Hence a *‘set
“contains” some objects which “belong’ to the set; some other objects may ngt belong
to the set. For example, 1003 belongs to the set of natural numbers (positive integers),
3.14159 does not belong to it.

Finally the “whole” at the end of (1) refers to the fact that sets themselves are trez}ted
as objects, in the sense that they may be elements of other sets. Th‘us we may con.mder
sets whose elements are sets. As a point of fact, these are the most important sets in set

theory.
* The original German text is (Collected Papers, p. 282): “Unter ciner “Menge” verstehen wir

jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer
Anschauung oder unseres Denkens (welche die *“Elemente” von M genannt werden) zu einem

Ganzen.”
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Let us now criticize Cantor’s definition—take the following definition. An integer p
isa prime number ifp %1, and +1, +p are the only divisors of p. In this definition the
concept of “prime number” is defined in terms of other concepts (integers, divisor,
+1, —1, —p), and we suppose that the latter concepts are known or were defined
without the use of the concept of prime number. The definition thus reduces the concept
of prime number to these other concepts. This definition also tells us what to do in
order to test whether or not 1003 is a prime number (it is not; it is divisible by 17). Let
us see whether (1) can stand such criteria. We have in this sentence a number of other
concepts: “gathering,” “well-defined,” “distinguishable,” “whole” (not to mention our
“intuition,” our “ideas”). It is only fair to ask which concept is simpler: “set” or
“gathering.” (As a point of fact the German word “Zusammenfassung™ sounds better,
but does not escape the criticism.) Similarly, we can question every one of the other
concepts, and wonder if it is simpler than the concept of set, and could be conceived
prior to it.

In a later paper Cantor came back to the question and discovered a germ of the
axiomatic description. Let us add that Cantor’s definition was also criticized on the
grounds that it does not exclude contradictory sets, as we will see below, and his second
approach was motivated by this criticism.,

A.3 Remarks on Logic

We want to handle logic in an uncritical and unsophisticated way; nevertheless, we
want to say a few words about conventions of mathematical language. It is probably
fair to say that the basis of our rational thinking is the following belief: if we start with
true premises, and make correct deductions from them, then we reach a true conclusion.
We could refuse to accept this but would not get far in mathematics. If we take this
belief seriously (as we do in mathematics), rather sophisticated results can be reached.
For example, suppose that 2, 3, 5,. . ., 17 were the only prime numbers > 2. Then
form the number n =235+ 17 + 1 (where the points indicate that we have to
write all the seven primes from 2 to 17). Then # is not divisible by a prime < 17, hence
itis a prime or it has a divisor which isa prime > 18. As the conclusion plainly contra-
dicts the premise, both cannot be true, and as our reasoning was correct, the premisce
must be false—there is a prime number > 18. This is not surprising as 19 happens to
be a prime number, but we reached the conclusion by reasoning and not by experience.
This reasoning, sometimes called reductio ad absurdum, is used frequently.

There are English sentences in which we can erase a word, write x in its place, and still
get a meaningful sentence. For example, in the sentence “two is smaller than five”
erasing two and writing x gives the sentence *x is smaller than five.” Such a combination
of words is called a propositional function or condition and could be denoted Sfx). Now
writing “seven” in place of x we get a false sentence and writing “three” in place of x
we get a true sentence. Then S(x) is meaningful if x is an integer, and is true for some
integers and false for other integers. Given now an arbitrary condition S(x), we may

take all objects whose name, substituted in
the place of x in S(x), gives a true sentence.

@
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It is understood that x may occur several times, and substitution must be done con-
sistently (thus x is just a sort of “place holder™ in this case). On the basis of definition
(1) we thus obtain a set. There will be a standard notation for this set:

(x| Sx)}. @)

In spite of the fact that (2) is consistent with (1) and with the usual concept of set,
" we run into contradictions if we use (2) indiscriminately. Take the following example.

The set that does not contain itself as an element. 4)

This sentence seems to be all right; after all, who ever saw a set which contained itself
as an element. Brase “The set,” and write x:

S(x) = x does not contain itself as an element. (5)

Then take the corresponding set (2), and call it M as Cantor does (M for “Menge”).
Let us ask the question: does M contain M 7If it does not, then it should, by the sentence
which defines it. If it does, then it should not, by virtue of the same sentence.

This property of construction (2), first noticed by Bertrand Russell, is shocking, and
discouraging. When we were inspecting Cantor’s definition, we suggested that it was
not really bad and actually helped clarify ideas. Now we find that, at the same time, it
allows forming the impossible set M.

The example of the set M may suggest that there is something inherently wrong with
the concept of set, or at least with the concept of “big” sets. In fact M is as big as they
come—it cgntains every single *‘decent” set. However, the kind of contradiction we
have in connection with (5) is well known in classical logic. Let us mention first an
example, which can be formulated in terms of “small” sets. Let N be the set of men
living in a small village. Suppose that the barber of the village declares: T will shave
x &N if x does not.shave himself. It seems then that this sentence defines a subset
P = N.However, the question whether the barber belongs to P leads to the following
dilemma: “1 will shave myself, if I do not shave myself.”

The dilemma above was extensively discussed by Greek logicians who did not use
the concept of set. Hence, the contradiction may be independent of this concept. This
seems to be confirmed by the following paradox.

Suppose that during one of thy lectures a student in the class says,

The last sentence on the blackboard is false. 6)

This can happen, unfortunately. If it does, I normally do the following: I again read the
sentence. If I find that the student is right, I apologize, erase the sentence, and write
down the sentence corrected. If T find that the student was mistaken, I say so aloud,
and leave the sentence on the blackboard. To make this concrete, suppose now that 1
lecture on set theory, and reach the point up to and including sentence (6); sentences 1)
through (6) are on the blackboard (in order), and nothing else. If a student says now
“The last sentence on the blackboard is false™, I am at a loss what to do. If he is right,
then (6) is false, which means that it is true, hence the student was wrong, but in this
case the sentence is right, which means that it is false.
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. It woulc.! b'e interestin'g to pursue [urther these questions of logic, but our aim was
simply to mdxc?te why it is advisable to restrict the form of sentences when defining
subsets of a set in our axiomatic set theory.

A.4 Language of our Axioms

Ibn a complete, advanced presentation of the axioms of set theory, formalized logic must

de us.ekc’i. 'tll']h-us at leafst part of the language of the theory is formalized. We turn now to
escribe this part of the language, without effectively carryin izati

this description, we follow [18]. Y carrying oot & formalizaion. In
There will be two basic types of sentences, namely assertions of bellonging

) 2 xeA ()
and assertions of equality

A=B,; (7)

a‘ll other sentences are to be obtained from such atomic sentences by repeated applica-

tions of the usua} logical operators, subjected to the rules of grammar and unambpi)lg)uit
To make the definition explicit, it is necessary to append to it a list of the “usual lo, icZi

ogerators", and the rules of syntax. Our list of “logical operators” will be ’

not

and

or (in the non-exclusive sense)

if—then—(meaning implies)

if and only if (abbreviated iff’) ®
{ Jor some (there exists)

Jor all

Notice that “not” operates on a single sentence, the next four operators act on two

. sentences (S and T, ..., S iff T) and the last two act on conditions (for some x, S(x)

holds, and so forth.)

‘ This list is redundant: it is proved in logic that the first five can be replaced by a -
single operator, hence everything really comes to the concept of implication, or soi,ne
very closely connected concept. [Example: instead of the sentence “S and 7’”’ where
S anfl T are sentences, we can say “not (not S or not T).” This is clumsy in cn’)lloquial
Englxsl} but very simple with appropriate logical symbolism. As we do not want to use
formalized logic, we use the longer list (8).] In our list (8) the first five operators are
ﬁalled logical c?rxnectives, and the last two are called quantifiers. In the usual formalism

for some x” is sometimes written 3x and “for all x is denoted Vx. The connection
Eetween these two quantifiers is as follows: the negation of “for some x, S(x) holds” is

for all x, not S(x) holds.” The negation of “for all x, S(x) holds™ is “the;e is an x, such

;112:, n;t S(x);:oldtsl;” This is very important; in fact, possibly the main idea to be le;rned
. Very often the connection i i ir

form. W watt ro stateml;ztt\:veen the two quantifiers appears in the following

Jor everye > 0+ holds true . )
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The negation of this is:

there exists gy > 0, such that - - - does not hold true . (10)

If we can now deduce a contradiction from (10}, we have a proof of (9).

As for the rules of sentence construction, we make the following agreements:

{i) Put “not” before a sentence and enclose the result between parentheses. (The
reason for parentheses, here and below, is to guarantee unambiguity. Note, incidentally,
that they make all other punctuation marks unnecessary. The complete parenthetical
equipment that the definition of sentences calls for is rarely needed. We shall always
omit as many parentheses as it seems safe to omit without leading to confusion. In
normal mathematical practice, to be followed here, several different sizes and shapes
of parentheses are used, but that is for visual convenience only.)

(if) Put “and” or “or™ or “if and only if"" between two sentences and enclose the

result between parentheses.
(iif) Replace the dashes in “if—then—" by sentences and enclose the result in

parentheses.

(iv) Replace the dash in “for some—"" or in “for all-—"" by a letter, follow the result
by a sentence, and enclose the whole in parentheses. (Il the letter used does not occur
in the sentence, no harm is done. According to the usual and natural convention “for
some y{x € A)” just means “x € A.” It is equally harmless if the letter used has already
been used with “for some—"" or “for all—"". Recall that “for some x(x € 4)” means
the same as “for some y(y € A)”"; it follows that a judicious change of notation will
always avert alphabetic collisions.)

This is about all we need to know on logic. The axiomatics of set theory depend
heavily on the logical apparatus used, but we believe that the axioms and their immediate
corollaries ¢fin be understood on this modest basis, and the rest of the text is but an
exercise on the use of quantifiers, mostly in the form of (9) and (10) above.

A.5 The Axioms

Instead of giving a definition of the concept of “set A” and that of “belonging to a set,”
denoted a € 4, we will give properties of these concepts. Enumerating properties is the
main feature of the-axiomatic method.

We will state now the axioms in the wording of [ 18], accompanying them with a few

remarks.-

1. Axiom of Extension. Two sets are equal if and only if they have the same elements.
(18], p. 2.

This axiom means, in particular, if we want to prove A = B we have to prove that
x € A implies x € B and that x € B implies x & A. This fact is so important, that it is
worthwhile to have a notation for the case when only half of it, say the first half is
satisfied. We then write A < B. This will be a relation between sets; it is not an unde-
fined concept but it was defined in terms of “set™ and “belonging.” See Example 1,
p. 6 for a concrete application of the axiom of extension.
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2. Axiom of Specification. To every set A and to every condition S(x) there corre-
:Ezlo%ds aﬁsit B whose elements are exactly those elements x of A for which S(x) holds
,p' * .

We introduce here the important notation

{xed|S(x)} an

;o denote the set B. Notice that (11) is the same as our set (3) except that we do not
orm now the set of all objects satisfying a certain condition, but only those which are

already elements of some set (set 4 in (11)). This allow
: . s us, for example, t
real numbers quite arbitrarily, like pie, to form sets of

I={xeRlagsx<b} (12)

Yvhex:c our sen.tence S(x}is a < x < b, provided we know that R is a set. (This is not yet
implied by Axioms 1 and 2.) The simplest set (11) can be formed with the atomic senter?ce
)] then. we get A = {xe A|xe A}, hence 4 is a subset of A. If our sentence S(x) is
not. satisfied by any element of 4, (11) describes the empty set . We can always write
an lmp(.)ssible condition, for example x ¢ 4. Then f = {xe A‘ f x ¢ A}. Conclusion:
i there is any set, there is an empty set containing no elements (our axioms do not sa e;
that there are sets at all; we have to postulate this later). 7

) On th.e basis of Axiom 2, we introduce the important set theoretical operation of
intersection. Given sets 4 and B, we write {x ¢ 4 | x & B}; this set is denoted 4 B
as you know. .B N A would be {x € B|x e A}; this is clearly the same set. The most
genera.l operation is the intersection of a collection of sets C (instead of a set of sets we
ff)menmes say collection of sets, but, for us, “collection™ shall be synonymous with

set”): suppose C is a set, and, il 4 € C, then A is also a set. We define:

ﬂ{AIAEC}:{xerleeCandxeAforallAeC}. (13)

Hence x is an element of the intersection if it belongs to all sets that belongto C. 4 ~ B
corresponds to the case when C contains two elements, one being A the other being B.
Ifall elements of C are indexed with integers so that C = {4,}, we write

1A,, = {xed,|xeA,forall n}, (14)

n=

(:lea] ly I4 18 “le set 13 m thls SpeClal case (i som
) ( € cases the elerﬂeﬂts 0‘ C cannot

3. Axiom of Pairing. For any two sets there exists a set that they both belong to.

(18], p.9)

4. Axiom of Unions. For every collection of sets there exists a set that contains all
the elements that belong to at least one of the sets of the given collection. ([18], p. 12.)

. 3. Axiom of Powers. For each set there exists a collection of sets that contains among
its elements all the subsets of the given set. ([18], p. 19.)
If Cis as in (13), we write

Utdldec) (15)
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to denote the set postulated in Axiom 4. The notations A U B and | ] 4, are used in
special cases similar to (14). If we want to prove that x e | | 4, we must prove xe 4,
for at least one n; if we want to prove x € [} 4,, we must prove x € 4, for all n. The
logical quantifiers 3x, Vx are thus closely connected to the set theoretical operations
U, M. '

We must carefully distinguish the pairing and the union: the set {4,B}, postulated
in Axiom 3, has two elements 4, B if 4 # B and a single element 4 if B = A (this is
not excluded). For example, given the set @, we can form the set {&,&} = {@&}
which is a non-empty set; it has one element. Axiom 4 postulates the existence of
A U B. This set does not contain, in general, 4 or B as clements; its elements are
either elements of A or elements of B. For example, & U & = I has no element,
hence it is different from {@f}.

Axioms 3 and 4 also imply the existence of the set {4,B,C} with three elements.
Progf: Form {4,B} and {C,C} = {C}. Then form the pair {{4,B},{C}} = D. Take
the union of the elements of D. Similarly, given n sets 4,, ..., 4,, we c¢an form the
set {4,,. . .,4,} containing these elements. ‘

The Axiom of Powers is a very important tool of set theory. We know already what
countable sets are. We have proved in Example 4 of the introductory chapter that if 4
is countable, the power set 2(4) is not countable, and more generally, we have shown
that there is no bijection from A4 to 2(4). This was discovered by Cantor; set theory,
as we understand today, was launched by this discovery. If 4 is countable, then there
is a bijection from 2(4) to R, that is, the set of real numbers. Hence, if we accepted the
existence of the integers as a set, Axioms 1-5 would imply the existence of the set R
(or something akin to it, which can be used in place of R). But these axioms do not
postulate the existence of any set, yet alone the existence of infinite sets.

Before formulating the last group of axioms, we want to examine the question of
existence of sets more closely. If we understand sets in the sense of Cantor’s definition
(1), all our axioms are clearly satisfied. From the axioms we can deduce, however, that
some sets which can be formed in virtue of Cantor’s definition are not sets in the sense
of the axioms. Specifically, given a set A we can form B = {x e 4| x ¢ x}. Suppose
now that B e B. Then B ¢ B, hence this is not possiblé. In conclusion, B ¢ B, and in
particular B ¢ A. Summing up, to any set 4, a set B can be constructed which is not
an element of 4. Hence the axioms exclude the existence of a set which would contain
all sets. On the other hand Cantor’s definition would admit such a set. Similarly, the
contradiction concerning the set M of (5) shows presently that M is not a set. The
axiomatic system thus accomplished our purpose: on the basis of the axioms we can
introduce a part of Cantor’s set theory, which is indispensable in mathematics, and at the
same time we exclude the known contradictions of Cantor’s theory.

If we replace the word “‘set™ in Axioms | through 5 by the words “finite set,” we have
consistent statements. As we want to introduce the concept of “set” with these axioms,
we must accept any interpretation consistent with them. Hence, there is a need for an
axiom of infinity. :

Definition. If x is a set, we define x™ = x U {x}, and call it the successor of x.

6. Axiom of Infinity. There exists a set containing & and containing the successor
of each of its elements. ([18], p. 44.)
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This is the sort of axiom needed to introduce the integers. The next axiom, which
has been a point of controversy in the history of set theory, asserts that frc;m any
collection of sets, we can “pick” out one representative from each set in the collection
This is stated more precisely in the next axiom. ‘

7. Axiom of Choeice. If A is a collection of non-empty sets, then there exists a choice
set C, such that x n C contains a single element for uny x in A. ([18], p. 59.)

We' will use the concept of “ordered pair (a,b) of elements a, b”’; an ordered pair
contains a first element (coordinate) a and a second element (coordinate) b; in case
a = b these coordinates are equal. The concept of ordered pair could be reduced to
tl'le concept of set by defining (a,b) = {{a},{a,b}} (see [18], pp. 22-25); we will not
give details of this here. '

If A and B are given sets we can form the set of all ordered paifs (a,b); this set is
denoted 4 x B. By definition a map /: 4 ~ Bisa subsetof 4 x B such that: (1) given
ae A there is a b e B such that (a,b) e f; (2) if {a,b,) € [ and (a,b,) € f then b, = b,.
Note: Instead of (a,b) e [ we write b = Sf{@). You may then proceed to define thle
foll'owi.ng terms, notations, and concepts in connection with functions: injection
s.urjectlon, bijection, restriction, extension, fIX)if X < A4, f~YY)if Y < B, composi-’
tion of maps. If B < R, f is usually called a real-valued function.

8. Axiom of Substitution. If S(a,b) is a sentence such that Jor each a in a set A the
set {b|S(a,b)} can be formed, then there exists a Junction F with domain A such that
F(a) = {b| S(a,b)} for each a in A. ([18], p. 75.)

!(emark. By definition, a function F has a range, hence the axiom requires the
existence of a set Bsuch that F < 4 x B.

We can easily remember these axioms, if we summarize them in suggestive form as
follows: The axiom of extension gives a criterion for the equality of two sets. The axioms
of specilication, pairing, unions, and powers allow us to specify subsets, form pairs
anq finite sets in general, intersections and unions, and the collection of z’xll subsets oI"
a given set (called the power set of the given set), We postulate the existence of infinite
sets. The axiom of choice insures that we can choose a single element from each (non-
empty) set of a collection of sets and form a set with the chosen elements. The axiom
of substitution shows that we can substitute for each element of a given set some set’
depending on this element.

’If we give completely detailed proofs in mathematics, we have to go back to these
axioms, and first principles of logic. In actual practice we mainly use the set theoretical
operations of union, intersection, complement, difference, power set, and choice set
(the latter usually implicitly).




Appendix B

Miscellaneous
Problems

1. Find a set A < R?, such that )
int(cl(4)) # int(4) .

2. For two sets 4, B « R", define the distance between them by
d(A,B) = inf{d(x.y) | xe 4, y € B}.

(a) Find two closed sets such that 4 n B = ¢ and yet d(4,8) = 0. 4

(b) For A compact and x ¢ 4, show that d(4,x) = d{y,x) > 0 for some y e 4.
[Hint: Use Theorem 5, Chapter 5.] )

(c) For any set A = R" show that cl(4) = {x e R"| d(x,4) = 0}.

3. Let A — R" Show that 4 is compact iff every continuous map f: A — Ris bounded
above and assumes its maximum ut some point of 4.

4. Let x, be a sequence in ", such that there is a constant M with fix,| < M for all
N n
n. Then prove x, has a convergent subsequence.

5. Show that f: R — R has a continuous derivative iff the double limit

' o ) = )
limit —————
(x )= {xox0) X — Y
exists for every xg € R.

6. For continuous functions f, g: [a,b] — R, define
b
<fg> =f J(x)g(x) dx

Show that ¢, ) has all the properties of an inner product (Theorem 5(I), Chapter 1).
Hence deduce the inequality

b 2 b b
( J fx)g(x) dx> < U Sy dx)(f gx)* dX> .
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Show that Z:;‘ {x + 1)*/n® converges uniformly on [0,1]. Also show that
oy (¢ + 1)"/n! converges uniformly on the same interval.

e g

. Given that Z:;O x" = 1/(1 - x}for |x| < 1, differentiate both sides to obtain

20 1 v
an"" =(*> , forlxl < 1.
ne=y 1—-x

Can you justify this?
Let f(x) = 1/(1 + x)?, 50 f > 0. Now d(—~1/1 + x)/dx = f(x), so
f 7(x) dx = limit f F0) dx = limit| — 2 & _—1] -0.
— anw J_ a-+ oo 1+a 1 —a

What is wrong with this argument?

Lét"f: R? - R and, ¢ € R. What conditions on J will guarantee that f{x,y) = ¢
defines a smooth curve in the plane? (Say y = g{x) or x = b(y)). Interpret
geometrically.

Answer true or false.

(a) The rationals are an ordered field.

(b) A continuous function f: R — R is uniformly continuous.
() A closed bounded subset of a metric space is compact,
(d) The real numbers are connected.

(e) An open set is bounded.

(f) A compact set is closed.

{g) A differentiable function is continuous.

(h) [0,c0[ is closed.

(i) J0,1[ is compact.

o J1
@ {;

Give an example of a continuous function St R — R such that f(R)} is not closed.
If 4 = Ris a closed bounded interval, must f(A) be closed? '

ne N} is bounded.

At first, one thinks the intervals 10,1 and [0,1] are very similar. State at least
five significant differences between them in terms of topology and continuous
functions.

(a) Find an example of a closed set 4 = R" such that 4 = bd(A4).

(b) If A = bd(A), then show that A is closed.

(c) Prove: Il'int(4) = @&, then 4 = bd(4) iff A is closed.

(d) Prove: If 4 is closed and 4 = bd(4), then 4 = bd(A) and int(4) = .
(¢} Find a set A such that 4 = bd(4), but 4 # bd(4).

(a) Let f be integrable and suppose that for every partition P, b < U(f,P). Then
showb < [, /.

(b} Suppose U(f,P) < U(g,P) for every P. Then provethat [, f < [, g.

(©) Isit true that [, f < [, /27 Distinguish the cases Ifl = land|f} < 1.




458 MISCELLANEOUS PROBLEMS

16. Are the following statements true or false? (All sets have volume and all functions
are bounded and integrable.)
(a) If A o B, and A\B has measure zero, then -{ @2 = §B f
b) If {x | f(x) # g(x)} has measure zero, then [, /' = J4 4. .
((c; If_{f ;f((), g > 0,and [, f = [0, then f = g on A except possibly on a set
of measure zero.
(d) The same question as (c} except [ = ¢.

17. Let f: [a,b] — Rbeintegrable. (a) Prove F(x) = § f(t) dtis uniformly confinu.ous.
(b) Show that F has a derivative at x, if f is continuous at x,. (c) Show F is differ-
entiable except possibly on a set of measure zero.

" i i T is norm preserving (that is

18. (a) Let T: R* — [R” be a linear mapping. Prove that (th
@ I Tx|| = Jx}|) iff T preserves the inner product (Tx,Ty) = {x,y). [Hint: See

Exercise 12, Chapter 1.] . ‘ o
(b) If T preserves the norm (or inner product), then T'is an isomorphism.

19. Prove Cavalieri’s Principle: If 4, B < R? have volume, and every plane parallel
to the xy-plane intersects 4 and B in equal area, then 4 and B have the same

volume. [Hint: Make use of Fubini’s theorem.]
Remargc: In connection with this problem, see Gelbaum and Olmsted,

Counterexamples in Analysis, Example 6, Chapter 11. For applications see
McAloon-Tromba Calculus, Chapter 6.
20, Let f: 4 < R* = R. If [ is continuous at x, show that 1f1is as well.

21. Show that a set 4 = R" has volume iff for any & > 0 there exists a set V,c A
' and a set W, o A such that ¥, and W, have volume and v(Wc\_Va) = (W) —
o(V,} % &. Show that if the latter condition holds, the volume of 4 is

inf{o(W,) | ¢ > 0} = sup{u(V)|& > 0} .

§ i . S={xNeR xR|xeAd
. Let /1A < R" > R be integrable and f > 0. Let '
2 Esdof < y < f(x)}. Show that S = R"** has volume {4 /. Interpret geometrically.

23. Show that the volume of the figure obtained by rotating the area under the graph

of a non-negative function f: [a,b] — R is given by {4 zf (x)* dx. See Figure A-1.

z

FIGURE A-1 Volume of rotation.
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Use this formula to compute the volume of
{ey2)e R |1 < x < 2,9 + 2% < x*} .
24. Evaluate the following integrals.
(a) J4(1 — x? — y?)dx dy; A is the unit disc,
() faydxdy; A = {(x3)]0 < x < y,y < n/2sin x}.
© Ja/x* + yrdxdy; A = {e) | = 1) + y? < 1}.
(d) [4lzeldx dydz; A = {ey2) | X + p2 + 22 < 4x? + 2 > 1}.
(€ [aldxdydz; A= {(xp2)|x*+ y? + 22 > 12 < x* + yr< 1}
O JaG? + y)dxdy; 4 = {(x) | x* + y* < 1 — x}.
() [4xyzdxdydz; A = [ab] x [ed] x [e.f].
() J4(x* ~ y?sin®(x + y)dxdy; A = {Gy|n<x+y<2mand —z < x —
y < n}. [Hint: Use the substitution u = x — »o=1x+7y]

25. Let f:[a,b] — R be continuous and suppose f(a)f(b) < 0. Then show there is an
x & Ja,b[ such that f(x) = 0.

26. Let f: A = R" - R be continuous. Suppose B = A is such that B is bounded and
ci{B) = A. Then show there are points x,, Yo € cl(B), such that

Slxo) = inf{f(x) | xe B} and f(y,) = sup{f(x) | xe B} .

27. Let f:R" — R" be of class C* and suppose Jf(x) # 0 for all x. Let x, € R" and
B={xeR|flx)= Xo}. Show that B has no accumulation points,

28. 1 f1A < R" > B < R" (where A and B are open sets) is a one-to-one function
of class C* with Jf(x) # Oforeachx e 4, then prove f~': B -+ Aisalso ofclass C!.

29. Give an example of a function f of class C* which has derivative equal to zero at
a point x but is one-to-one in a neighborhood of x. Show that /™! cannot be
differentiable at f(x).

30. Let the sets 4 and B have volume. Then show 4 U B has volume. If 4 ~ B and
. A\B have volume as well, then prove
(a) o(A U B) = v(d) + v(B) — v(d N B);
(b) (A\B) = v(4) — v(B)if 4 = B.

31. Suppose f: 4 = R" -+ R is integrable and S = g except on a set of content zero.
Then show that g is integrable. Show that this is false if we replace “‘content zero”
by “measure zero.”

32. Show that the bounded integrable functions f:A4 - Rona bounded set A form |
a vector space. Also show that if f and g are bounded and integrable, so is fg. If /'
and g are integrable but unbounded, need fy be integrable?

33. Let f(x,y) = x — y* Is there a real valued function g(x) defined near x = 0 such

that f(x,g(x)) = 07 Show that g is not unique. How does this tie up with the
implicit function theorem?

34, Let f: 4 = R" » R™ be a function such that for any openset ¥V < 4, f(V)is open.
For a set B < R" such that cl(B)  f (A), show that

Jlnt(f~X(B)) < int(B) and bd(B) = f(bd(f~4(B)).
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35. Let f: 4 = R — R™ be a map. Show that f is continuous iff for every compact
set K < A, the restriction f | K: K — R" is continuous.

36. (a) Show thatif U, is a family of disjoint open sets in R", then the family is countable.
[Hint: Pick a point with rational coordinates in each set and use the fact

that the set of such points is countable.]
{b) If A < R"is open, show that the components of A are open and are countable.
(c) Prove that any open set in R is the countable union of intervals.

37. Let A = R" be closed. Show that 4 is compact iff for every & > 0 there is a finite
covering of 4 by sets with diameter <e.

38. Let f:[a,b] — [,8] be strictly increasing and onto. Then show that { and ™!
are continuous.
39. Prove the Lebesque Covering lemma: Let 4 = R" be a compact subset of R",

and let {V,} be an open cover of A. Then there exists an & > 0, such that if S is
any rectangle contained in 4 having sides less than g, then § is contained in some

open set of the cover.

40. Let /1 A  R" — R be a mapping. Let M < A4 be the set of (strict) local maxima
of f. Then show f(M) is finite or countable. Give examples.

41. Find and classify the critical points of the following functions.
@) fCxy) = y* + 2x%y,
(b) fex,y,2) = xy + xz + zy,
() f(x.y) = (sin x)(sin y).
42. Let S b an open connected set in R". Let 4 be a component of R\S. Then show
R"\A is connected.

43. Find a non-constant continuous function f: [0,1] — R which has its maximum
at x, € J0,1[ but f'(x,) does not exist.
44. A set B < A is said to be dense in 4 if cl(B) > A. Show that this is equivalent to

the condition that for every open set U with A n U # @, wehave Bn U 5 .
Is A dense in cl(4)? Show that R" has a countable dense subset.

45. (a) Let A = R" have volume. Then show int(4) and cl(4) have volume, and

w(A) = vint(4)) = v(cl(4)). :
{b) Prove that if A is a set and cl(4) has volume, then we cannot conclude that A

-has volume.
{c) Prove that if int 4 = &, we cannot conclude that A has content or is of

measure zero.
46. Letg: Ac R"—+ B < R be C' on the open set A and B = g(4). We say g is
volume preserving if for every set D « A with g{D)and D having volume, v(g(D)) =
(D). Suppose g is one-to-one and Jg(x) 5 0 at each x & 4. Then prove that g is
volume preserving iff Jg(x)| = 1 forall x € 4.
47. Show that if A has content zero, then cl(4) has content zero. Is this true for measure
zero?
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48. Lectl fiAcR - R™be of class C* with 4 an open set. Let Ay = Aandcl{dy) < 4
and suppose A4, is corl?pact. If 4, has content or measure zero, then prove that
S (Aoz does as well. [Hint: Consider the case where Jf(x) = 0O separately and use
Sard’s theorem (Exercise 5, Chapter 9).]

49, Let 4 <« R" agd let B denote the set of accumulation points of 4. Show that B is
a closed set. Find an example where B consists of a single point.

50. A set of 4 < R*is ca‘lled homeomorphic to B = R™ if there is a continuous ma
20) /i: :—»dB with a continuous inverse ¢ ™. We call @ a homeomorphism °
a) Find an example of a bijection ¢: 4 — B which i i ut i
homeomortim ¢: A — B which is continuous but is not a
(b) Let f: A = R"— R™ be continuous, with [ the
: { , the graph of /' (I" = {(x,/(x)) e
R" x R™| x e A}). Show that 4 and I are homeomorphic. (6

51. Let f, g: R* — R" be conti =
ki inuous and B = {xe 4 ff(x) = g(x)}. Show that Bisa

52. 1Let Jt 4 = R" - R be bounded and integrable and A have volume. Let B < A4
have volume. Then show that the restriction of [ to B is integrable.

53, Find a function f: R? 2 whi .
not onto. J ~* IR which has a Jacobian equal to 1 everywhere, but is

' 54. Let f be a monotone function; f: [a,b] — R, say [is non-decreasing: f(x) < f(y)

ifx < y.
(@) For any x € [a,b], show that the left and right limits

Set) = limit f(x + )

flx=) = limit f(x ~ B)
exist. "
{b) Show that / has at most a countable set of discontinuities. [Hint: Let P, be

the set of points where the jum is fini
. p of f exceeds 1/n. Show P i
the union of all the P,,n = 1,2,3, ... . / o Fuls finfteand consider

(c) Itisa famqus theorem of Lebesgue that for such /, the derivative of f exists
except‘ possibly foF points in a set of measure zero. Consider some examples
to verify the validity of the results. Look up a proof in, for example, Hewitt

and Stromberg, Real and Abstract Analysi i i
: s ysis, and write a2 b
essential features of the proof. # brie essay on the’

55. Prove that the transformation
Xy =1y
XZ = ul + u2

x3=ﬂ1+u2+u3

Xy = Uy + 4w,
leaves volumes unchanged.
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56. Let g: [0,1] - R be integrable. Prove that

! 1
J Ulg(t) dt] dx =j tg(t) dt .
0 x 0

57. Reverse the order of integration in
1 (8- Bx)L P16~ 1632~ 23)1/4
j J' j J{x,p2)d=dy dx.
0JO o

58. Let K be a compact set. If {#;} is a uniformly convergent sequence of c.ontmuous
real valued functions on K, prove {,} is equicontinuous. The converse is not true.
Give a counter example.

2
59. Let B be the open region bounded by the curves x=- Y x =2y —y z;nd
x = 2 — y* — 2y. Introducing the change of variables x = u — (u + ) /4,

y = (u + v)/2 evaluate &j‘ x dx dy.

60. Let S « R" have volume and ¢ > 0. Let R be the set of points
{(#x )0« x| (x40 . X € ST
Show o(R) = t"u(S). What ift < 07

61. Explain how the Gibbs’ phenomenon is possible and yet the Fourier series still
converges in the mean and pointwise.

62. {a) Let f(x) on [ ~n,r] have Fourier series

» a @ .
70 + n; [a, cos nx + b, sin nx] .

Define the reflection of f by g(x) = f(—x). Show that the Fourier series of g is

o
322 + Z [a, cos nx — b, sif nx] .
n=q

(b) Recall that the Fourier series of
0, -

T
x, 0 x

) ={

T o) (_ 1)n -1 1 . )
- ————cos nx — sinnx | .
4 +,,21( nn? n

Use (a) to show that the Fourier series of x| on [ —=,n] is

o (-1 -1 IR cos[(Zn — 1)x] '
27 2,,; =S ; w2 — 1)
(c) Use (b) to show that

n? 1 1 + 1
"'8— = 1 + o+ 72

32 5_2, o e
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{d) Use (b) to obtain the Fourier cosine series of x on [0,7] and conversely.

63. Using Table 10-5, find the Fourier series of each of the following functions:
(@) f(x) = a + bx, on [ ~n,x],
(b) f(x) = a — bx, sine series on [0,x],
(€) f/(x) = x* + sin x, on [0,2x].
To what values do the series converge at each point?

64. (a) Let ¥ be an inner product space and @q, ¢,, ... a complete orthonormal
basis. Suppose W is a subspace of V and Se W if and only if {f,p,> = 0.

Then prove @y, ¢,, . . . is a complete orthonormal system for W. Generalize.
(b) Apply (a) to the trigonometric system and

@) W= {f:[~ma] > R|[*, f(x)dx = 0},
(i) W= {/: [-n,x] » R, which are even},
(i) W= {f: [—=x] - R, which are odd}.

0. Let -1, -—l<x<0,

fx) =1 1, O<x<lI,
0, x=0,x=1,
and extend so f is periodic. Then for all x, show that

48 1 . [(2n — Dnx
f(x)-—;nz 2n__lsm< I )

=1

66. Il f: [a,b] — R is square integrable, then prove that [ is integrable, that is,
[e1/1* dx < co implies [21/1dx < co. [Hint: Use the Schwarz inequality.]

67. Let f: [—n,n] - Rbe

0, -n<x<0,
&) =
1, 0sx<=.
The Fourier series of f in exponential form is
L] elnx
_F;, 2min’

What kind of convergence do we have?

68. (a) Suppose that /: [~n,n] - R is sectionally continuous with jump disconti-
nuities. Then show that the sum of the Fourier series of [ at x depends only
on the values of fin any neighborhood of x. This property is called Riemann's
localization property. [Hint: Apply Theorem 9, Chapter 10.]

{b) The Fourier coefficients of f depend on f throughout [—=,x]. How do you
reconcile this with (a)? [Hint: Study the proof of Theorem 9, Chapter 10.]

69. Suppose we have f: [—n,n] x [~n,z] — R; consider its Fourier series

@

Z C"'melnxelmy

M= —o

(see Exercise 18, Chapter 10).
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{(a) Write out the Fourier series of f in trigonometric form.
(b) For y fixed, let g(x) = f(x,y). Show that the exponential Fourier coefficients

of g are
Cp = Z c"melmy .
m=—coo
{c) If f is square integrable, we know that its Fourier series converges to f in mean
(see Theorem 8, Chapter 10). The purpose here is to give a pointwise conver-
gence theorem. Hence, show that if f is of class C! and f(x,n) = f(x,—n),
f(x,y) = f(—n,), then prove the Fourier series of f converges to f pointwise.
[Hint: Use (b) and Theorem 9, Chapter 10.]

70. What types of convergence hold for the F' ourier series of the following functions?

-3, 0<x<mn,
(a) f(x)={
’ 2, -t <x<0,

x*+1, -1<x<0,

(b) f(x) =

—-mx + 1, 0<x<m,
© fx)=x*+3, -—-wn<x<m
(d) f(x) =sinx on [0,1],

) flix)=1 on [0,x] (both sine and cosine series).
71. Discuss the Gibbs’ phenomenon for the function
” -3, 0<x<m,
fx) =
2, - €x<0

72. For what values of p is Z:": , (sin nx)/n® the Fourier series of a square integrable
function (see Exertise 32, Chapter 10).

73. (a) Show that
1

sin(x/2)

< l x#0

n
Y cos kx
k=0

[Hint: See Exercise 6, Section 10.2.]
(b) Consider thé Fourier series for the step function

& cos nx
fo =y =
n=1
Show that for any & > O, this converges uniformly on [8,7]. [Hint: Use (a)
and the Dirichlet test.]
(c) Generalize (b) to any Fourier series

n

fix) = ib,, cos nx
n=g

with b, decreasing. Conclude that f must be continuous on ]0,r].

74.

75.

76.

77.

78.

79.

80.

81.

82.
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(d) Dedu_ce from (c) that if f has a discontinuity at xg and 0 < x4 < =, then the
Fourier coefficients of f are not decreasing. ’

A string on [0,7] is initially displaced at ¢ = 0 b i
, = 0 by f{x) = (x — })2)* — ?/4,
a formula for the displacement after time ¢. ( & /4 Find

(8) Ifa bar with insulated ends has temperature T = constant att = 0, then show
that T = constant for all t > 0. ,

{b) If a bar on [0,n] has temperature at t = 0 given by sin x, find the temperature
fort > 0. )

(c) Same as (b) except T = cos x at t = 0.

(a) Find a function ¢ on [0,x] x [0,x] such that V3@ =0 and ¢(x,0) = cos x
P0xm) = 0 = p(0,9) = (). ' ’ ’

(b) In (a) replace ¢(0,y) = 0 by (0, ) = 1 and find the function.

{c)-In what sense are the boundary values in (a) and (b) assumed?

Let vV bé an inner Jproduct space. Usuall i

. . Y, ISl = If]l does not imply f, —
(Exerc'xse .16, Chapter 3). However, show that || Julh = If} does imply f, £ f u{
}nea.rli if f, is the nth partial sum of the Fourier series with respect to an orthonormal
amily.

Let /1R — R be twice differentiable, then show that

(a) if F(x,p) = f(xp), then x dF/ox = y oF[dy,

(b) if F(x,y) = flax + by), then b OF[0x = a F/dy,

() if F(x,y) = f(x* + y?), then y 0F/dx = x dF/dy, and

(d) if F(x,y) = f(x + ¢y) + f(x — cp), then c? 8*F/dx? = 8%*F/oy*.
Let f: ]0,1[ — R be continuous and bounded. Prove that

is not closed. I'= {(xS(x) e R*| x € J0,1[}

Pro ’ i
ve Kronec.:ker s lem{na. if Z:‘; L %a/n converges, then (x; + -+ x,) /n — 0 as
n— oo (that is, x, — 0 in the Cesaro sense).

Let
sin(1> #0
e B X B
Sx) = X
0, x=0,

Prove f has an antiderivative F: R — R.

(8) Let I < R be an open interval and let J: I - R"be continuous. Assume there
are two maps g;, g,: I = R — R" such that

1 h?
n-2<f(x + h) = flx) — hgy(x) — 792(’0) -0

uniformly on every compact K < I as # — 0. Set A
. W) = flx + h) — fx
and A, A, f(x) = Ay f(x + k) + Af(x). Then prove that ®

AIJ Ahf

"~ ga(x)

P ash 0

3




83.

84,

85.

86.

87.
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uniformly on every compact K < I. Deduce g, is continuous and

Ah f (x)

,.}_—»gl(x) ash—0.
y
Is f of class C??
(b) Examine (a) for
x? sin E, x#0,
Six) = x
0, x =0,

Let M be a compact metric space and let ¢: M — M satisfy d(p(x), ¢(y)) < d(x,y)

for x,ye M, x # y. Prove ¢ has a unique fixed point. Give a counterexample if

M=R.
Let f: [a,b] — R bea bounded integrable function, f(x) > m > O forall x € [a,b].

Show that by .
z =0 -a?.
(7)) e

is i L dx>7, 0< f(x) <10 for all
Suppose f:[0,1] = R is integrable, J6 fx)ydx =17,
x & [0,1]. Define the set E = {x € [0,1]] f(x) > 1}, and assume E has volume.
Show that o(E) = 1/2.

Suppose f: [0,2n] — Ris continuous and f(0) = f(2m). Letsy = 2.7 _, {/i@u>0x

be the Nth partial sum of the Fourier series for f, and define
" ¥y ¥y
O(y) = J SGx)dx  Zy(y) ==j sy(x) dx .
0 0

State whether each of the following “Must Be True” (MBT) or “Could Be False™
(CBF). ] '
(a) [3 sy(x)e™ dx — [§ f(x)e’™ dxas N -+ oo.
(b) 3" x2sy(x) dx — [3 x*f(x) dx.
© lsy = S —0.
@) 55(2) - /@). ; o
(e) g,., is the Nth partial sum of the Fourier series for @.
0 Izy — @ —0.
(g)  Zy(2) = D(2).
(h) Ty — @ uniformly on [0,27].
Poi ‘moni i be continuous and periodic,
The Poisson kernel and harmonic functions. Let f(6) :
—: < 0 < n. (We can think of f(f) as a function defined on the c1rcumference'of
the unit circle in the plane) By Fejér's theorem, we know that the Fourier
series of f converges to f in the (C,1) sense. Deduce that

limit ) cyMe™ = £(6) .

Ling Sl Pepmis

RO

88.
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(Note the exponent Jk| for the negative indices). Define

oo
u(r,0) = Z ctieik

k=~

for 0 < r < 1. We regard u as a function in the interior of the unit disk in the
plane. In rectangular coordinates x, y we have

(-]
ulx,y) = co + ) (alx + i) + c_yfx — i) .
k=1
Prove that this series converges uniformly in any disk of radius <1.

Show that (by the general theory of power series) we can differentiate u term by
term any number of times. In this way prove that

*u + *u —0-
: ax? gyt

that is, u is a solution of Laplace’s equation—a so-called harmonic Junction. We
have already seen that u(r,0) — f(f) asr — 1 — » 50 we have solved the “Dirichlet

problem”: to find a harmonic function in the unit disk which has a given function
for its boundary values.

For0 < r < 1 prove that

1 T
W) = o— PO — t)dt
u(r,6) o f_n JOPL )
where m
PO -1t = Z pltlgik@~1)

The function P(y) = 2= e is called the Poisson kernel. Sum this series
explicitly to prove that
1 -2

Py)= ——
) 1+ +*— 2rcosy

Show that this kernel has the same crucial properties that the F&jér kernel has
(see p. 420), namely ‘

(a) 2= — periodicity,

1 T
(®) 7 _“Pr(t) dt =1,
(¢ P =0,
(d) For each fixed 6§ > 0, limit Js<pien PO dt = 0.
Deduce that u(r,0) discussed above converges to () uniformly asr — 1 —.
Let f: R" —» R" be a diffeomorphism of R" with positive Jacobian and with
Sf(0) = 0. Prove that there is a curve J 0 <t < 1 joining f continuously to the
identity where each f, is a diffeomorphism. (One says that J is isotopic to the
identity.) [Hint: Consider the map g,(x) = f(xt)/t. Show that this joins f to
Df(0). Now show that a non-singular matrix with positive determinant can be

joined to the identity through matrices of this class. You may consult outside texts
for this last part.]
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Exercises 89—96 are “examination style” based on Chapters 1-6, and 8.

89. (a) Define the least upper bound of a set S.
(b) Find sup{x e R| x* + x < 3}.
(c) What is meant by saying that R is complete?
(d) Let x, be a convergent sequence in R. Prove that x, is a Cauchy sequence.
{e) Define xo = o, and inductively x, = (X,-; + 1)/2 where 0 < a < 1. Prove
x, converges to 1 asn — oo,

90. (a) Define the phrase 4 < R"is open.”
(b) Define the phrase “4 < R" is compact.”
(c) State the Heine-Borel theorem.
(d) Find the closure of {(x,y) € R* | x* < y}. Prove your assertion,
(e) Give an example ofaset B « R? such that (i) int B = ¢ but (ii) int(cl(B)) # &.
(f) Let B = R"be a set satisfying (i), (i) of part (e). Prove that bd(B) = cl(B).
- 91. (a) Define the term “connected set.”

(b) Define the term “path-connected set.”
(c) State and prove a general version of the intermediate value theorem.

(d) Prove that {(x,y)e R?|x =0, y = 0} U {(x,y) e R* | x = y, x > 0} is con-

nected.
{e) If A and B are connected sets in R" and 4 n B # (&, prove that A U B is

connected.
92. (a) Define what is meant by “F: 4 = R" — R is continuous on 4.”

(b) Give an equivalent reformulation of your definition in (a).

{c) Explain the difference between continuity and uniform continuity; give
illustrative examples.

(d) Prove that the continuous image of a compact set is compact.

(e) Let A be compact, 4 = R" and f: A - R continuous. Prove f achieves its
maximum at some point of 4. ‘

93. (a) Define what it means for a sequence of functions f,: 4 = R" — R to converge

uniformly.

(b) Prove that Z
k=1

(sin kx)?
k32
X (ot I 2 . .
(©) Is f(x) = Z M a continuous function of x? Justify your answer.
k=1 R

P

converges uniformly for xe R .

g 1
(d) Let fi{x) = . + 1fork=1,2,3,...,xe]0,1[. Prove f, — 0 pointwise.
ex

(e} Does f, in part (d) converge uniformly?

94. (a) Let f,: [0,b] — R be continuous functions, differentiable on Ja,b[, with f,(x)
continuous. Suppose f, converges uniformly to f, f, converges uniformly to g.
State a theorem concerning differentiability of f.
(b) Prove your theorem in (a); clearly state any results used.
() Let fi{x) = sin kx/k?. Does your theorem work?
(d) State a result which would guarantee that the following operation would be

valid: o [b b o
> f g dx = | D gdx)dx.
k=1 Ja

a k=1
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. w xl!
(e) Definee* = Z PR Use (d) to prove[Z e’ dy = ¢ — 1.
n=0 0

95. Ez; ;;et ff ,:44 < R{}; - IRﬂg where A is open. Give a definition of the derivative of f.
or fi A = R » R, define the gradient of J and discuss th ical

4 meaning of {grad f(x),e>. e peometrieal

! () If Sst a surface f = constant, argue that grad f{x) is perpendicular to § if

§ X EJ.

: d) (l;ind the equation of the plane tangent to the surface x?

,1,1).
(e) Argue that the two surfaces x? + y* 4 z2
tangent at the point (1,1,1).

+ 3+t =3at

=3and x> + p° 4+ 22 = 3 are

96. Define the phrase *f: [a,b] = Ris Riemann integrable” by
(a)- defining upper and lower sums, and defining upper and lower integrals
(b) Is f{x) = sin x/(3? + 3x + 1) Riemann integrable on [0,3]? .
(c) State the fundamental theorem of calculus. o
(d) Let f: [a,b] - R be Riemann integrable. Define F(x) = Ffode 1t 1 s

cct)ntx;luous at xq, prove F'(xy) = f(x,). Does F' exist if J is not continuous
at xp7

Ex\ercises 97-101 are “examination style” based on Chapters 6-10.

97. (a) Let /2 R" - R™. Define what it means for S to be differentiable at x e R".

(b} g ‘it true that existence of the partial derivatives implies that f is differentiable?
iscuss. ’ ‘

E;)) {_,N;:t'f: éRz = R, f{x,y) = (xp,¢”,cos x). Compute Df(1,0).
rite down a formula for dh/dx if h(x,y) = ! i is i
terms of the chain rule, ) = S K2, ety this in

(e) Let /1R — R be differentiable. Assume f and A

have no common zeros.
Prove that [ has only finitely many zeros in [0,1].

98. (a) What does the inverse function theorem state i
; or functions f: R .
(b) Consider the equations nsf: R~ R?

{xa + yto =2,
Xz + y? 4+ y=23,

Show that they are solvable for yx), z(x)near x = 1,y = =

ety ey ) »¥y =1,z = 1. Compute

E(ci)) I]:et (/;‘ [[};),1] - [0,1] be continuous. Prove that o has a fixed point

et F:R" — R" be C' and have non-zero Jacobian at i
F) 5 opon. n at every point. Prove
(e) Let /2 R? - R be continuous. Show J is not one-to-one. [Hint: If [ was
one-to-one then the images of the x and y axes would both be intervals in R.]

99. (a) Define the term “4 < R has measure zero.”

(b) Gilve an example of a set in R which has measure zero but does not have
volunie.

i
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FIGURE A-2

(c) State general conditions under which a function f:[0,1] - R which is

ded, is Riemann integrable.

(d) g?aiz :n; criterion for Riemann integrability ‘and use it to prove that a con-
tinuous function f: [0,1] — R is Riemann m'tegrable. (You may use any
relevant theorems about continuous functions, if they are clea.rly statt;d.) .

{e) Briefly outline the steps that are used to prove that z; coletmuozus< leci(:gg
f: D - R is Riemann integrable, when D = {(Jf,)‘l) eR*|x* + y¥* < 1}
proofs are required here, just a brief essay describing the relevant facts.)

—xi- = R*|x* + y* < 1}
100. (a) Evaluate [, e~ dx dy where 4 {(?C,}’).E ~
Eb)) Evaluate jf,:, x dx dy where B is the region in the plane bounded by x = 0,

y=0andx + y=1, -
¢) State one version of Fubini’s theorem. ' s
Ed) Use (c) to write a formula for §, f(x,y) dx dy where 4 is as shown in Figure

A2 '
(e) Let ¢: R* - R? be C* and bijective with Jo # 0. Assume

j dx dy =J dx dy
4 (A

for all open discs 4. Prove Jo = 1.
101. (a) Let ¥ be an inner product space and ¢g, ¢y, @3, - - - on orthonormal set ;n If)
Write the Fourier series of f& V relative to ¢, What if the ¢; are complete?
(b) Explain how (a) is related to the formula
0 el
f=ﬂ +Za,,cosnx +Zb,,sinnx
. 2 n=1 n=1
where
ak=—l—J‘ S(x)cos kx dx k=20,1,2,...
T -

b,‘:ij‘w f(x)sin kx dx k=1,2,...
TJen

i i =Xx,~T<X<T.
c) Compute the Fourier series of f(x) X, —m _ ‘
éd)) What is the pointwise limit of the series in (c)? Does the series converge in

the mean? Discuss.
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{e) Assuming the completeness theorems in the text, prove that {sin nx|n =
1,2,.. .} is complete in #*([0,1],C) (square integrable functions on [0,x]).

Exercises 102-109 are “‘examination style” based on Chapters 1-7.

102. Let By(1) be the open unit ball in R centered around 0, and let f: By(1) » R be
continuous. Assume there exists a continuous map g: By(l) - L(R"R) (linear
maps from R" to R), such that for each pair of points x, y € By(1),

1
) = fix) = fo {loley + (1 = )y — %)} dr .

Show that fis C', and that Df = g.

103. Let D* = {xe R?| |x| < 1} (that is, D* is the closed unit ball, centered at 0, in
R?). For each integer ne N, let Ju: D* = R be continuous, and assume that
ID*-Risa continuous function such that the sequence {f,},. converges
uniformly to f. Is the set of functions { /i }nen equicontinuous and/or bounded?
Justify your answer.

104, Let f,g: R —» R be C? functions, and let #: R2 - R be a C2 function. Define
a: R? - Rbya(x,y) = h(x,f(x}) ~ g()). Compute the following partial derivatives
of  (in terms of the partial derivatives of h, f,and g):

do dor i
Zand & il
(@ ax " ay’ (@) dy dx’
%a 3w
(b) et (e) Fvs
3
{© 5x_63;’

105. Let M(n,R) be the vector space of n x n matrices with real-valued entries. Define
amap @: M(n,R) = M(n,R) by @(A) = A for each 4 e M(n,R). Show that ¢ is a
C® map. For each A, Be M(n,R), calculate (Do(A))B) (that is, calculate the
derivative of ¢ at the “point” 4 and in the direction determined by B).

106. For each pair of functions S,g: 1= R, define fvg: IR by (f v g)x) =
max{ f(x),g(x)}.
(2) If f and g are continuous, show that S v g is continuous.
(b) Defineamapi: ¢(I) x EU) — Dby (fig) = f v g foreachpair f, g € €(I).
Show that  is continuous. (%(!) denotes the space of all continuous real
valued functions on I = [0,1]).

107. Define f: R? - R by f(x,y) = &9 cos(xy) — 1. Does there exist a sufficiently
small positive number ¢ such that, for |x], |y} < &, the equation S, = 0 can
be solved for y uniquely and differentiably in terms of x? Or, rephrased: does
there exist ¢ > 0 and g: J—¢,6[ — R such that
(a) gisC',

(b) g(0) = 0,
(©) flxg(x) =0,

{d) for each x & ]~e.e[, the point {x.g(x)) is the only point in R? whose first
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o i .S ICSS than
Cooldinatc iS X Such lh'd.'. Ule abSOlute Value Of both Loordlnates I
w. , i = i Yy answer.
& hiCh Sol ves the Cquatlon f(x,y) 0. Justlf our T
3

€ b
108. Define a map a: @(I) - ¥(I) as follows: for each fe %(I), define (/) € B(I) by
. De :
= [z f(t) dt. ‘ .
(a(fs))lgz)w thjzft {c: @(I) — #(I) is a continuous linear map. s called compact
o Is o a compact linear map? Justify your answer. (A linear map
® ifs tolc1e closure of the image of the unit ball is compact).

= (e* si ¥ cos(x)). Does there exist an open
R? > R? by [(x,y) = (" sin(y) : oo open
- De?:llzle)o{hood U of 0 e R? such that f(U) is open in R?, jr; i\s{ar( [ restr
0 “ligC”® i ra .
U) is injective, and such that (f [ Uy~tis C™? Justify you

Appendix C

Suggestions for
Further Study

"The number of books on advanced calculus and introductor
Despite the large number of recent texts, s
favorites are:

[1] Carslaw, H. S., 1930. Theos
Dover.

[2] Hardy,
Press.

[3] Hobson, E. W., 1921. The The
of Fourier’s Series, Cambridge,

[4] Titchmarsh, E. C., 1937, The
Press,

ory of Functions of a Real Variable and the Theory
Eng: Cambridge Univ. Press,

ory of Fourier Integrals. London: Oxford Uniy.

[5] Whittaker, E. T. and Watson, G. N,,

1926. A4 Course of Modern Analysis. Cam-
bridge, Eng: Cambridge Univ. Press.

Of the more recent texts on rou
been popular, Of these, [6, 7, 8
tend to be a bit more abstract,

ghly the same level as this one, the following have
»9,12,13, 15, 16] are fairly classical, while [10, 11, 14]

[6] Apostol, T. M., 1957. Mathematical Analysis. Reading,

[7] Bartle, R. G., 1964. The Elements of Real Analysis. New

[8] Buck, R. C., 1965. Advanced Calculus. 2nd ed. New Yor

[9] Graves, L. M., 1956. Theo
McGraw-Hill,

[10] Lang, S., 1968, Analysis I, Reading,

[11] Loomis, L. H. and Sternberg, S
Addison-Wesley.

Mass: Addison-Wesley.
York: Wiley.

k: McGraw-Hill,

ry of Functions of Real Variables. 2nd ed. New York:

Mass: Addison-Wesley.
- 1968. Advanced Calculus. Reading, Mass:
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y analysis is overwhelming,
ome of the older books remain the best. Some

'y of Fourier’s Series and I ntegrals. 3rd. ed. New York:

G. H., 1947. Pure Mathematics. 9th ed. New York: Cambridge Univ,
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[12] Olmsted, J. M. A., 1961. Advanced Calculus. New York: Appleton-Century-
Crofts.

[13] —, 1956. Real Variables. New York: Appleton-Century-Crofts.

[14] Rosenlicht, M., 1968. Introduction to Analysis. Glenview, Ill: Scott, Foresman

and Co. ' o
[15] Rudin, W., 1964. Principles of Mathematical Analysis. 2nd. ed. New York:

McGraw-Hill., . '
[16] Widder, D. V., 1965. Advanced Calculus. 2nd. ed. Englewood, Cliffs, New Jersey:

Prentice-Hall.
For more information on the foundations of set theory, consult [17].

[17] Dieudonné, Jean, 1966. Foundations of Modern Analysis. New Jersey: Prentice-

Hall. )
In [17] there is not much material on logic and the axioms of set theory, but you

i i ich are of practical importance in the
will find concisely all the facts on set theory whic! : .
course. In addition, [17] develops thoroughly the abstract differential calculus (see our
Chapters 6, 7) in the context of Banach spaces.

The axioms in Appendix A of this text are taken verbatim from [18].
[18] Halmos, Paul R, 1960. Naive Set Theory. New York: D. Van Nostrand Co.

The following are some general references for more advanced work in real anz.ﬂysxs
including Lebesgue integration and abstract analysis in general Banach and Hilbert

spaces.

[19] Burkhill, J. C., 1951. The Lebesgue Integral. Cambridge, Eng: Cambridge Univ.
Press.

[20] Halmos, P. R., 1950. Measure Theory. New York: D. Van Nostra'nd. ‘

[21] Hewitt, E. and Stromberg, K., 1969. Real and Abstract Analysis. New York:
Springer Verlag. 3 - . .

[22] Gleason, A. M., 1966. Fundamentals of Abstract Analysis. Reading, Mass:
Addison-Wesley. .

[23] Lang, S., 1969. Analysis 11. Reading, Mass: Addlson-Wesley.

[24] Royden, H. L., 1963. Real‘Analysis. New York: Macmillan. ‘

[25] Rudin, W., 1966. Real and Complex Analysis. New Yorkf McGraw-Hill.

[26] —, 1973. Functional Analysis. New York: McGraw-Hill. ‘ York

[27] Simmons, G., 1963. Introduction to Topology and Modern Analysis. New York:
McGraw-Hill.

A handy book to use for finding counterexamples to theorems with missing hypotheses
is [28].
[28] Gelbaum, B. R. and Olmsted, J. M. H., 1964. Counterexamples in Analysis. San
Francisco: Holden Day.

Our text studied quite a bit about series. The classical references are [29, 30].
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(29] Hardy, G. H., 1949. Divergent Series. London: Oxford Univ. Press.
[30] Xnopp, K., 1951. Theory and Application of Infinite Series. New York: Hafner,

Those wishing to pursue distribution theory can consult the following, in addition
to [26].

[31] Gelfand, I. M. and Shilov, G. E., 1964. Generalized Functions. New York:
Academic Press.
[32] Schwartz, L., 1966. Théorie des distributions. Paris: Hermann.

[33] Zemanian, A., 1965. Distribution Theory and Transform Analysis. New York:
McGraw-Hill.

The following texts develop the theory of ordinary differential equations and integral
equations. Of these [34] and [35] are comprehensive treatises.

[34] Coddington, E. A. and Levinson, N., 1955. Theory of Ordinary Differential
Equations. New York: McGraw-Hill,

[35] Hartman, P., 1964. Ordinary Differential Equations. New York: Wiley.

[36] Hurewicz, W., 1958. Lectures on Ordinary Differential Equations. Cambridge,
Mass: M.I.T. Press.

[37] Roxin, E. O., 1972. Ordinary Differential Equations. Belmont, Cal: Wadsworth.

[38] Widom, H., 1969. Lectures on Integral Equations. New York: Van Nostrand
Mathematical Studies #17.

Advanced calculus can be elegantly applied to study problems in geometry and
vector analysis. Besides [10, 11, 23], consult
[39] Flemming, W., 1965. Functions of Several Variables. Reading, Mass: Addison-
Wesley.
[40] Spivak, M., 1965. Caleulus on Manifolds. New York: Benjamin.

We have already cited several texts which deal with Fourier series ['1, 3, 4, 21, 23, 25,
32, 33]. Others, somewhat more advanced, are: '

[41] Stein, M. and Weiss, G., 1971. Introduction to Fourier Analysis on Euclidean
Spaces. Princeton, New Jersey: Princeton Univ. Press.

[42] Widom, H., 1969. Lectures on Measures and I ntegration. New York: Van Nostrand
Mathematical Studies 3 20.

[43] Zygmund, Z., 1959. Trigonometric Series. 2nd. ed. Cambridge, Eng: Cambridge
Univ. Press.

Our chapter on Fourier series gave an introduction to partial differential equations.
Further information can be found in the following texts. The last two texts use distribu-
tion theory with [47] being advanced.

[44] Churchill, R. V., 1963. Fourier Series and Boundary Value Problems. 2nd ed.
New York: McGraw-Hill.

[45] Courant, R. and Hilbert, D., 1962. Methods of Mathematical Physics. (2 volumes),
New York: Wiley-Interscience.
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[46] Duff, G. F. D. and Naylor, D., 1966. Differential Equations of Applied Mathe-
matics. New York: Wiley.

[47] Sobolev, S. L., 1963. Applications of Functional Analysis in Mathematical Physics.
Providence, Rhode Island: American Mathematical Society Translations, Vol. 7.

A few references on quantum mechanics follow. [50] is a standard elementary text
while [48, 49] are more advanced and more mathematically oriented.

[48] Jauch, J. M., 1968. Foundations of Quantum Mechanics. Reading, Mass: Addison-
Wesley.

[49] Mackey, G. W., 1963. The Mathematical Foundations of Quantum Mechanics.
New York: Benjamin.

[50] Merzbacher, E., 1970. Quantum Mechanics. 2nd. ed. New York: Wiley.

There are a number of important topics in classical analysis which we did not cover.
For example, we could have studied the gamma function following [16] or [51].

[51] Artin, E., 1964. The Gamma Function. New York: Holt, Rinehart and Winston.

(This topic is often covered in courses in complex variables as well).
There are a large number of excellent texts which are not in English. For example:

[52] Bourbaki, N., 1961. Elements de Mathématique; Fonctions d’une variable réelle.
Paris: Hermann.

[53] Dieudonné, 1., 1971. Calcul Infinitésimal. Paris: Hermann.

A rigorous treatment of elementary analysis did not evolve rapidly or smoothly.
The creators of this area of mathematics traveled over cobblestones and encountered
numerous blind alleys before experiencing their brilliant insights. An appreciation of
this history is important to the student’s education in mathematics. A recommended
text is

[54] Kline, M., 1972. Mathematical Thought from Ancient to Modern Times. New
York: Oxford Univ. Press.

Appendix D

Answers to
Selected Exercises

Introduction

vPrerequisites: Sets and Functions

L (a) f(do) = {1}, /~1(Bg) = A.
(b f(Ao) = Ao’f—l(Bo) = B,.
(©) fldo) = {1,0,—1}, f~}(Bo) = {x|x < 0}.

2. (a) and (¢) are neither one-to-one nor onto, (b) one-to-one and onto.

3@ xef YC,u Cl e flx)eCyuC,,
=fx)eC;  orf(x)eC,,
<xef"NC) orxefTYCy),
= xef7HC)u fHCy,
hence f74(Cy U Cy) = f7YCy) U YCy). '
(d) yef(D;, n D,) implies that there exists x € Dy n D, such that y = f(x). Since
xe&D; and x & D,, then y € /(D)) and y e f(D,), hence ye f(D)) n f(D,).
4. (a) To verify Exercises 3(a) and (d) for the function in Exercise 1(c),

STHCuC) = {101} = {1} u {0,-1} = rYCcyu r-ycy)
verifying 3(a), and

S0 Dy) = [({1}) = {1} = {L,~1} n {1} = f(D,) A £(Dy)

verifying

3

Dy Dy e SD) n f(Dy).
6. Define f: J0,1[ » R by
% — & i 1
f(x)={( 2%, fo<x<i,
=9 -x%, fi<x<l.
Verify that this is a bijection.

477
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8. Define ¢: {. . ,~2,—1,0,1,2,3,...} = {1,2,3,. . .} by

2n, ifn>0,

o(n) = 1, ifn=0,

-2n+1, ifn<0.

Verify that this is a bijection.

Let A4; = {a;;,a;3,. - .}, and define f: U A N,ayei + (k — 1)(k — 2)/2 where

k = i + j. Then f maps U A, one-to-one and onto N.

10. To show |J & < |J %, note that x e | J « implies there exists 4 € & = & with
'xeA,henceer&?. B '
11. fo(goh)x) = flg o h(x)) = flglh(x))) = (f o g)i(x)) = (f o g) o h(x) B, let
12. (i) Assume f: A — B is a bijection. Define g: B -—>‘A as follows: fotr 3; ien;SS)
' = x where f(x) = y (x exists by onto-ness and x is unique by one- ‘_’. identity.
(gi(i;})A;sume there exists g: B — A such that fog = 1deni1ty 2'11{1;18% ; v{ f—is one-to:
To show fis onto, et y € Band let x = (). Then /09 (Verifythat g = £~ and
one, if f(x;) = f(xz) thenx; = g(f(x,)) = g(/(x2)) = x,. (Verily that g
s unique) ~1of = identity, and similarly
“ltogYoe =f_z°(g_x°g)°fzf. cf_.. 0 -1
> g /) og(f 2’ o(ggo"{)) = identity. Thus by Exercise 12, f"'og™! = (g0 /)7 and
g o f is a bijection.
Chapter 1

The Real Line and Euclidean n-Space

1.1 The Real Line R”

1.

Nojletx,=14+++5+ -+

. We have

Sup(S) = 1; § is not bounded below.

27 .
qn 3'3"'3<_9;.E=-§-zsopickN>_'

ST s3 n 2e

2+ 1+
.x,.=(\/nT$T——n)<\/n——

—+ 0asn— 0.

1

n

n2+1+n>_\/"—2_+—1+"
' 1

n—1

Sup(Q) is an upper bound of P, hence sup(Q) > sup(P).

.2 Eﬁclidean n-Space R”

()

e 0} and so {(—2,0,3)} spans the solution space of this

y =0
system of equations.

. 7. Leta = sup(4),b = sup(Bl,andz = x + ye 4 + B.Thenz =x + y g

ANSWERS TO SELECTED EXERCISES

Exercises for Chapter 1 (at end of chapter)

1. (a) sup(S) = ./5; inf(s) = -5
(b) Neither sup(S) nor inf(S) exist.
(c) sup(S) = 1; inf(S) = 0.
{d) sup(S) = 0; inf(S) = —1.
(e} sup(S) = 1/3; inf(S) = .3.
0 sup(S) = b; inf(S) = afor each case.

2. Let k be square free, that is, such that for no prime p does p? | k, (p? divides k);
suppose ./k = a/b for some integers a, b, and that a and b have no common
factors. Then k = a2/b? implies b2k = g2 implying k| a? (k divides a%). But k
square free implies k2 ] a®. (This is a consequence of the fact that any integer has a
unique prime factorization.) Then bk — a2 implies b2 = o2, implying k | b,
contradicting the assumption that a and b have no common factors.

3. (a) Suppose x > 0. Let g = x/2. Then x < x/2 implies 0 < x/2 < 0, a contra-
diction. Hence x = 0,

(b) Let x = min{e/2,1/2}.

5. By the completeness axiom, sup(S) e R exists. By Theorem 2, there exists a point
Xy, € § such that sup(S) — Xn, < & X, increasing implies sup(S) = x, > x,, for all
n > ny, hence for all n > g, 0 < sup(S) ~ x, < e. Thus limit X, = sup($).

a+y<
a+ b, hence a + b is an upper bound for 4 + B. If ¢ > 0, there exists a x & A,

y&€B such that g < x + &2, and b < y + &/2 implying (a -+ by < (x +y) +
&2 + §/2 = (x + y) + ¢ Thus by Theorem 2,a + b = sup(4 + B).

12. @) IIx + pI? = ¢x + px + V> =) 4+ Oy + Cyxd + 8

= IxI* + 2¢x,p)> + [y]?,
and similarly

e = y1% = %) = 2¢x,p) + [p)2.
Adding gives the result.

This proves that the sum of the squares
twice the sum of the squares of the sides.

O 1+ yI% x =yl = [x]2 + 2¢x,p) + 1712 L=y ?
= 2% + yI7]
= (xI* + 50122 - 4¢x,pd? < ()2 + (8

of the diagonals of a parallelogram is

(¢) Similar to (a),

14. (a) Use induction on n. The Schwarz inequality follows because

Z ;= xj}’l)2 =0
1<i<)gn

and thus

n 2 n " n n
(oo = (5)(8)-, 5 o= < (39) ).

i=1

479
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2 = and by (a), Yoxfx; + y)) + 2y + y) <
® &:}3‘,‘)’2(% z‘)s‘-:' ;32;;’2}, (-T- ?-Zy;jz)”z(zy(s(cj)+Zyj)%)1{2. Combining terrAns and
dividing by (3, (x; + y)*)"/? gives the result. -
15. Let d(x,x,) = r. Then by induction d(x,,X,+,) < /2", and so by the triangle
inequality
d(xmxn-!'k) < d(xmxn+1) + d(xn+hxn+2) S d(xn+k~11x:n+k)

r r . r
Sgrtmt it omes

k-1 1 r k=1 1
) = r‘;) nHi-1 - gn=1 = 4
r &1 r r
S o= r 2=5=-"
= — i 7§ 1
an 1(;)2 2

Thus, if we pick N large enough so that /2% "% < g,thenn > N implies d(x,,%,+,) <
&. Therefore, x, is Cauchy. ‘
17. Let L = {xe R|x is a lower bound for S}. Then mf(S.) >y for all ye L, hence
inf(S) > sup(L). Also inf(S) € L implies sup(L) > in{(S), giving th? equality.
18. (a) Ix, — x| = |x — x,] hence x, — x iff for all ¢ > 0 there exists a N such that
"> N implies |x, — x| = Ix — x,| < aiﬂ”.—x,, - —X. )
(b) .Zssume efcry increasing sequence which is bounded ab.ove converges (tbat is,
assume the completeness axiom). Let x, be a decreasing sequence whlch' is
bounded below; we must show that x, converges. {—x,} is an increasing
sequence which is bounded above, so —x, converges, say to a. Thus by (a), x,
converges to —a. The other direction proceeds the same wa3:'.f }
{c) Use Exercise 5(a) and the fact that sup{—x;,—x,,. . .} ‘= —inf{x,,%,,. . .}.
1
9. yy=y,=ys =13 o
22. (al) Given ¢ > 0, let N be such that n > N implies |x, — x| < ¢/la}. Then n > N
implies lax, — ax| = |a| - |x, — x| < |a| - &/la] = &, so.ax,, - ax. . .
23. x = 0 for all xe P so 0 is a lower bound for P; also, given & > 0 there is x sb
' wit/h x < 0 + ¢ namely an x, € P such that kx, < 1 where k > 1/e. Thus by
Exercise 4, 0 = inf(P). ' . _
24. No;let P = J0,1{ and @ =, [0,1], then sup(P) = sup(Q) = 1 and inf(P) = inf(Q) =
ObutP # Q.- .
27. Pick each b, such that b, = |b,| < &/2" (this is possible because a, — 0). Then

o @ o @
— T . — ~'1=3,
n;lb" <u; 2 ‘ n'—‘zl 2" ’
Xy + ok Xy Xn ZC_'I—-.3. X, = 32"“1(131'0\'3
32, X4y =—‘—2——"———+7—x.,+ 5 = 3¥wsoforanyn,x, = (3/2)

this by induction). Let M > 0. Now (3/2) = (1 + 1/2)' > 1 + n/2~,. 2(1;1/(;)53_/1&::
Archimedean principle there exists a N such that N > 2M — 1,50 xy = >

1 + (N — 1)/2 > M proving that x,, — co.

i
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log x

1 1
33. (a) By I'Hopital’s rule, limit = Iimit# = limit— = 0,

X0 X x~+oo x=00 X
(b) Use (a) and continuity of e* to show that x /< (= el=Moexy 1 for all real x.

Chapter 2
Topology of R”

2.1 Open Sets

1. Let x € RA\{(0,0)}. Since x 3 (0,0), d(x,(0,0)) = r > 0; then Dix,r) = R%\{(0,0)}, for
(0,0) € D(x,r) implies d(x,(0,0) < r = d(x,{0,0)), which is impossible. Hence RA{(0,00}
is open.

3. Let(xg,p,) € B. Then Xo € A.Hence thereexistsa é > Qsuch thatJxg ~ 6,x, + 8] <

A. Claim, D((xo,yo),6) = B. For (x,y)e D((x0,y0).0) implies d(x,xy) < d((x,y),
(x0,¥0)) < 6, hence x € 4.

4. Let A = | D(»,1). Then x & 4 <> there exists a y € B such that x e D(y,1) (that is,

yeB
d(x,y) < 1) for some y e B < Y& C. Cis open, being the union of open sets.

5. No; let 4 be any open subset of R and B = {0}. Then 4- B = {0} which is not
open. Note: If B is also open then 4 - B is open.

2.2 Interior of a Set

L int(S) = {(x,y) e R?* | xy > 1}.

3. Yes, x e int(4) implies there exists an open set U with ae U = 4 < B, hence
x € int(B).

4. Yes. If x & int{d) A int(B), then there exist open sets U, V with xe U < 4 and
xeVe=B NowxeUnVecdAdnB and UnVis open, so xeint{4d ~ B). If
x € int(4 N B), then there exists an openset Uwithxe U c AN B < 4 and B; so

x € int(A)  int(B).
2.3 Closed Sets
1. Yes.
2. No; (0,1) € RA\S and any neighborhood about (0,1) will contain points of S.
5.No.IfxeR\S = {xeR | x is rational} there is no neighborhood of x not containing

irrational points, hence R\S is not open, and § is not closed.

2.4 Accumulation Points

LA{xy)eR?*|y=0and0 < x < 1}.

2. Yes; since any open set N containing x contains points of 4 other than x, which
are also points of B,

3. (a) No accumulation points (a ball of radius 1/2 around any {m,n) contains only

(m,n)).




482 ANSWERS TO SELECTED EXERCISES

(b) All of R? (for any point in R? there is a point arbitrarily close with rational

coordinates).
(©) {(x,0)e R*|x e R} = the x-axis.
d) {(1/n,0) 1 n an integer, n # 0} (see (c) and (d) by graphing the sets.)
4. No (but yesifx ¢ 4 by Theorem 2, Chapter 1); for instanceif 4 = {1} then sup(d) = 1
but 1 is not an accumulation point of 4 (4 has no accumulation points).

2.5 Closure of a Set

1. cl(S) = {(x,) e R*|x = y*}.

2. {0} u {tn|n=123,..}

3. R%.

4, {a) c{ANA = (4 u {accumulation points of A}\A = (4\4) u {accumulation points
of ANA = {accumulation points of 4}\d = {accumulation points of 4}.

(b) Not necessarily, let 4 = ]0,1[. Then every point of 4 is an accumulation
point of A4 so ci{A\A = {0,1} misses all the accumulation points which are
points of 4.

5. If x & A4 then x e cl(4), If x ¢ A use Theorem 2, Chapter 1, to show x is an accumula-

tion point of 4.

2.6 Boundary of a Set

1. bd(4) = {0} U A.

2. (a) Suppose cl(A\A # &, otherwise the statement is vacuously true. Let x € cl(A)\4,
and N be a neighborhood of x. x e R\4 implies N n R\4 # &, and x an
accumulation point of A implies that there exists a y € A such that y € N. Hence

N n A # ¢, and by Theorem 6, x € bd(4).
(b) The converse is not true; let A = the rationals in [0,1]. Then bd(4) = [0,1] so

1/2 € bd(A), but 1/2 € 4 50 1/2 ¢ cl(A\A.
3. bd(d) = {(x,)) e R? | x = y}.
4, No,forif 4 = {x|xe[0,1] and x is rational} then int A = {2, bd(int 4) = & but,
bd(4) = [0,1].
5. Yes.

2.7 Sequences !

1. (0,0).
2. It'contains limits of all its sequences (since a subsequence of a convergent sequence
converges to the same limit as the whole sequence) so use Theorem 9(i).

3. Use Theorem 9(i). .
5. cl(8) = {xeR|x? < 2} = [-/2,/2].

2.8 Series in R and R”

1. Forall k, k L (sinn) & 1
S = (50 ,z—).

2
= n n=t I
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0
. s H Ul
Hence Zx,, converges iff Z(Sm )
n=1 n=1 nz

]

1
Z 5z converges, and since

L

o0
(sin n)"/n? con 3
"; )/ verges. Thus le,,
e

4.1fn > 4, then 27" ¢ (3

(sin n)"
n

Fr g < Z) » 50 by Theorems 13(i) and 13(ii)

< 1
and "; ;7 converge. By Theorem
_Isinmr 1

n

converges.

converges. Alternatively the ratio test may be used. (limit g +1 /na— | =2/3)
n = .

5. l:gluxot 1@y 1/a,) = limit(n + 1)/3 -

o .
00, hence Z a, does not converge.

a=0

Exercises for Chapter 2 (at end of chapter)

. (a) Let xe]1,2[ and 6 =
11,2[, s0 J1,2[ is open.
(b) Show R\[2,3] is open.

© N[-11/n[ = [~1,0] is closed.

u=1
{d) R"is open in R".
(e) Closed.

{f) Neither open nor closed. See Exercise 5 of Section 2.3

(8) Neither open nor closed.

(h) Let {x,}bea convergent sequence in § = {x g R [xf = 1}, say x, —» x
? (4

for any x, y e R, ||1x|| < "|y| [ <lx =

Btft for all n,|x,| = 1, hence Jlx

S is closed.
2. (a) int(d) = 4, cl(4) = [1,2], bd(4
(b) int(4) = 12,3[, cl(4) = f}, bd((A;

483

13(iii),

5— -t by the comparison test

};0(2" + (3" = n)

min{2 — xx = 1}, then Jx — 6% + o[ = D(x,8)

.Now
yll, hence x, — x implies |x, | — .

I=1s0xe S,‘proving by Theorem 9(i) that

= {1,2).
= {23).

(0) int(d) = T~ 1,0[, cl(A) = 4, bd(4) = {~1,0}.

d) ?nt(A) = 4,cl(d) = 4, bd(4) =
(e) int(d) = ¢, cl(d) = A4, bd(4) =

&.
A

() int(4) = &, cl(4) = [0,1], bd(d) = [o.1].

(@) int{4) = {(x,y) e R? [0<x<1}, o(d) = {(x,y) e R?

() eR?|x=00rx = 1).
(h) int(d) = &, cl(4) = 4, bd(4) =

5. Let x e int(4); then there exi
I ; sts an open set U with
there exists an ¢ > 0 such that D(x,e) L Come e and

& > 0 with D(x,6) = A, then since D(x

such that xe U < 4, hence x e int(A4
6. (a) x, = (—1)" has no limit,

(b) (1,0).

() (0,0).

(d) 0,0 (1/n" 1/n—0),

4.

,€) is open, there exists an openset U = D

).

[0<x <1}, bd4) =

U open implies
cUcAd, Conversely, if there exists an

(x,8)



484 ANSWERS TO SELECTED EXERCISES
7. It is required to show that U = cl(UNEI(U) n Sl(R"\U)). Since U is open, R\U is
closed, so cl(R\U) = R\U. Thus
AUNEU) A (RN\D)) = cl(U) n [R'\el(U)  clR\U)]
= dl(U) n [RAAU)] L {el(U) n [RARU)]}
= @ u {cl(U) n U}
=U
This is not true for every set in R"; for example let U = [0,1]. Then c{UNbd(U) =
[0,1\{0,1} = 0,1 # U.

8. S « R bounded above implies S has a supremum in R. Then sup(S) e cl(S) by
Exercise 5, Section 2.5 and S closed implies S = cl(S). .

10. (a) False (let 4 = rationals; then int(4) = @, cl(4) = R, int(cl{4)) = R).

(b) True {since 4 < cl{4)).

(c) False (let A = 70,1[; then cl(int 4) = cl{4) = [0,1] # A).

(d) False(let 4 = rationalsin [0,1]; then bd(4) = [0,1],cl(4) = [0,1], bd(cl(A4)) =
0,1}). ’

(e) ’{I‘rue} (4 open implies bd(4) = c{4) N (R\4) = R™A).

12. (a) Clearly int(int 4) < int(4). Conversely, let x € int(4), then therc is an open

set U with xe U 4. Let ¥V = U n int(4) # &, then V is an open set such
that x e V < int(4), so x € int(int 4).

(b) Let x € int(4) U int(B) so either x € int(4) or x & int(B). If x e int(4) then there
exists an open set U withxe U c A c AU Bsoxe int(4 v B). If x e int(B),
by the same afgument, x € int(4 v B).

{c) See solution to Exercise 4, Section 2.2.

16. {a,} is an increasing sequence (x < (\/i)" < (nx)/x <ln \/:2—, which is true for all
x > 0) and is bounded above by 2, for if @, < 2, then @, = (ﬁ)“” < (\/_2-)2 =2,
limit a, = 2, computed as in Exercise 43.

17. For all m, |x,, sin m| < lx,] so since Y. Ix, converges, 3" Ix,, sin m} converges by
the comparison test. Therefore ). x,, sin m converges absolutely and thus converges
by Theorem 12.

18. Let & = d{x,y), U = D(x,6/2), V = D(y,&/2).

21. If x, is Cauchy and U is a neighborhood of 0, find &€ > 0 such that D(0,e) = U.
Then find N such that k, [ = N implies ||x, — x| < &. Then k, ! > N implies
x, — x; € U. For the converse, given § > 0 choose U = D(0.e).

2. Let A « R* x R™ be open and let (x,y) € 4. Pick & > 0 such that D((x,y)e) < 4.
Lete = s/\/i_l; then D(x,e") x D(y,) = A. For the converse, let (x, y) € 4 and let

U < R"and ¥ = R™ be open sets with (x,y))e U x ¥V = A. Picke >0 such that
D(x,e) = U and D(y,) = V; then D({x,y),e) = U x V < A, so Ais open.

— 2
-1 = k2 — ai_,)

aﬁ_z._._.(z_'*__a"‘_‘j_z:__z____._z._
1+ a,-y 1+ 2a,.; + a5
where &, = 1/(1 + 2a,_; + a?.,) is a positive number less than 1. It follows
that a? — 2 is alternately positive and negative, and hence that q, is alternately
above and below \/—2— Further, since k, < 1, the even terms a,, are increasing

26.

Al
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gnld thg odd terms Ganyy AIE decreasing. The sequence is bounded above and
de ow by 2 and. 1 respf:ctlvely so the odd sequence and the even sequence (being
ecreasing and increasing respectively) have limits. By writing

_ 1 1
a,,—1+—1-:7"::,a,,+1=1+ i ,and setting o = 1 + 11 R
24—
2+

1 + Ay y

we find @ = /2. Thus the limit of both of the “every other”
and an easy argument shows therefore that limit a, = ﬁ
n—+w

27. inf(B) = /2.
28. (a) The integers.
(b) Any open interval,

111 1 . 111 1 1.1 1

(C) {_9_,":- o™l d=,1— — 1
2°3°4 " 712 :13’147° . ~,1n,- N .,25,25,. . .,2;,. T 5,. Y 30 %,. . }

(d) A point in R, the unit circle in R?, 3 i . . )
2. Yes. p e unit circle in R?, a line segment (including endpoints) in R2.

30. %ft U < R be open and bounded. If U = &, then U = ]1,1[. Now suppose
: # &,and x € U. U open implies there exists a ¥,zeRsuchthat[x,y[, Jz,x] c U
P snzz}: H_:I { y] [xy[ = U}and L = {z | J2,x] = U} # @ and are both bounded sc;
gl) = h, inf(L) = leR. Let I, = JLi[, and I = {I, | x e U}. Then U = Ur
an I,r\I,, = Q]f:lx # I, Smceerimplieserx cJLUc U 1. Now let
y e[; =; Jab[,soif x < y< b, there exists a z such that y e [x,2[ = U, hence
}I)e } xS Uand (J1 < U.Now let I, = Jab[, I, = Jed[ = U suc‘jh that
0 ;é .Q. c¢ U ot%lc;rwnse there exists an s > 0 such that Je—eyicU
‘con;radlctmg the definition of ¢. Thus cé¢lab[, hence ¢ < a Similarl’y a<gc
imphiesa = c,and b = d, hence I, = I.. This i in R"; for id
the ot {(og) | 5 1 7 s x = 1, This is not true in R"; for example consider
32. Immediate from Theorems 9 and 10,
33. Subtrzlict (s, +’ 8,—1) [rom both sides of 5,,.., + Sp-y 2 25, togets,  —§ >5 —
fo':—]li lc;t 0 = .?,,H —~ Sy, SO o, is increasing. Furthermore o, is boundgdj si,;lce
S”T;us';‘l ~ 8] syl + }——s,,l = |S,41] + I, < 2M where M is a bound for
t,,. N w CONVrges, o, — a. Supposea # 0,say« > 0. Since the o;’s are increasing
0 &, there exists a N such that n > N implies o, > /2. We thus have

1+a
sequenices is /2

Sn=30+(31"‘So)'*‘"'+(Sn"sn—~1)=so+zax
i=1

N " N
=so+Zo¢,+ o < S + - z
= 1=;r1 teTe l;a‘ + N)?-_)OO

as n — co, a contradiction’ since
assuming o < 0. Thus o0 = 0.

34, d(xu-!-p’xn) < d(xu+p’xn+p— l) + 4+ d(x:r+l!xlx)
ST ) d(xg,x,)
Now r < 1 implies 3" converges, hence for any ¢ > 0 there exists a M such that

5, is bounded. We get a similar contradiction
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> M implies " *7~1 4+ -+ -+ 1" < efd(xo,%,) implying d(xy s p¥n) < &, and so
n
{x,} is a Cauchy sequence.

38. Given ¢ > 0 choose n large enough so that k > n implies 1/k < &/2. Then k,I>n

i d thus
implies |x, = x| < (/K + (/) < €/2) + (e/2) = &, so x, is Cauchy an
Tor all x i implies x — y < sup(S) — inf(S),
S, sup(S) > x, —inf(§) > —y 1mp ' x
39. E or alslu x(ig)yf inf(S) lijs an upper bound for the se.t. Ife > Q, thc?re el)'usts( ;1 i, v:))e+
sszgethapt v + &2 > sup(4), and &2 — w > = inf(4) whur:l:h;n;gtles
g > sup(4) — inf(4), and hence sup(d) — inf(4) is the sup o .

i ; t show U contains some point of 4, other

s bSe'a "eﬁzbojoid g ,):1,1:1/': ::ilssts ansuchthat x ¢ A4,. 'I"hen by ".I‘heore;nAS,

;?:(;XJ; el:l((:;,‘),"; lis a"n accumulation poinj1 of A4,, so U contains a point y of A4,,

ax s0 y & 4;. .

v OCIAH;:;;C = O.C:Tl:;;n d{x,A) = 0 but there is no .poiflt z€ Azths

e o 6 ]Z As another example let A be the open unit disc in R and

e o fl‘:r Of(x ;4) = 0 but there is no z € 4 with d(x,z) = 0. If 4 is c;lose ,
ﬁojvéiég)'tge zelxslserti:)n is always true (see Exercise 17 at the end of Chapter 3).

3. x, is clearl increasing and we prove by induction that X, 18 bounded abov
« n

= w = < /34+3=
3ix \/5 < 3. Now assume x,.; < 3. Then x, 3 Xy 1
Xy = | -+ 4

. > limits on :

\/5 < 3. Thus x, has a limit; call it x. x satisfies x = /3 + x.(by tal;mf hmf:,“re ;

both sid;as of x, "= J3+x,.;)andsox=(+ /13)/2. Since all the x,’s @

o n - 2
positive the limit must be > 0,50 x = (1 + /13)/2.

"

hapter 3
go?xfpaét and Connected Sets

3.1 Compacf: Sets: the Heine-Borel and:

Bolzano-Weierstrass Theorems

1. (a) Not compact because it is not closed.
{b) Not compact because it is not b{)unged.
Not compact because it is not closed. .
2 Ei)) 1] is compact so any sequence in it has a convergent subsequence b);1 T;xe:em :
It i here exists a M such that for all
i d, then cl(4) is bounded. Supppse t 1 |
* HGA ;418 1(T:cc’lllmjeM Then (A < cl{D(0,M)) implies cl(4) = ci(D(0,M)). Since cl(4) is
xed, .
Iso closed, cl(A) is compact. . ”
?\IS(T let A = {0,1/2,2/3,3/4,4/5,. . ,1,2,3,4,5,6,. . .}.'I"hen 'A.has the sm%le;ccumula
> ti(i)x; point 1 anc’l Ais inﬁriite, but 4 is not compact since it is not bounded.

3.2 Nested Set Property

2. No; let Fy = J0,1/k[.
3. If F, = {x;| 1 > k}, then [} F, = &. None of the sets F), are compact.
: k=Kt F Ry
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3.3 Path-Connected Sets

1. (@) Not pdth-connected, since an
irrational.
(b) Path-connected.
{c} Path-connected,

{d) Not path-connected. If the point (1,0) were added, it would be.
3. No. For instance, let ¢: [04] » R®

y path between two rationals must contain an

be the curve which wraps around the unit
circle in the x-y plane twice in such a way that [0,1] gets sent to the first half of the

circle, [1,2] to the second half, [2,3] to the first half again, and [3,4] to the second
half again. Let ¢ = #([2,3]). Then ¢~ !(c) = [0.1] U [2,3] is not connected. (If o
is one-to-one, then ¢~ !(c) = [e.d] is connected.) )

3.4 Connected Sets

1. No. 1=1/2,1 1/2[ and J2,3 1/2[ are two o
union contains 4,

2. Yes, it is path-connected.

4. (a) The components are [0,1] and [2,3].

(b) The components are . . . . {=2}, {1}, {0}, {1}, {2},....
{c) Each rational is a component,

pen sets which are disjoint and whose

Exercises for Chapter 3 (at end of chapter)

L. (a} Connected, not compact.

(b} Connected and compact,
(c) Connected and compact.
{d) Neither connected nor compact,
() Compact, not connected if it contains more than 1 point.
(B n = 1, compact and not connected;
(g) Connected and compact,
(h) Compact, not necessarily connected.
(i) Neither compact nor connected.
() Compact, not necessarily connected.

3. ¢

n 2 2, compact and connected.

a) Ifa set has an accumulation point x, then we can find a sequence of points in the
set which converges to x. Hence if every infinite subset has an accumulation
point in 4, one sees that 4 satisfies the Bolzano-Weierstrass property (Theorem
1(iii)) and is thus compact (distinguish the cases of a repeating sequence and a
sequence with infinitely many distinct points). For the converse, suppose A4 is

compact. Given an infinite subset of 4 we may pick a sequence of distinct

points of 4. Since A4 is compact this sequence has a subsequence converging to

a point in 4, which must be an accumulation point of the subset.

(b) Let B be the bounded infinite set. Then B « D(0,M) for some M énd hence

B < cl(D(0,M)). Since cl(D(0,M)) is compact, every infinite subset of it has an
accumulation point by (a). Hence B has an accumulation point.
5.(@) Fy = {xeR*| x| < kjtk + Dy k=1t2,....
() Fp =Tk — 13,k + 1/3], k=-=3,-2-1,0,1,2,....
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6. By Theorem 2 there exists a x € [} F. Now suppose thereexistsa y € [} Fi, ¥ # X
Then d(x,y) # 0.By hypothesis there existsa N such that n > N implies diam(F,) <
d(x,y). Then, since x, y € Fy, d(x,y) < diam(F,) < d(x,y), a contradiction.

7. Forallk,cl(4,) = {XxXc+ 15 - .} U {x},hencex e cl{4,)forall Jsimpliesx € [} cl{4y)-
Now suppose y € [} cl(4,), y # x. There exists a N such that n > N implics
Ix, — x| < d(x,p). But ye4,, so y=x; j= N and thus y — x|} < d(x,y),
a contradiction.

9. (a) False; [0,1]is compact but R\[0,1] is not connected. For R", 4 = {xe R"| 1 <

x| < 2} is compact but R\A is not connected.
(b) False; same examples as in (a).
{c) False; Ja,b] is connected but neither open nor closed.
(d) False for n = 1, true for n > 2. (R"™\A is path connected for n > 2)

11. (a) Suppose B = U v V where B n U# @, BV, BnUnV= @&, and
U,Vopen. Then A= UuV and 4 A U NV = @, and it remains to show
UnAds @andV n A # & (for then we will have shown 4 is not connected,
a contradiction). B n U # O,soletxe B n U.1fx e A theexerciseis complete;
if x ¢ A, then since x € B < cl(4) we have x is an accumulation point of A. Thus
every neighborhood of x contains points of 4, so in particular U contains
points of 4,50 U n 4 # . Similarly ¥V n 4 # &. .

13. Let x, be a sequence of points with x, € F,. Then x, is clearly a Cauchy sequence
(since diam(F,) —» 0 and F,.q < F,) and thus converges, say 1o X, since M is
complete. For all n, x is a limit of a sequence of elements of F,, so since all F,’s
are closed, x € F, for ail n, that is, x & [\ F,. To see that x is the only element in
ﬂ F, use an argument similar to that of Exercise 6.

16, Ixell —= fixll] < lix, — x||. Hence given & > 0 there is an N such that k > N
implies [lx, — x| < & implies Ml = Uxl] < & so flxdl = fixll. The converse is
false. Let x, = (— 1) Let {x,} be a sequence in D = {xeR"| x| <1} with
x; ~ . We must show that lix] < 1, that is, that any convergent sequence in D
converges to a point in D. By the above, |lx,]| = fjx|l. Now {Ilx,1} is a sequence
in [0,1], which is closed, hence Ix| € [0,1], and |x|] < 1.

17. There is a sequence z, € 4 such that d(x,z,) — d(x,4) (for the proof, imitate Example
2 at the end of Chapter 1). There exists a N such that n > N implies d(x,z,) —
d(x,4) < 1, that is, d(x,z,) < 1 + d(x,4). Thus the sequence z, with the first N
terms chopped off lies in the closed ball of radius 1 + d(x,4) about x; this ball is
compact so it follows that z, has a convergent subsequence, say 7. Z, —* Z.
Since d(x,z,) is a subsequence of d(x,z,) and d(x,z,) — d(x,4) it follows that

d{x,z,) — d(x,A). We will prove d(x,z,) — d(x,z) and thus by uniqueness of limits
d(x,A) = d{x,z). By the triangle inequality we have |d(z,,,x) — d(z,x)| < d(z,z,) = 0
as m; — co. It remains to show that ze A: this is true because z € cl(4) and 4 is
closed.

18. The sets F, satisfy the hypotheses of Theorem 2, hence ( F, # &. Furthermore,
diam(F,) - 0 so by Exercise 6, [} F, has exactly one point x. x2 < 2and 2 € x%,
hence x? = 2.

21. {a) First note that (f and 4 are open and closed relative to A, since @ = @ n 4

and (7 is open and closed in R", and 4 = R" ~ 4 and R" is open and closed in
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;R;;,Flw :S[i'umeVA is gnot connected, that is A « U u V where U and V are
, NV=gZ, AnU # ,and 4 i
and closed relative to A4, since U ngA = U nnA Iiv;éeg UT ?ser;;énnhf [}‘?s" OPGS
[C]] 2 ﬁ: /(;Ri\V) n A where fR"\Vi§ clo.?ed nR'(UNAd=R\V)n 4 bec’:z:::;c
s Q— 5). F ‘:r the other direction, assume there is subset W of 4 such
bl [,/and;fs' 4, Ue;x:\d@W =VnA4=Un4with V open, U closed in
BANR L and—;l A enAcRyS,[RandSareopen,AmanS:
o ’Rn,‘ — , N S # ; thus A is not connected.

is path-connected and therefore connected so the result follows by (@)

23. :3\ QC ]—]oo,\/f[ U ]ﬁ,oo[; both intervals are open, disjoint, and so forth
< J—o0,1/2[ U J1/2,00[ (where, for exampl i .
3 3 €, |—co,
Carle < /s ple, ]~c0,/2[ is defined to be
25. The sequence sin(n), n = 1,2,..., i i i
,n=1,2,..., is contained in the co -
hence has a convergent subsequence sin(n,). mpsct set [=Li] and
26. ;::Sj;mi the nested set property. Let x, be a Cauchy sequence. To show it converges
! ed,‘l-d {f)ic,ﬂtpc.,‘+ 1 -} and take F, = cl(4,) in the nested set property. (For the,
pecial definition of completeness of R, that is, that every increasing sequence
which is boullq?d above converges, do the same thing.)
28. f;fe; xsi 5;1] a:xl:dtagsumeA x is not an accumulation point of 4;let U bea neighborhood
a N A = x. Let ¢ be such that D(x,2e) = U. Let W =
V = R"\cl(W). Then Vand Wareopen, A c VU W, AN VA W= ,@D/(lx;f)lz/lr:

& (since A contains points other th
] an x), and AN W i i
A is not connected, a contradiction. 7 2 (i contains ). Thus

29. A is both compact and connected.
30. (a) True; use Theorem 2, Chapter 2.

(b) False; let U, = ]~ 1/k,1/k[ in R. Then N . U = {0}

33 ”xn'i*p - JC,,” < uxn+p - xn+p—1" + ot ”xn-(-l - n“
1
< L
(n+p——1)z+(u+p—1)+' +nz+n
1 1 &
€ ——— 1
\(n+p—1)2+ +;1~2—<Z_;']—,5—>Oasn—>oo

because E (1/. )Convel (4] thllS X l’S chy onverges N()le “]e 3y bl
j=1 ] Bes; ” Cau h SO itC pid ; p oniem
alSC OII:S ll we are gi en jUSt “JC".,. ‘ . :

. - x < - i
-y f W < a, where le: | G Is any convergent

35. (a) "11{1:;“: 0,1 then a, ;—: 1 for all n so {a,} is constant. Now suppose a # 0, 1
a, — ay,_y = — a,.. +a,3- —Qy.y = it 2 s

monotone increasing. " ' ot = (7 @72 0 henee g, e

(b) L2et 0 < a < 1, then for all n, a, < 1. Suppose a,_, < 1, then 0 < a,_, —
c{zzﬂfbl and 1> 1 - (a,_, — a2,) = q, > 0. Hence if 0 < a < 1. then

,,}> li ounded. l\iow suppose a = 1 + h, h > 0. It can be shown then that

a, 21+ (n~ 1)h* — oo as n — o, hence a, is unbounded. Finally, ifa < 0

then la,l > 1 + (n — 1)a? i
> .(1 Ja* — oo as n - co. Therefore {a,,} is bounded only
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(c) From (a) and (b), if 0 < a < 1, then {4} is bounded and non-decreasing,
hence converges, and if a = 0, 1, then g, — 0.

36. Divide R" into n-dimensional cubes of side 1; thus we get a countable number of
cubes. There must be some cubes with an uncountable, hence infinite number of
points of A in it, otherwise 4 would have only a countable numiber of points. So
take an infinite sequence of distinct points a, in 4 N S. Since cl(S) is compact, a,
has a convergent subsequence, a,, — a, and 4 is an accumulation point of 4.

38. {a) C < [0,1] and so is bounded. Also, each F, is closed, being the union of a
finite number of closed sets; hence the Cantor set is closed, being the intersection
of the collection of closed sets {F,}. Thus C is compact.

(b) The endpoints of each interval of F, are elements of every F, and hence elements
of () F,. There are 2" intervals in F,, and there arc an infinite number of F,’s.

{c) Suppose Ja,b[ = Ca, 5 b, then C contains an interval of length (b — ). But”
the intervals in F, have length 1/3" and there exists a N such that 1/3¥ < b — a,
50 Ja,b[ & Fy; hence Ja,b[ & () F,. (Provided by Nancy Hildreth.)

40. Suppose ﬂ F, is not connected, then by Exercise 39 there exist open sets U, ¥ such

that F,cUuV, UnV=@, FnU+#g, NFenV# @ We claim
U u V contains some F,, which will be a contradiction since all the F,’s are con-
nected. Suppose U U V contains no F,; then for all k there exists a x, € F such
that x, ¢ U U V. Since x, € F, for all k and F, is compact there exists a convergent
subsequence x,, — x, and we have x ¢ U U Vsince U v V isopenand x, ¢ ULV
for all i. But since x is the limit of a sequence in each closed set F,, x € F, for all k
implies x € () Fy a contradiction since (\F. < Uu V. Thus U v V must contain
some F,, the desired contradiction. An example showing compactness is necessary;
let F, = {(x,) e R*| Iyl = 1} U {(x,») e R* | |x| > n}. Then {F,};%, is a nest of

n=1

closed connected sets but ()= F, = {(x,y) € R*||y| > 1} is not connected. K

Chapter 4
Continuous Mappings

4.1 Continuity

. e
1. (a) Let 6 = mm{l,1 T2 1x0[},
[x — xol Ix + xol < 8(Ix} + Ixol) < 88 + 2 Ixo}) since x| — |xgl < Ix — xol <
5,50 x| < & + Ixol. Finally |x? — x3 < 8(L + 2 Ixol) < &.
(b) Let (X,,3,) = {x0.y0); then (as proved in Chapter 1) x, = xo, 50 by Theorem 1(ii)
f-is continuous.
2. Let f: R* = R, (x,5) > x. Then 4 = f~*(U), and since f is continuous by Exercise
1(b), and U is open, A is open. !
3. A = f~Y([0,1]), and f is continuous so [0,1] closed implies 4 is closed.
4. (a) f(x) = 1, U = any open set;

then |x — x| < & implies |x* — x3 = ~

0 ifx<0
®) flx) =4x  fx>0,x<1,U=7]-12[
1 ifx=1.

Uy = [0,1], closed. /
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4.2 Images of Compact and Connected Sets
L. (a) Closed, not necessarily compact or connected,
(b) Open, not necessarily compact or connected.
{c) Connected, not necessarily compact, open or closed.
{d) Compact and connected; not necessarily open or closed.
3 'Iff(x) = x/(1 + x) ifx'> 0, x(1 —x)ifx<0,B=R then f(B) = ]-1I[. If B
is also bounded then B is compact, so f (B) is compact and f(B) is closed. ’
4, A = f(4 X B? where f: R* = R, f(x,y) = x. Thus 4 is connected if 4 x B is
since [ is continuous (see Exercise 1(b) of Section 4.1). ,
5. Yes. Let x e 4, and y € B. Then there existsa § > 0
, . such that D((x,),0) < 4 x B
Then {(z, - impli T o .
T ope,{](_ M]zelx — d,x + 8[} = D((x,y),0) implies Jx — ,x + 8[ < A, hence 4
4.3 Operations on Continuous Functions

1. (a) Everywhere.

(b} f is continuous on R\{1,— 1}.
(c) Everywhere,

2. Let P R? = R, (x,5) = x, 2% R*P= R, () ~y, fiR—R, xi— x. By earlier
exercxsesz, P, and p, are continuous, so by Theorem 3, fo Py, f o p, are continuous.
I"E;i ﬁ.ifP =+ R, lgx, y) t;(( f ; [)))(x, Y) (/e p2)(x,y), then by Theorem 4, k is continuous.

. a = a, by, — b,{(ay,by) — (a,b)and h(a,,b,) = (f o b):(fo =
Gy by Had) — arb i) = (f o p)laby) - (f Palagby) =

3. Use the fact that {.56} is closed, and sin x is continuous. A is not compact.
4. 1t is sufficient to show g(x) = |x|, and h(x) = \/; are continuous, for f = goh.

5. f = goh, where g(x) = \/;, h(x) = x* + 1, and g, h are continuous.

4.4 The Boundedness of Continuous Functions on
Compact Sets

L. Let f(x) = x/(1 + |x]), then f is bounded, sup f(R) = 1, inf f(R) = ~1, but f does "

not attain either value on R.
3. Mi boundedsince M < K and K is bounded. M is closed since M = S Y{sup fIK)}
J/ is contiuous and {sup f(K)} is closed. Hence M is compact. E
4. f o c is continuous zu:td [0,1] is compact. Less briefly, ¢ is continuous and [0,1] is
cqmpact, so ¢([0,1]) is compact. Since [ is continuous, J attains its maximum and
minimum on ¢([0,1]).

5. Let 4 = 10,00, then sup f(4) = 1, which f does not attai
oo, s . in on ]0,00[. (F 11
x e ]0,00[,x > Isin x|, and lim‘i)t sin x/x = 1). Jool. (For a

4.5 The Intermediate Value Theorem

1. Quadratic polynom%als. need not be negative anywhere so the method fails: the
method works for quintic polynomials, and in general, for all odd degree polynon;ials
2. Let {x,,f(x,)} be any convergent se i '
s (X quence In I, (x,, /() — (x,). T y =
then (x,y) e T, and we have shown T closed. S is continuous, henceyyz,, - fc imgl(i);)s,
f(xn) e f(x)s S0 (xmf(xn)) i (x,f(x)). Thus y = f(x)
5. f([0,1]) would have to be closed (since [0,1] is compact), and J0,1[ is not closed.
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4.6 Uniform Continuity

1 - — 1 1
1. L = y|< X zy;.Let(S:azs,then!x—yl<6implies -———l<
x Yy xy a x Yy
5 3
—&3=8.

2. See solution to Exercise 1 or use the fact that f”(x) is bounded.

4. No; let f(x) = g(x) = x.If f and g are bounded, yes; let M be such that IS < M
and jg(x)} < M for all x, and let ¢ > 0 be given. Pick d such that |x — y| < & implies
1) — fO) < &2M and |g(x) — gy < &/2M. Then |x — yl < & implies
®gx) — fOe < /&) lgkx) — gl + gl 1f&x) — SO < M(e/2M) +
M(e/2M) = &.

Exercises for Chapter 4 (at end of chapter)

1. (a) It is sufficient to show that f is continuous on Ja,co[, for every a > 0. Let
xg € Ja,0[, suppose xo = a4y Letd = inf{1,n,a%/(1 + 2x0)}. Then
1 x* — x2 2 2

I - ! di 1i —_ T Ty =
X X < 0 1mphes
0 p x2 x% 04

0 .
since xg, X > 4,

x2x%

and _{2_ _ —15 < Jx + xo '4|x - Xo < Ix — xol(lfl + lxot)<5(5 +;’ZIXOI)s
0 a a a

S+ 2 Ixg)

S bl L

a

{b) Given g.,> 0, let § = anything > 0.

{c) Yes; it is a composition of continuous functions.

2. (a) f continuous at every point of A implies f continuous at every point of B.
3. {a) No, let f(x) = sinx, k = {1}.

(b) fis continuous on all of R", so f is continuous on cl(B) which is compact. f(cl(B))

is compact and thus bounded; so since f(B) = f(cl(B)), f{(B) is also bounded.

6. (a) If ¢, converges then every subsequence convefges to the same limit, so one
direction is clear. For the other direction, suppose x, - ¢; we will find a sub-
sequence of x, which has no subsequence converging to c. Since x, ¢, there
exists a & > 0 such that for all N there exists a n > N with |x, — ¢| > &. So let
n, be such that n; > i and Ix,, — ¢} > & Then {x,,} is a subsequence which has
no subsequence converging to c.

{b) I f is continuous, then the graph of [ is closed (see solution to Exercise 2,
Section 4.5). For the other direction, suppose the graph of [ is closed and f is
bounded. Let x, — x; we want to show f(x,) — f(x). By (a) it suffices to show
that every subsequence of f(x,) has a further subsequence which converges
to f(x). Let f(x,) be a subsequence of f(x,); since the set of values of f is
bounded, f{x,,) has a convergent subsequence f(x,,) — y. Thus (3t 060, )) —
{x,); but then since the graph of f is closed, (x,y) must be in the graph, that
is y = f{x). Thus every subsequence of f(x,) has a further subsequence which
converges to f(x), so f(x,) — f(x), and therefore f is continuous. If f is
unbounded the theorem fails; for example let f(x) = 1/xif x # 0,0if x = 0.
Then the graph of f is closed but f is not continuous.
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7. We will show that (f~!)™*(C) is closed for every closed subset C of B. Let C be a
closec'l subset of B. Then C is bounded so C is compact. Hence | (C) is compact so
J(C) is closed. An example where the conclusion fails with B not compact: let
B = ]0,?7:], S B — R?, f(0) = (cos 0, sin 0). Then ™! is not continuous since
when 8 is small (cos 4,sin 8) is close to (cos 2m,sin 27) but § is not close to 2 (this
needs to be rhade precise). '

9. Let A = [ab], B = [byc]. Let ¥ be closed in R"; we show h~(V) is closed.
h“.l(V) =" V)N AUB) =G V)nAukh~(V)AB) = SiMug i), a
union of two closed sets and therefore closed. A generalization to 4, B = R": L,et
ftA—> R" and g: B— R"™ be continuous, and suppose =g on AN B. Let

h: A U B— R"bedefined by h(x) = {f(x)nx €4
is exactly the same.) g(x)ifxe B
12. (a) Givene > 0,let§ < &/L. Then ||x — impli -
P / Ix — yll < éimplies || f(x) — S < Llix — yll <
(b) Let f(x) = sin x2.
(©) T%le sum of two Lipschitz, functions f, g is Lipschitz, for if L,, L, are their
Lipschitz constants respectively, then || f(x) + g(x) — f(y) — gl < IIfx) —
SO + lgl) = gl < Lyllx =yl + Lyllx — pll = (Ly + L), |x — . The
product of two Lipschitz functions is not necessarily Lipschitz, for example, if
J{x) = x, then f(x) - f(x) = x? is not even uniformly continuous. ,
(d) The sum of two uniformly continuous functions is uniformly continuous, but
the product is not necessarily uniformly continuous. ’

; then h is continuous. (The proof

0 ify >x
14. {a) Let f(x,y) = { Y .
1 ifx>y

Tl en l.ﬂl ‘Hl X = and -m 'm b =
3 1 o h o f( ,y) 1 },l Il f( ,y) O,
15. We must ShOW

sup{fy(x) + =+ + fulx) | x € 4} < sup{fy(x) [x € A} + - + sup{fy(x)| xe 4} .

First x?ote that the right side equals sup{f,(x,) + * -+ + fu(xy) [ X1, . %y € A) (sce
Exercise 7, Chapter 1). Then since { f;(x) + -+ + fy(x) Ixed} o {filx) + -+
Su(xn) | %40 . %y € A), the result follows. And as an example where equality fails
let 4 = [0.1], /;: [0,1] = R be defined by ’

0 ifx<1/2 .
Jilx) = e '
1 ifx > 1/2
and f;: [0,1] — R be defined by
1 ifx<g 12
falx) = { . .
0 ifx>1/2

Thenm=1,m +my=1+1=2,
16. Use the estimate || /(x,5) = f0xo.po)l < 1/(5,3) = f00:) + 1/ (03) = f(qrpo)l-
18. Use the intermediate value theorem (Theorem 6).
19. Let 4 = R? be the graph of tan x, — /2 < x < nf2. Then A is closed since tan x
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21.

25.

26.

27.

28.
29.

is continuous (see Exercise 6 or Exercise 2, Section 4.5). If f(x,y) = x, then f(A4) =
1—=/2,7/2[, which is not closed.

(a) Yes, f'(x) is bounded.

(b) Yes, f"(x):is bounded.’

c) Yes, f'(x) is bounded. . ’

Ed)) No; v{e must find & > 0such that forall d > 0 there ex1stsa3f, y with |x - y<d
and |x sin x — ysin y| > . Lets = landtakeanyd > 0.Pickn > 1/msin(6/2).

Let x = nu + /2,y = nu. Then |x — y| = §/2 < §, but

[ + &/2)sin(nm + 8/2) — nmsin(nm)| = |(nm + 8/2)sin(nr + J/2)|
= |(nn + 6/2)sin(8/2)]
> |nm sin(/2)] .

(a) Directly: We show Li_r‘r})i.tF f(x) exists. We have |f'(x)] < M for all xe]0,1[.
Hence by the mean value theorem | f(x) — f(y)l/ix — yl < M forall x, ye]O,l.[,
so 1f{x) — fON < M |x — y} for all x,ye]0,1[. Suppose x, — 0+', that t113,
Xy > 0’ X, € ]071[' Then since ‘f(xn) - f(xm)l <M |xn - xml’ f(xn) 15 Cal;clz"
as given &, pick N such that n, m > N implies |x, — x,,| < &/M; ther} n,m ;
implies | f(x,) — f(x.)l < & Thus f(x,) converges, say to a. It remains to show
that for any other sequence y, — 0+ we also 1'1ave J ('y,,) — a. We know f(y,)
converges (as f(x,) did), say to b. Let ¢ > 0 b.e given. Pick N, such thatn > lN L
implies |x,| < &/6M, N, such that n = N, implies |y,| < .5/61\/'!, N, such that
n = N,implies|b — f(y,)| < &/3,and N such thz%tn > N, implies|f(x,) — al <
g/3. Let N = max{N,N;,N;,N}. Then n > N implies

” b= al <Ib— f(y)l + /(e — [ + 1/ (x) = al
<e/3+ Mlx, — yd + ¢/3
< ¢/3 + M(x,| + Iyl) + ¢/3
< ¢f3 + M(g/6M + 8/6M1 +e3=c¢.
Thus since & was arbitrary, we have b = a.

i : ’ by Example 2, Section 4.6, f is

b) Indirectly: We have |f'(x)] < M for all x, so : :
© uniformly continuous. Thus by Exercise 24(c), / has a unique contlx}uczrs
extension /™ to [0,1], so by definition of ’lti_x.r(x)if f(x) and definition of continuity

of f* at 0, limit f(x) exists and is equal to /*(0).

x=0+ i .
If f/ is continuous, then f'([a,b]) is compact, since [a,b] is compact. Thus f* is
bounded on [a,b], so f is uniformly continuous on [a,b].
81
64"
Yes. ' r |
We have |f(x) — f(y)l/lx — ¥l < Ix — )| for a!l x,ye.lR. We will show for a
Xg € IR‘f'(io) = limit(f(x) — f{xo))/(x — x,) exists and is equal to 0. Let ¢ > 0 be

X-Xg

given and § = &. Then |x — xo| < & implies |(f(x) — S eolf(x —‘J'CO) - 0] €
[x — xo < €; thus f'(x,) exists and equals 0, so by elementarygalculus /'is constant.

2. No, since the limit function f| (x) =
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30.. (a) Lete > Obegivenandd = g2 To show that lx — y| < & implies (\/; - \/;) <eg

for all x,y>0, or in other words |x? — Y <& implies |x — V<eg
for all x,y 2 0. Now, |x* ~ y?| < g2 implies fx — yl|x + y| < &* implies
Ix =yl Ix — y| < €2, (since for x, y > 0 we have [x — ¥l < |x + y|) implies
Ix — y| < e. Thus ﬁ is uniformly continuous on [0,00f.

k
X~ x* . . . .
(b) We know I is continuous on J0,1[; it remains to show continuity of f at
og x

k k
L XX L X=X

0 and 1; that is, that limit =0 and limit
=0 logx =1 logx

accomplished by use of I'Hopital’s rule. f is uniformly continuous, being
continuous on a compact set.

= 1. This is easily

33. First assume that 4 is relatively compact, that is, cl(A).is compact. By the Bolzano-

Weierstrass theorem every sequence in 4 < cl{4) has a subsequence which
converges to a point in ci(4) = R". For the converse, assume every sequence in 4
has a subsequence which converges to a point in R". To show cl(d) is compact,
we take a sequence y, in cl(4) and show it has a convergent subsequence. Let
x, € A be such that d(x,,y,) < 1/n. x, has a convergent subsequence, x,, — x & R",
Claim y, — x. For the proof, given ¢ > 0 pick N, such that m, > N, implies
d(x,,x) < €2, and pick N, > 2/e. Let N = max{N,N,}. Then n; > N implies
d(Yup%) < d(p%,) + d(xX) < 10y + /2 < 8/2 + /2 = ¢. Since {y.} is a se-
quence in the closed set cl(B), x e cl(B). Thus {y.} has a convergent subsequence,
and cl(B) is compact,

Chapter 5
Uniform Convergence

5.1 Pointwise and Uniform Convergence

L. Yes, forife > Oand N > 3/, thenn > N implies that for all x ¢ [0,11,"

x 1
Vle) = fO)l = |x? = = + 5 — x?
noon
I 2x 1 2 1 2 3
=l TS+ |=-xiSs5+-<-<s,
n n n n n n o on

since x| < 1, independently of x.

. is not continuous but cach
0 ifx=1

{x if x e [0,1[
fyis.

4. Yes, {f,} converges uniformly to f =0 on [0,.999] for |£,(x) — fX)| = %" <

1999 — 0 asn — oo, independently of x.

k nf2 oo ni2
5. flx) = Z -x—z converges uniformly to f(x), since [ fi(x) — f(x)] = Z x 5> <
5 n(nl) sk g 1)
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& 1 . &1, .
—1-— < Z ——0 independently of x since Z —; is a convergent series.

n=k+1 nml? G n ) n=o 1

Thus since the f;’s are continuous, f is.

5.2 The Weierstrass M-Test
1. (a) Converges pointwise, not uniformly. . .
(b) filx) = e~y - f(x) = 0 uniformly. To show uniformity, |fi{x) — f(x)| =
1Ll = 1/ne*’ < 1/n = 0, independently of x.

2. |x"/n?| € 1/n?® = M, and since 3. M, converges, ) =3k, x"/n? converges
uniformly, by the M-test. ‘
4. The series converges uniformly everywhere on R by the Weierstrass M-test, since
1 < 1
X2+ n ot
5. Use the Weierstrass M-test with M, = |a,].

=M,

5.3 Integration and Differentiation of Series

x fx>0

1. The limit function is f{x) = { which is not continuous, hence the
' 0 ifx=0

convergence is not uniform and Theorem 4 cannot be applied.

0
2. For x =0, 1, fy(x) = 0—0. For x < 1, Z n3x" converges by the ratio test, 50

o
x50 and f(x) = n’x"(1 — x) » 0. Thus f,—~ f =0 pointwise on [o,1].
However, the convergence is not uniform, since
”
3

i 3 1 1 _ " — 00
Jﬁ,(x)dx'*” (n+ 1 _n+2>~(n+ Din+2)

0

but . .
J‘f(x)dx =J Odx =0.
0 0

n .
3. f, — 0 uniformly since by locating the maximum of f, at rran L) < /n-

" , 1 < \/ﬁ — 0. Thus Theorem 4 is valid. The derivatives converge
n+1 n+1 n+1

to zero pointwise but not uniformly, so the hypotheses of Theorem 5 fail. Is the
conclusion valid?

5.4 The Space of Continuous Functions

1, x<1
1. No. Let f(x) =

%, x>1
x<1

H

B.Leteg > 0, and g(x) = .
Then fe B. Lete g(x) {l/x—E/Z, i1
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Then g ¢ B, since if x > 2/g, g(x) = 1/x — &/2 < ¢/2 — g2 =0.But||f—g] <e,
hence D(fig) & B, so B is not open. Also, int(B) = {f€"6,(R,R) | there exists a
& > 0 such that f > §}.

2. c(B) = {/ e G(R,R) | f(x) = O for all x e R}.

1 1 .
4. fix) = 7T T < . 1 -0 as n— co independently of x. Hence f, — 0 uni-

formly, that is, f, — 0 in €([0,1],R).
5. Pick N'such that n > N implies | f, — f|| < 1. Then

M = max{i/ill,. . N wllt + 111}

is a bound for {|| f,1}. It is not closed unless f is an element of it, that is, unless
S = [ for some n.

nx

5.5 The Arzela-Ascoli Theorém

1. £(0) = 0 implies f, bounded, for let M be such that {f(x)| < M for all n and for all
x € ]0,1[, then by the mean value theorem | f;(x) — £,(0)] = | S <SMix -0 =
Mx| < M. '

2. No, let f(x) = 1ifnis even, 2 if n is odd.

4. B is compact by the remark after Theorem 9, and I is continuous (sec Example 3).
Hence I is a continuous function on a compact set, so it assumes its maximum at a
point f, € B.

5.6 Fixed Points and Integral Equations
1. Jo < 1.

2. flx) = i X2k,
=0

c3r<d.

5.0 =1+ [53xf(y)dy. Let T(f)x) =1+ [53x/(y)dy and calculate T(0)x),
T2(0)(x).

5.7 The Stone-Weierstrass Theorem

1. By Example 2, the polynomials on [0,2x] are dense, so since sin x is continuous on
[0,27], there is a polynomial p with |p(x) — sin x| < ¢ for all xe [0,2x]. Let
& = 1/100. :

3. The answer to the second part is yes.

4. Use Theorem 12.

5. Yes, by Theorem 12.

5.8 The Dirichlet and Abel Tests

D xh ) 1
Z —e "* converges uniformly by the M-test with M,, = = where
! n!

n=1
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2. i bl converges uniformly, by Dirichlet’s test. The partial sums of ), f,(x) =
= " " . . .
til(——l)" are bounded by 1, and g,(x) =J—:l- are non-negative, decreasing with n

i

and =+ 0 uniforrhly since |g,(x)| = .

< l — 0 independently of x.
n

&, sin nx . , . i _ ism nx
4. Z-———e"’" converges uniformly by Abel’s test, since Jix) =

=1 n = n=4 . .n= 1
::onverges uniformly by Example 1, and ¢,(x) = ™™ are decreasing with n and
bounded by 1.

5.9 Power Series and Cesaro and Abel Summability

I.R=1LR=0.

1 .
2. Differentiate ¥ x* = o using Corollary 4.

(-
3,8, =1, 1,0,1,1,0,...s00, = 2/3.

2
4, Usel — x2 + x> = x5+ = ] x3 or else use Theorem 17.

Exercises for Chapter 5 (at end of chapter)

1. (a) Let ¢ > 0 be given. Pick K such that k > K implies m < & Then k> K

implies | fi(x) — S|l < eforallxe A, thatis, f, = f }Jnlformly on A.
(b) Lete > 0 be given. Since my — m, {m,} is Cauchy. So pick K such thatk,! = K

impltes |m, — m| < & Then k, [ 2 K implies [ fi{x) — [,(x)ﬂ < gforallxe 4,
so by Theorem 2 (the Cauchy Criterion) f, converges uniformly on 4.

sin x sin x

Tk k

limit function f = 0 is continuous. B

- f = O uniformly. Clearly the

2. (a) < ]l( — 0 independently of x, thus

-0 wﬁich is continuous. The convergence is not uniform since fi{L/k) =

®) kx + 1

1/2 for all k.

. x
—» 0 which is centinuous. The convergence is uniform since mrl

© kx + 1

——-1-— < -1— — 0 independently of x.
k+1x "k

-~ et i == i lue
'(x) = ———— 50 the maximum of f occurs at x = 1/\/’2 where its va
@ £ = T o '

is 1/2\/]_6; thus given ¢ > 0 pick K > 1/4¢*. Then k > K implies | fi(x)| < efor

all x so f; — O uniformly.

S X . .
(e) 1— 1uniformlyand had ——0 uniformly since

of x, so <1, coszx> ~» (1,0) uniformly. It remains to be verified that the com-
k
ponent functions converging uniformly implies that the function converges

1

< —— Oindependently
k*

€OoSs X
Ik
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uniformly. This can be done in a way similar to the proof for plain convergence
of components.

3. (a) Does not converge anywhere, since Z gi(x) = Z (— 1)* where K is the smallest
k=1 K=k
integer bigger than x, which does not converge.
(b) Converges uniformly on R by the M-test with M, = 1/k2. Thus the function

o
. gx) = Z g,{x) is continuous.
k=1
cos(nx)
Vo
1

< 7 —0 independently of x. Thus
n :

(¢) Converges uniformly by Dirichlet’s test with f,(x) = (— 1)", and g,(x) =

cos(nx)
NG
o0

the limit function g(x) = Z g,(x) is continuous.
k=1
(d) Converges to the continuous function g(x) = x/(1 — x) (see the geometric
series test, Chapter 2). However, the convergence is not uniform, since if it were,

where g, — 0 uniformly since

" x — xn+l nd 1
we would have ;gk(x) =T T = uniformly, that is, " 0
nt L

uniformly. But that would imply 7 is uniformly bounded, a contradiction

since near x = 1 the denominator goes to 0 and the numerator is bounded
below by 1/2, hence the quantity increases without bound.

7. Let Sy = {|f(x)| - lg(x)| | x € A} and S; = {|f(x)| - [g0)| | x,y € 4}. Then S, = S,
sosup(S,) < sup(S,). Clearly || fgll = sup(S,)and||f]| - llgll = sup(S;). Anexample
where equality holds is 4 = [0,1], f(x) = g(x) = x and an example where strict
inequality holds is 4 = [0,1], f(x) = x + 1, g(x) = 1/(x + 1). Then |f} = 2,
gl = LS gl = 2,but | fg]| = Lsince f-g = L.

8. No.

11. (a) No, completeness is necessary. For example let f(x) = x* on the non-
complete metric space ]0,1/3] (not complete since the Cauchy sequence
{1/3,1/4,. . .,1/n,. ..} does not converge). f is a contraction since |x2 — y?| =
x — yllx + y] € 2/3[x — y|. Yet there is no fixed point, since f(x) = x
implies x* = x implies x = 0 or 1, and 0, | are not in the metric space.

{b) No. Let X = [2,00[, f(x) = x + 1/x. If X is compact this cannot happen.
Consider g: X — R, g(x) = d(f{(x),x). g is continuous as f is continuous and’
the distance function is continuous. So since X is compact, g assumes its
minimum on X, say at x, € X. We claim x, is a fixed point of f. Assume x, is
not a fixed point; then d(f(xg).x0) > 0 so d(f(x¢).xe) > d{f(f(x0)).f(x0)), @
contradiction since g assumes its minimum at xg.

13. We know f, — f pointwise. Pick x, € Ja,b[ and pick N, such that k > N, implies
[ filxo) — f(xo)l < &/2. fy — f' uniformly, so there exists a N, such that k > N,
implies |fy(x) — f/'(x)| < &/2(b — a) for all x e Ja,b[. Applying the mean value
theorem to the function (f;, — f), (filx) — S(x)) — (Julxo) — S(xa))l € M |x — x|
Thus [fil(x) — f(x)] < (/2 — a)) [x — xq| + |filxe) = Sx) < &/2 + &/2 = &.
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14.

15.

18.

22.

23.

25.

26.

27.
28.

29.

Let § = (2, /"(X). S # (& because x, € S where x, is the fixed point of f. To
show x, is the only point in S, suppose x € S. Then for all n there exists a x, such
that x = f"(x,). Since X is compact, x, has a convergent subsequence x,, — y. We
have d(f"™(y),x) = d(f™(y),/"(x,,)) < A" d(y,x,) =0 (4 < 1). Thus f*(y)— x.
But f™(p) — x, (see the proof of the contraction mapping theorem). Thus x = x,
since limits are unique,
Use Theorem 11, Chapter 2. For a counterexample if ) g, is just convergent, let
gn = (—=1)"/n. Y. g, converges by Dirichlet’s test with fi(x) = (=1), gilx) = 1/k.
But the subseries of even terms Y, 1/2n = (1/2) 3. 1/n doesn’t converge.
1/k, ifx < 1k,
Let fi: [0,17 — [0,1] be fi{x) = { .
0, ifxz1/k.

Then f, ~ 0 uniformly, since for ¢ > 0 and K > 1/g, k > K implies

0, x = 1/k
i) = Ol = |filx)| = { S
1/k, 0<x<1fk

Let ¢ > 0 be given. For x € 4 let §, be as in the problem. Consider the open cover
{D(x,6,/2)| x€ A} and let {D(x,,6,/2)|n =1,...N} be a finite subcover. Let
x € A; then there exists a n such that d(x,x,) < 8,/2. Let § = min{8,/2,. . ..0x/2}.
Then d{x,y) < ¢ implies d(y,x,) < d(p.x) + d(x,x,) < 8,/2 + 6,/2 = 8, implies
d(f(x).f(y) < eforall fe B.

0, ifx<—1,
Then fo f = 1.
1, ifx> ~1.

No. Let f(x) = {

Use thedntermediate value theorem. (If f(0) < f(1) show f is increasing; if f(0) >
f(1) show f is decreasing.) Use the intermediate value theorem to show that if
x <y < zand f{x) < f(z) < f(y), then f is not one-to-one.

Let T: %[0,1] » €[0,1] be the function T(f)(x) = A(x) + [§ kix.»)f(y} dy. We
will show T is a’ contraction, and thus that T has a fixed point since ¥[0,1] is a

complete metric space. Let M = max Jk(x,p); we have M < 1. Then
(x,9)€(0,11%[0,1]

1 1
A(x) +L kx,y)f(y) dy — Alx) —L k(x,y)g(y) d)"

1T() — Tl =, Sup

&

= Su
XE[OPI]

1
L ke, L) — 9(»)] dy]

< su
= xE(OR]

H B 1
j M(f(y) — g() dyl <M s[gplj S (»gy)l dy
0 XE] ,l 0

= M | f — g|. Thus Tis a contraction with 1 = M .

Use the method of Exercise 25, Chapter 4 (or use the exercise itself, parts (b) or (c)).
Yes on [0,396], since f;(x) = x/n < 396/n — 0 independently of x. But f, is not
uniformly convergent on R. Let ¢ = 1, then for all n there exists a x such that
Ji{x) > 1, namely any x > n.

{a) f is uniformly continuous on [—1,1], s0if & > O, there exists a & such that for

30.

3L

33

36.
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allx,ye ]—-1,1[ « [~1,1],1f(x) — f(»)| < &, hence f is uniformly continuous
on ]-1,1[.

(b) Yes; it is uniformly continuous on the compact set [0,1], and its derivative is
bounded on [1,00[ so it is uniformly continuous there. Thus it is uniformly
continuous on [0,co[.

(c) Yes, for the derivative of f is bounded.

(d) Yes. f is continuous on [0,1] so it is uniformly continuous on [0,1], and so it
is uniformly continuous on ]0,1].

(e) No. As x— —1, In(1 + x3) decreases to —oo. Thus sin{In{{ -+ x*)).oscillates
between + 1 and —1 infinitely many times in any neighborhood of x = —1, s0
il_l}‘l_ltl () does not exist, and f is not continuous on [ —1,1].

See proof of Theorem 7, Chapter 4. The proof given applies to any f: K — B where

K is a compact metric space, and B is a metric space.

Let & > 0 be given. Pick N such that n > N implies la, — a} < /2. Pick M such
ay+a;+ 4+ ay— Na

thatn > M impliqs < % Then n > M implies

n
b, —a = |Gt G na] @ —-a+ +(@-a
i n
a, —a ay — a Ayyq — 4 a, — a
=.(._.1__2++(N )+(N+1 )++(_"_._)
n n n n
a, —a ay — a (/) a, —
Ja-a9, @-a] |@n-9 @-9
n n n n
a,+ - +ay— Na a - a a, —a
_a w @rsi=a) . @=a
n n n

< g2 + (ngf2)n =¢/2 =¢g/2 + ¢&.

(a) Yes. Given ¢ > 0, choose N such that n > N implies | f,(0)] < sand | f;(1)| < .
Then n > N implies for all xe[0,1], —¢ < £,(0) < fi{x) < £,{1) < &, since
each £, is increasing implies | /,(x)| < & for all x, so f, — 0 uniformly.

0, ifx<1,,

is not continuous so the
1, ifx=1,
convergence is not uniform, but all the f,’s are increasing.
x2y -
g = limit(0) = 0.

x=0

(b) No. Let f,(x) = x". The limit f(x} = {

(a) limit(lim

x=0 \y~0X

2
(b) limit(lim albd 2> = limit(0) = 0.
lin

y=0 x-0x* + y

L x%y : .
{c) limit vy - | does not exist.
)= (0,0\x* + y
Let {x,y) — (0,0) along the path (x,cx?) for some constant c. Then f(x,cx?) =
cx* c
*dext 142
which is a different value for each ¢. Thus the limit does not exist.

= , and the limit as (x,) — (0,0) along this path is 1: -
C




1 1 1 2, 1
38. 1 + 5 + I + 3 4= Z o converges by the geometric series test, 1 — = +
ne=1
1 1 2 (—1y=t . s .
373 + = Z . converges by Dirichlet’s test with f,(x) = (—1)", g.(x) =
n=1 1
1 1 1 &1 .
1/n,and 1 + 3 + 3 + 7 + o= Z ;does not converge, by the p-series test. (See
n=0
Chapter 2.)

39. Let ¢ > O; then since f is continuous on a compact set there exists a § > 0 such
that for all x, ye [0,1] | x — y| < & implies | f(x) — f(3)} < & Let N be such that
1/N < &, and divide [0,1] into intervals [j/n,(j + ), j=0,...,n Deline
g(x) = fGm), if x e [jin,j + 1)/n[, and g(1) = f(1). Then for any x € [0,1[, there
exists aj such that x & [j/n,(j + 1)/n[ implies x — j/n < & implies| Jx) — fUm)] =
1f(x) — gl < & and if x =1, flx) — g(x) = 0. Thus |/~ gll <& and g is
simple.

40. Let ¢ > 0 and f, € 9([0,1],R); since f, is continuous £o([0,1]) must be a closed
interval, say [a,b]. Since g is continuous on R, g is uniformly continuous on
[@b7] = [a — 1,b + 1], so there exists a § > 0 such that 6 < 1 and for all
x,y€[ab], Ix — y| < & implies |g(x) — () < ¢/2. Let fe%([0,1],R) be such
that ||f = foll < 8. Then for all xe[0,1], lg(/(x)) — g(fo(X)) < &2 since
1f(x) — folx)| < 6. Hence llgo S — go foll < and F is continuous.

Now suppose g is uniformly continuous, and & > 0. Then there exists
a & such that jx — y| < & implies lg(x) — g0y} < &/2, for all x,yeR. Let
i o€ BTOLLR), Ifs — full < 8, then for all x,ye [0,1], 1/,() — L] < 8
implies lg e f1(x) — g o f2(x)| < &2 implies figo fi — go f2ll < &, hence F is uni-
formly dontinuous.

41. By Example 2, Section 5.7, the polynomials are dense in ¢([ — 1000,1000],R). Since
f(x) = |x]* € G —1000,1000],R) then there exists a polynomial p such that
ip(x) — |x*] < 1/10forall xe [~ 1000,1000].

46. (a) We first show that the limit function / is uniformly continuous. Let ¢ > 0 be
given. Pick § > 0 such that [|x — yjf < implies || f,(x) — Sl < &/3 for all
n.Let |x — yll < 8; pick N such that || f(x) — fx(o)ll and [ /u(y) — SO < &/3.
Wehave || f(x) — SO < 17(x) — @l + 1 ) = M + 1) = SN <
&/3 + &/3 + /3 = & Thus ||x — y|| < o implies /) — fO)) < eso fis uni-
formly continuous. We fiow show the convergence is uniform. Lete > Obegiven.
Pick 8, > 0 such that ||x — yll < &; implies || f(x) — Syl < &/3 for all n;
and &, > 0 such that {|x — y| <, implies || f(x) ~ SV < &/3. Let 6 =
min{8,,8,}. For x € A pick N, such that n > N, implies || f,(x) — f(x)ll < ¢&/3.
Consider the open cover {D(x,5) | x € A} of A and let {Dx0) | n =12, ..M }
be a finite subcover. Let N = max{Ny,,. . ..V, }- Now let xe 4; let [lx — xl <
5. Then n > N implies | f,(x) — S0 < 1A0¥) — Sl + [k = Gl +
1) — fCol. The first term is <é/3 because [x — x;|| < < §,; the second
term is <g/3 because n > N 2 N,; and the third term is <eg/3 because
Ix — x;l <& < J,. Thus we have n = N implies | f(x) — f(x)I < & for all
x € A, so the convergence is uniform.

(b) f, - O pointwise (this is clear). But £, #+ 0 uniformly, since f(1/n) =
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1/n? .
W) + 0 = 1+ 0 (that is, for & > 1, no matter how big n is there is always

a:} x, namely X = 1/n, such that |f(x)| > ¢). We conclude from (a) that the
Ju's are not equicontinuous.

1/2, ifx <12, X, ifx < 1/2,
1/2, ifx>=1/2.

Then(f + g)}(x) = x + 12and(f — g)(x) = |x — 1/2]. Weget2 || /]I + 2 g% =
20124212 = 4but |f + gl? + [/ — g? = (327 + (1/2) = 10/4 ;JIZ“

48. Let  f(x) = { and g(x) = {

x, ifx>=1/2,

Chapter 6

Differentiable Mappings

6.1 Definition of the Derivative
1. Df(x) = sin x + xcosx

2. limit IL/x) + gx)] — [fxo) + glxo)] ~ [Df(x0) + Dglxo)Jx — xo)|

¥ X — Xl
= limit L&) = J0x0) = Dfxo)lx — xo)l
=¥ x — xolf

+ limit J9) = 96%0) + Dgxolx — xo)l _
50 x = 3ol -

0.

Thus by the definition of the derivative D(f + g) = Df + Dg.
4. First f(0) = 0, since | f(0)] < M-0% = 0. Now let ¢ > 0 be given and & = ¢/M.
I/x) = SO =0 /()|

Th 5 impli
en |lx] <& implies o = SMlx| < M e/M =g,
henge fimit L&) = SO = O 0
0 Ix — o] '

5. No. Let f(x) = x, then Df{(x) = 1 for all x.

6. For f(x) = \/; on [0,1], yes but for g(x) = /|x —-1,1]; i i
differentiable at 0. o \/ﬁ on L= bAli no, since g is not

6.2 Matrix Representation

(4))Jc3 x* 0
1. Df(x,y,z) = )

¢ 0 xe

2. Df(xy,2) = grad f(x,p,2) = (Qxe** t¥*+= 2ypxi+y2+al 9opattylishy

3. By Exercise 2, Section 6.1, D(L + g)(0) = DL(Q) + Dg(0), and by Exercise 4,
Section 6.1 Dg(0) = 0, hence Df(0) = DL(0) + 0 = L, by Example 2.

1
i
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6.3 Continuity of Differentiable Mappings;
Differentiable Paths

1. Weshow f'(0) = 0.Lets > 0begiven, and Jx — 0} = |x| < g,then

()

X

/&) f(0)$ _
x—0

2
< |= | = |x| < & fis continuous at 0 since it 15 differentiable there.

2. No, for f(x) = |x|, where M = 1 for all x, is not differentiable at x = 0.

3. No; let f(x) = —Ix|. Maximum of f occurs at x = 0 but f is not differentiable there.
4. fis continuous but not differentiable at x = 0.

5. ¢'(1) = (6,,3).

6.4 Conditions for Differentiability

1. Show that 8f/dx and 3f/dy are continuous at (0,0).

2. By computing limits of difference quotients we find 8f(0,0)/x = 8(0,0)/dy = 0.
Thus if /' were differentiable, Df(0,0) would have to be the constant function 0 (by
Theorem 2). But

i 1fGx,) — (0,0 — O _ Jimit e _ limit Jxyl
=0 [[(x,y) — (0,0}l =00 |G En-0.0.x% + ¥

does not exist, since if we go along the path y = Mx we get

A _ i limit — - M
= it ——— = e ——t I m——
+ y? 0 x2 4+ M2x? w0 1+ M? 1+ M*’

limit

=0 x2
"

which is different for every M, This gives an example of a function all of whose
directional derivatives exist at every point, but which itself is not differentiable.
3.z=0. ‘
4. flx,y) = x* + y* and Df(x,y) = (3x%,4y%), so Df(1,3) = (3,108). Thus the tangent

planeisz = 82 + (3,108)<

x — 1
) = —245 + 3x + 108y.
y -3

6.5 The Chain Rule or Composite Mapping Theorem

oh

“Px  Oudx = Ovox

an’

5;::

h

of ou - 8f @
fou S of v

oo A Yo
dudy advdy  Owdy

ol

of ou + 0f?_»_v_
dudz 0w 0z

where ?J—f, —al , and gai are evaluated at g(x,y,z) and denote the partials of [ with
w

ou dv

. . du Ou
respect to the 1st, 2nd, and 3rd variables of f respectively, and T and so forth
are evaluated at (x,p,z). 7
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oF oF
_— 1.2 1
3. o = 2f'x* + 3% so xa—y— = 2xyf"(x* + y*)  and
oF oF
- = oW ]
5 = 2+ so Yo = 2R+ 5.
4. 1L h(r,0,0) = f(r cos 0 sin ¢, sin 0 sin @, cos @) where /3 R® — R then
oh af . af . i)
il cos @sin g + 5;3m 0 sin ¢+ ~a—fcos¢
oh of ., . of
3= —-a-;rsm()smq) + é—;rcos()sinq;
oh af . : i)
-8.(; = arcos{)cosq) +5rsm0005rp —Ezlrsin(p
where ¢_9_f- of da-f i i
p 5, an Fon are evaluated at (r cos 8 sin @, sin 8 sin ¢,r cos @).
5. Since F(x,f{(x)) = 0 = constant, we havew = (). Thus
x
0= OF(x,f(x)) _ <6F 6x> + (aF I
b e— b —_— Y X
0x 0% |Ga sy 0% 0 lis,rm )>
_OF + (5F 7 ))
= — _— - fx
0% |tx, e 0 lie,seon

and the result follows.

6.6 Product Rule and Gradients

1. Let g(t) = x + th. Then Dg(t) = h and li Slxg + th)
_ dt
Df(g(0)) - Dg(0) = Df(xo) - h.
2. Let F(x,y,z) = x* — y* + xyz — 1, then grad F(x,y,2) = (2x + yz,~2y + xz,xy)

and grad F(1,0,1)/|grad F(1,0,1)] = (2,1,0)/ﬁ.
3. The equation is

_ d
= =gl

=

t=0

(grad F(l,O,l),(x,y,z)) = ((2,1,0),(x = lyz— 1) =2x+y~2=0.

4. In the direction of grad f(x,y) = (2xpe**,e*).

6. The surface z = f(xl,. . X,) in R™! may be written as the set of those points
(X150« X,,2) satisfying F(xy,. . .,x,,2) = 0 where F(x,,...x,.2) = f(x,,...%,) — z.
The tangent plane at (xg,2y) is {(x — X,z ~ 2zo),grad F(xy,2,)> = 0 which becomes
z = z4 + Df{xy) " (x — x,). The unit sphere x> + y* + z% = 1 in R? is a surface of

the form F(x,y,z) = ¢ which is not the graph of a function so the analysis of p. 165
does not apply.

6.7 Mean-Value Theorem

1. Let x,yeR,x < p. Then there exists a cex,y[ such that f(y) — f(x} =
f'(e)y — x),andsince f'(c) > 0,/(3) — f(x) = f(c)y — x) > O;hence f(y) >(j")(x).
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2. limitf (x) — f{xo)
[l xm2 X7 % limit<f & = 0) = timie &
gl . 90 = glxe) wo\g(x) — 0/  =-x0 g(x)

x-+xp X — Xg

x=cosO= 1.

. . sinx . . COs
3. (a) limit —— = limit
x—0 X x=0

S X
(®) limit &= = limit & = 0 = 1.
x=0 x x=0
5. This is an immediate consequence of Theorem 7(i). If 4 is not convex this is not
necessarily true. Let 4 = {xeR|x <0 or x> 1} and define f:4 — R by

1, 1
Jix) = { . Then f is differentiable on A4 with f'(x) = Ofor all x € 4, so

0, x<0
foralix e 4,]f'(x) < 1/10,butifx = —p = 2,{f(x) — f)l = 1 > (H/10)}x — y| =
4/10. ,

6.8 Taylor's Theorem and Higher Derivatives

2. Verify the conditions of Example 2.

3. fis not C* but is only differentiable. However Taylor’s theorem for r = 1 in the form
70 + k) = f(0) + f'(0) h + Ry(0,h) where Ry(0i)/k — 0 as h — 0 s valid.

4. The Taylor series representation is —x — (1/2)x* — (13 — o= 2 (1/k)xk,
Nowfor k> 1, 1f®0) = [(-k— Y =k—-1< 2%, so by Example 2, log(l —
X)=2o, —(1/k)xk for x € 1—1,1[. Finally, let 6 be such that 0 < § < 1. Then
for any x&[—9,6], la,) = [(—1)x"/nl < &", and since e, 8* converges, by the
Weierstrass M-test, ). (—1)x*/k converges uniformly on [ ~8.6].

6. f(hk) =1 + h + h2j2 — K*[2 + Ry((h,k),0), where Ry((h ) ,0)/[(h,l)* — 0 as

(h,k) — (0,0).

6.9 Maxima and Minima 5

2. Df(xy) = (2x + 2p,2x + 2y) = 0 iff x = —y. Now —D*(x,y) = ( ) >
andso A, = —2and A, = 0. Thus the test fails. However, f(x,y) = (x +p*+ 6,
so (0,0) is a minimum. .

. Local minimum.

4. Assume A is positive definite, and suppose Ax = Ax. Then {x,Ax) = (x,Ax) =
A{x,x} is positive and since {x,x) is positive, 4 is positive. Note: The converse, that
is, eigenvalues of 4 positive implies 4 positive definite, is also true and is not hard
to prove using the fact that a symmetric matrix can be diagonalized by an orthogonal

w

matrix.
Exercises for Chapter 6 (at end of chapter)

2. f; differentiable implies there exists a , > 0 such that if Jx — x| then

d
Six) = filxo) — -{J—z (xo)dx — xo)| < '-i— Ix — xg -

)
g

e e b
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Let§ = min{d |7 = 1,...,m}, then [x — x| < & implies

dj
1) = St = (5 G 22 2 o =

d
09— 50~ s — 9 s Do e~ 59

=

) = 7150 = L (e —

I !fl'"(x) = fulxe) — %)%(xﬂ)(x — %)

[ g
< | — _ — —
< (m +o m) be = xol = elx — xq] .

Hence f is differentiable at Xg-

3. If £ = 0 the exercise is complete, so suppose there exists a x
: s 3 o € [0,00[ such
{ Sgi Z; e(z) izz'n ft(;:O) > 0 (The argument if f(x,) < 0is similar.) By Ehe in[termedtigatt
s theorer >ere exists a x; € ]0,x,[ such that f(x 1) = f(x¢)/2. Since f(x) - 0,
o cxists g/ > .xto such that f(y) < f(x,)/2, so again by the intermediate value
ot g)(c;s )s fg)(c; i]xo(;y[ s(;mtln1 that f(x,) = f(xo)/2. Then if g(x) =
o & e, lthat g,(xz:‘ - f,’ (z;x:) ; gr.efore by Rolle’s theorem there exists
3. (a) (2x cos(x® + %) 3y cos(x? + p?)).
(b) (z cos x 0 sin x)

0 .
© 0 9 zcosy siny
@) @x 2p).
(€ (" ycos(xy)  xcos(xy)
—ysin(xy) —x sin(xy)|.
2y%x 2x2y

O O+ 22" (nx)x’** (In x)x**),
@ (vz xz xy).
) / (yInzze

2x 0 0

(x In z)z* (xy)z™—1

yz/cos*(xyz) xz/cos*(xyz) xpjcos*(xyz)

7. g:;) (3,6) is a local minimum and (1,2) is a saddle.
+nn 4+ 7w/2,1) fi ints;
) fn iy 7/2,1) for n even are saddle points; (+nn + n/2,1) for 1 odd are local '
d) ’fl“(he cri)tical points are the plane z = —x, —y. They are all local minima since
%,y,2) = 0 there and by inspection f(x,y,2) is always > 0. (T
. . . jodid = ’ h
the Hessian fail since the Hessian has A; =0) ’ (The theorems on
8. (a), (b), and (c) are immediate consequences of Theorem 12, the definition of H )
Xg' L4

?gg the conditions for positive and negative definiteness of a matrix given on page i
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12. Leth: R — Rt tx,forxe R,andg = fo h: R - R,s0g(t) = f(tx) = "f(x).
Then differentiating,

d i
Dyg(t) = Df(h,(1)) o Dh(t) = Df(ex)(x) = *‘E(Ef G = mt™ (%),

so, setting t = 1, Df(x)(x) = mf{x). Now let L: R™ - -+ + R™ — R™ be multi-
linear. Then L(tx) = L{txy,. . otX0) = tL{X1,8X5,. . otx) = =+ = EL0xy,. . %),
and therefore L is homogeneous of degree ¢.
13. () Let T: R? — R3, (x,5,2) = (h(x),g9(x,»),2), then F = fo T and DF(x,y,z) =
Df(T(x,y,2)) o DT(x,,2)

oh
— 0 0
ox
(af aof 6/)
=\oh 7 72 9% g
oh dg 0 ) |
1 0F  O0Z/(rix,y,an x dy
0 0 1(x.y.=)

of oh  of 99 3f % 6f>
T\oh ox g 0x’8g 0y’ 02/

is the general formula for DF(x,y,z).

0G(x,y,z) _ dh

dtx, o x,3.2)
(fe.0.2) - glx.3) [f(x,y,Z) P 1 gt ——5;——} :

®) dx dw
/ ogey) W)
ig%y—’z)==%(f(x,y,z)'g(xy))'[f(x,y,Z) s e T2
9G(x,y,z)  dh ) ) _6[ (x,9,2) ’
% = I (S0, 0,2) - gle,y)) - gx,y) 0

are the general formulas. For the specific f, g, and h in the problem we have

% = cos((s? + ) O + ) (@xy® o+ 3%y + ),
X

%G _ cos((x? +'yy® + ) - G + 5 + 4% + ),

dy

?TG = cos(x* + y2)(y* + xy) - (* + y’x).
4

15. S = f~1{0})is closed since f is continuous and § < [0,1] so it is bounded, hence
S is compact, If § is infinite, by the Bolzano-Weierstrass theorem, § has an ac-
cumulation point x4 € S, so f(xg) = 0. Choose {x,} = B such that x, —+ xo and

f(xn) - f(xo) = limit

Xy — Xg o X, — Xg

for all n, x, # xo. Then f'(xq) = I,Lmit = 0, contra-

dicting the hypothesis that there is no x € R such that f(x) = 0 = JS(x). Thus S is
finite.

16.

17.
18.

19.

20.

21.
22.

23.
25.

26.

28.
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Let g(x) = f{x) — Df(0)(x). Then since Df(0) = Df (x0)»
lgteo + 1) = glxolll = 1L/ (xo + B) = DFO)xo + k) — f(x0) + DFO)xo)l
= [1/xo + 1) — flx0) — DFOYW)| < & 1h]

for ||h]] < &(e), hence Dg(xg) = 0, and since x, was arbitrary, for all x € R", Dg(x) =
0 implies ¢ is a constant function and thus S =Df0) + ¢c,ceR™

Imitate the proof of Theorem 12.

By the intermediate value theorem f(x) = x® + bx - ¢ has at least one root since
fowasx—> wand f— —o0 asx — —00. Now suppose x; < x, and f{x,) =
S(x2) = 0, then there exists a x5 € Jx,,x,[ such that S'0e3) = 3x% + b = 0, that is,
3x2 = —b; but b > 0, a contradiction.

(@) flx,p) = x* + 2xy + y* + 0.

(©) fCe)) = 1+ x + y + 307 + 2xp + y%) + Ry(x,)).

(a) Clearly |0} =-0. Conversely, assume [[L|| = 0 Then for all ¢ > 0 there exists
a M <& with |Lx[] < M ||x]| for all xe R". Let xe R" and & > 0, so there
exists a M < &/||x|| such that JLx| < M ||x| < e. Since x and ¢ were arbitrary,
L(x)=0,and L = 0.

(b) Let aeR. fjaL]| = inf{M | Ja(Lx)]l € M ||x| for all x} = inf{M | |a] | Lx| <
M ||x| for all x} = |a] inf{M | |Lx|| < M |x|} = |al.|L].

(c) Clearly L)} > 0 for all L.

(d) IL, + Lo|l = inf{M | J(L, + L)x|l € M |x|| for all x}. We have 4 =
M| Iy + Lo)x] < M x| for all x} > {M | IL)] + 1L, < M Jx]
forall x} = {M | |L,] + | L, < M} = B.

This is a direct consequence of Theorem 12 and the discussion on page 185.

S:101[ - R, f(x) = x. For /1R~ R, no (see Exercises 2 of Section 4.5 and

Exercise 6 at the end of Chapter 4). In fact, any bounded continuous function

J:10,1[ — R will have a graph which is not closed. If 4 is closed then the graph of

J must be closed. If {(x,.f(x,)} is a convergent sequence in the graph G of f, then

léx_pit X, = xed, since 4 is closed. By the continuity of f, f(x,) — J{x), hence

(%uf(x,)) = (x,f(x)) € G. (Provided by Dave Nishball,)

0+ 0~ 1/2x* + 0 — 2/41x%,

Work through the proof of Theorem 4 and notice that continuity of §f/0x" is not
necessary.

@ f'(@) = limit limit
x, € Ja,if, by the mean value theorem, so f'(a) = }in})if Se) = L
(b) No, since limit f(x) = 1 # f(0).

fla+h-fla fla + k) - fla)
h - h

= limit [’(x,), for some,
h—0+

Lemma. Let f:[a,b] » R be differentiable on [a,b] and suppose f'(b) > 0 and
J'(a) < 0. Then there exists a x, € Ja,b[ such that f'(x,) = 0.

Proof: Since f'(a) < 0, f has a local maximum at a. Similarly f(b) > 0 implies f
has a local maximum at b. By the compactness of [ab], inf f({a,b]) = f(x,) for
some X, € [a,b]. Now by the above, x # a and Xo # b, hence x4 € Ja,b[, 50 f(x,)
is a local minimum of f on some open interval and hence S'(x4) = 0. Now suppose
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29.

30.

32.

34,

35.
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f(b) > ¢ > ['(a). To show there exists a x; € Ja,b[ with f'(xq) = c. Let g(x) =
f(x) — cx. Then g'(x) = f'(x}) — ¢ and f(b) > ¢c> S(a) implies f'(b) — ¢ =
g'(b) > 0 > f"(a) — ¢ = g'(a). Hence by the lemma there exists a xq & Ja,b[ such
that g'(xg) = 0. = f"(xo) — ¢, that is, f'(xo) = c. (Provided by Cindy Fleming.)

xe* ifx>0
(a) Geometric series test. f{x) =4 * — 1 ifx=0.
0

(b) No; use I'Hopital’s rule.

{c) No on [0,00[, yes on [d,00[ forall & > 0.

(d) No on [0,c0[, yes on ]0,00[ (apply the M-test on each interval [8,00[, 6 > 0).
f differentiable does imply f continuous. / may not assume its maximum, hence
T may be empty. f'(x) = 0 does not imply f has a maximum or minimum. f(x) a
maximum does not imply f(x) > O there (for example, f{x) = —3). T # Sn
{x] f(x) = 0}. ({x| f(x) > O} is closed and § is closed since f and f' are con-
tinuous.) T really is closed, since T = f ~Ya) (@ = sup(f)), {a} is closed and f is
continuous.

_ -0
af (0,0)=l'im(i)tf(h’0) JO0 _ 0 0 Oandif(xy) # 0,

ax h h=0
af x*y + dx?y? — y°
—{x,y) = A 9e2gZ 1 gt ?
. ox x* 4 Pyt 4y
50
li) 0
. T o) - Lo 5
27 00) = timit 0% fimit = = -1
dyox " | k=0 k T ko koK
Similarly,
of af x5 — 4x3y? — xy*
'a;(oao) = f): 'a';(xuy) =. x4 + 2x2yz + yq. L
and
aof of
= (h,0) — —(0,0
71 00) = limit "0~ imit 2 o 1 2
caxdy . =0 h T o B dy éx’

X, =12 + %, 5 ljx_pit X, = ﬁ — 1. (See solution to Exercise 26, Chapter' 2 for

similar methods.)

Suppose Xy, X3, x3 € Ja,b[ are such that x, < x; <x; and f{(x,) = f(x;) =
f(x3) = 0. Then there exists a x, € Jx;,x;[ and x5 € Joegxa[ with f'(xg) = f'(x5) =
0, by Rolle’s Theorem. Now apply Rolle’s Theorem to f* so that there exists a
c & Jxq.xs[ with f"(c) = 0.
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Chapter 7

The Inverse and Implicit Function Theorems
and Related Topics

7.1 Inverse Function Theorem

{. j0u
ax
dv
o

du
dy 2x -2
34
= =d4x? 4 4y? =0 | =
il y i (xy) = 00).
dy

3. This does not contradict Theorem 1 since fis not C! at x = 0.

5. | du
dx
dv
0x
ow
ox

so the

.du du
dy 0z
14+yz xz xy 1 00
dv Ov _ .
3y bz = y + X 0 =101 0 =1,
dw aw 2 0 L4 6z{pq 12 01
dy 9z 0.0

system is invertible in a neighborhood of (0,0,0).

7.2 Implicit Function Theorem

26F~2 1=0 iff
.ay-y-t- =0 iff y=—1/2.

4. |oF,

ou
oF,
du
oF,
du

or, or,

v ow 1 00

9F, OF,

= o
ar, or, o

v W |(0,0,0,0,0,~2)
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80 u, v, w can be expressed in terms of x, y, z, for (x,y,z) in some neighborhood of

(0,0,0).

7.3 Straightening-Out Theorem

l.x#0

and y # 0.

3. The theorem does not apply near (0,0) since Df(0,0) = (3x%,2y)0.0) = (0,0), but f can
be straightened out near (0,1)as Df(0,1) = (0,2) # 0.
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7.4 Further Consequences of the 6. From linear algebra since Jf(x) # 0 we have
Implicit Function Theorem

Dg(yo) = (Df (xo)) ™" = ;adj(Df (xo))

1. Yes, near (0,1). ‘; q Jf(xo)
o an
75 A e Tt o ot J )
V q ‘e a(x27x3) a(x21x3) a(xz:xa)
3. Clearly x = 0 is a solution; and since adj(Df(xo) = Hfafa) S 1.S5) _ A f1.12)
d (t2> T 0 0, t<0 O(xyx3)  O(xyxs)  O(xq,%3)
— =) =t2 = Jt*fdfort 2 0, xlf) =
“\7)=Y / Q=124 t>0 Affs)  Afifs) i)
is a solution. By Theorem 6, then, f(x,) = \/J—c cannot be Lipschitz on a neighbor- Hence Oxrxa)  Oxi¥a)  BX1%2) Jsw
hood of x = 0. . _
5. (a) The series e = Y. (t"/n!)4" is absolutely convergent; it can be differentiated Dygy(ye) = L af2f3)
” 191Ye) = 773

term by term; and (@/de)(e4x(0)) = A T2 o (2/n)A"x(0) = Acx(0). Jf(xo) Blxzr%3)’

: o - : th _ it—bAhd .
(b) Yes, it can be extended to oo by shifting the origin of time, e e e". The and so on, and since

various times are b, 2b, . . ., nb, .. ..
7.6 The Morse Lemma Afrufs) | Patalxo) Dy f3(x0)
1. Index = 1 0x3,%3) Dy f3(x0) D3 f3(%o)

3, x? — 2xy + y* = (x — )% (0,0) is a degenerate critical point.
5. (a) Use Theorem 7 and the fact that critical points are “preserved” by a change of
coordinates. You could also use Taylor’s theorem to prove this.

and so on, combining we get

" . T i1 D, folxg) Dy falxo)
7.7 Constrained Extrema and Lagrange Multipliers
Jf(xo)D1gd{y0) = |62 Dy folx0) Dafalxo) |-

1. (\/2/—3,—\/2%,@) is a maximum and (-\/2/_3,\/%,,/ —2/3) is 2 minimum, : Sus Dsfulxa) Dafulxo)

2. No extrema.

3. (£4/3,0). ) 10. (2) Jf(x,5) =%%_%gf£=%%_%<_%>
4. (9/./70,4//70) (max) and (—9./70,—4,/70) (min). ox dy dyéx Oxdx Oy oy
Exercises for Chapter 7 (at end of chapter) , 2
i ) Y
=(—ﬁ> +<ﬁ>=o e L% g PP
1.Q[_=_6_g+§g§ﬁ ox dy ox 0Oy dy Ox
ox odu  Ovdx’
4. LetL: R" = R", x = (g, (x)),. - -gal%,), then h = fo L and in matrices So the implicit function theorem says that if / satisfies the Cauchy Riemann *
g S equations and Df{x,y) # 0 then f is locally invertible.
oL oL .
ot SNt | 11. (a) Use Exercise 3.
ox, ax, AEN 0 (b) Use Theorem 4.
. . . 16. No.
Dh(x) = Df(L(x)) o DL(x) = Df(L(x))| - © | = Df(Lx) : : 18. OF, 0OF,
’ ’ ’ ' ou dv 3t x R
J . Ju 2 s .
oL, . O 0 ghl) or, ar, ||y | v TN Ougut # oo ;
Y | W
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u and v can be expressed as functions of x and y near (xo,Y0)- And

o aw) (R, ORY(OF, o
ax ay u v ox dy
do o || oF OF| |0Fy O
ax 9y o ox 0y

. au 5anF1 aFlan aﬁa_ﬁ‘_ﬁa—&).
so in particular 7 = (EW”W‘@? o oo ou

23. {a) In R? an example of such a C is when C consists of rays from the origin, and

areas between them. . . .
(b) LetI = {x|xeCand |x| = 1}. C is closed, hence / is compact and since fis

continuous on I, there exists a xo € I such that f(xo) = sup{} G | x e I}.
Then for any xeC, x # 0, x/|x| el and [fG)] = lx| I/G/IxDI <
Il 17 Geo)l G/ = 1 Geall 11, 50 let M = || fxo)ll. I x = O, /Gl =
1/O- I =01/ =0=M=0,forany yeR" .
25. Show that f maps cl(D(0,)) (a compact set) into itself, and satisfies the hypotheses
of the contraction mapping principle.
29. Consult Section 5.8 and 5.9.

t
31. 0 =0, x()=0, x(t)=0 +j(1 +0)ds=1t,
0
t N 2
x3(t)=fo(1 + s5)ds =1t IR EREE
) Los .. 1 -3
:0C,,(t)=t+5t +ﬁt + +3‘5"'(2k—'3) o s
0
(t) — i L ' 2k-3
M= 4375 2k - 3)
The radius of convergence is given by )
R M L 1 =0
g = it = = M ek — 2)

implies R = o0.
32. Theindex is 0..

Chapter 8
Integration

8.1 Review of Integration in R and R*

1, For f = 1,and P = {a = Xq,%;,. - b = Xy} any partition of [a,b],

N~§
U(P) = 2 W — %)
n=0
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= (b — xy-y) + (xn_y — Xy~g) F (X = xg) + (% — a)
=b—a=L(f,P),

so sup{U(f,P)} = inf{L{f,P)} = b — a.
2. Let
P = {xq = a,x, ..xy = b}
be 4 partition of [a,b]. For any

n=1,...,N, [sup ]f(x)=S
XE(Xrt o 14 Xp
is an upper bound for {g(x} | x & [a,b]}, for § = f(x) > g(x) for all x € [a,b]. Thus
foralln,§, > sup g(x) =1,s0 - .

Xe[Xy - 1,%n]

N-1

N-1 '
UUSP) = 3. St = Xuet) 2 UGP) = 3 Ly — Xuo ) ©
' A=0

=0

Thus f% g = inf{U(g,P)} is a lower bound for { U( fiP)}sofo f = inf{Uf,P)} = [og.
8.2 Integrable Functions

L. Let my = inf{f(x) | x € [x;,x;+,]} and M, = sup{f(x) | x & [x,x41]}. We have
R =3 fle)xis, ~ x;) where ¢, e [x::%i4 1], and since m; < f(c) < M, we have
omXy = x-) < Y fle)xiey — %) < ¥ M(%., — x,), the desired result.

2. We use Riemann’s condition. Let ¢ > 0 be given and let P, be the partition of
[0,1] P, = {0,1/2 — /4,1/2 + ¢/4,1}. Then clearly L{f,P,) = 0 and U(f,P,) = ¢/2,
so U(f,P) — L(/,P) = ¢/2 < &. Thus [ is integrable. We know Jafx)dx =
sup L(f,P) and L(f,P) = O for all partitions P, so JE fxydx = 0.

P

8.3 Volume and Sets of Measure Zero

1. We show that given ¢ > 0 the upper half of the unit circle can be covered with
rectangles whose total volume is <g/2. We use Riemann’s condition on the function
y = /1 — x*. This function f is integrable on [0,1] (since it is continuous) so there
is a partition P such that U(/,P) — L(f,P) < &/2. However, U(f,P) — L(/,P) is just
the sum 3 (M; — m)[x;., — x;] where M, = sup{f(x) [xe[xy1,%]} and m, =
inf{f(x) | x € [x;41,%.]}. So let v; be the rectangle [x%u%141] % [m,M;]. Then the
v;'s cover the upper half of the unit circle and their total volume is <¢/2. Similarly
we can cover the lower half with a finite number of rectangles whose total volume is
<&/2. Thus the whole unit circle can be covered with a finite number of rectangles
whose total volume is <e.

2. The answer to both parts is no. It does have measure zero.

5. No. The boundary of the rationals in [0,1] is the whole interval [0,1] which does not
have measure zero.

8.4 Lebesgue’s Theorem

1. fis bounded by 1 on 4 = [~1,1], 4 is bounded and has volume by Corollary 1,
and f has no discontinuities, so by Corollary 2 f is integrable on A.

3.JaS=1
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4. Since [ is continuous, A is open, and f{x,) > 0, there is a neighborhood D(x,¢) of
xo on which f is >0. By Theorem 4(ii), if |, f = 0 then {xe 4 | f(x) # 0} has
measure zero. But D(xo,6) < {x€ A | f(x) # 0}, so if {xeA]|f(x)# 0} had
measure zero then so would D(xy.e) (see remarks after Example 1). But D(x,€)
clearly does not have measure zero, so {xe€ A | f(x) # 0} does not have measure
zero, and therefore f; f # 0.But [, f > Osince / > 0, s0 faf>0.

8.5 Properties of the Integral

1. Not necessarily. Let ry, 3, ..., T, . . - be an enumeration of the rationals in [0,1]
and let A, = {r,}, A; = {ry},.... Each 4, has volume but 4 = J2 4, =
rationals in [0,1] does not have volume.

4. A A B has zero volume implies 4 ~ B has measure zero implies {4,p1 = [4 1 +
{5 1 (by Theorem 5(vii)) implies v(4 U B) = v(4) + v(B).

8.6 Fundamental Theorem of Calculus

3 e - 1)
5. {a) [0,1] has volume and f is bounded and the set of discontinuities is countable

and so has measure zero.
(b) L(f,P) = 0 for all P since in every open set there is an irrational so {6 f(x) dx =

sup{L(f,P)} = 0.

8.7 Improper Integrals
2. Letne Nbesuchthatn > p + 2,thensince & = 1 + x + x*/2! + x*/31 + - >

Y D)), i x = 1 then (n 4 Dlfx > e7*x" > ¢7*xP*2, and (n + 1)lx —~ 0

implies e™*x?/x* — 0. In particular there exists a N such that x > N implies
e~*xP*2 < 1, thatis, e"*x? < 1/x2. Then by the comparison test, [Y ¢™*x” < co.
3. e”*x" < x" 50 use the comparison test and Example 2(b).

w a o
5. j X diverges for o > 0 by the comparison tesf since x =z 12ix = 1.

L1+ 14 x
* 1 1
It diverges also for —1 < a < 0 because L — > —— if x 2 1, and
1T+ x* 14 x™7 2x™
o 1 o0 a
J -2-x“ dx diverges by Example 2(a). FinallyJ 1 j_ p dx converges for o < —1
1 : 1

= X" andJ‘ x* dx converges by Example 2(a).

because ———
A X

—a X~

8.8 Some Convergence Theorems

1. Use Dini’s theorem.
3. 1.

Exercises for Chapter 8 (at end of chapter)

1.(a) Let B= {xe 4 | g(x) # f(x)}, then B has measure zero, so, assuming that the
function f — g is integrable on B and A\B, [, (f — 9) = [au(/ — 9) +
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Js(/~ 9 =0+0=0,since f — g = 0 on 4\B, and by Theorem 4(i), since
B has measure zero, [, (f ~ g) = 0. Thus [, (f — g) = 0, thatis, [, / = [, g.
(b) |f — gl = 0 s0 apply Theorem 4(ii) to obtain that {x | f(x) — g(x) # 0} has
measure zero.
5. We show that the xy plane has measure zero in R® and hence any subset of the xy
plane has measure zero. Let ¢ > 0 and

. [ 4
S,, = [ ll,ll] X [—n,n] X [—W,;i-zm] .

® 2 22n-2n-2 & ¢ ;
Then xy plane < | ) S;and ) o(S) = ) —reere = =
lgx i ;L_; (S:) l; p2onte Z

6. f.q —-.j,,f=_f,1(g — f) = 0 since g — f> 0 on 4. But |, (g — f) # 0, since
otherwise v(4) = 0 by Theorem 4(ii). Thus [, 9 — [+ f = [4(g — /) > 0.

7. Since f is continuous'and f{b) = —1, there exists an ¢ > 0 such that f is negative
on [b—s&b]. Now [2f(x)dx = [57f(x)dx + [b_, f(x)dx = =5 f(x) dx + |
where | < 0. Thu.s o= f(x) dx > 0, so there exists a x, €.]a,b — ¢ such that
f (J‘Cl) >‘ 0 {otherwise [2~* f(x) dx < 0). So by the intermediate value theorem there
exists a x, € ]x,,b[ such that f(x,) = 0, and hence by Rolle’s theorem there exists
a ¢ € Ja,x,[ such that f'(c) = 0.

10. (b) If A4 has zero content, then A has measure zero. Conversely suppose 4 is
compact and has measure zero. A compact implies 4 closed implies bd(4) = A4,
hence bd(4) has measure zero, By the lemma on page 280, there exist open
rectangles Py, Py, ..., 0y, Q,, ... such that 4 = J2 | P;, bd(d) = 2.9
22 v(P) < g2and 22 Q) < &/2.Then A L bd(4) = cl(4) = ( N ALY
(U;"; L @) and 3 (@) + 22, u(P) < & A compact implies there exists a

ﬁNnite set {Proe. wPu@inne « Que} © {Py,Paye . 01,05, . .} which covers A.
ow

m’ n

> oEl(P) + Y u(el@) = Y

i=1 i=1 i=1

o(P) + Y u(@)
v f=gt

< Z1 o(P) + ). v(Q) <&

]

1s

i

(see E.xercise 11). Let B be a closed rectangle containing 4 with a partition T
containing the rectangles cl{P;) and cl{Q)). By Theorem 3, since bd(A) has
measure zero, A has volume, that is [, 1, exists. Then

0 sf 1< ZS;glA(x)u(s) < Z v(cl(P) + Z v(elQ) < ¢.
A SeT X& | =1 j=1

Since ¢ was arbitrary, {, 1, = 0. For the second part, bd(B) is compact (being
closed and bounded) so B has volume ifl bd(B) bas measure zero iff bd(B) has
content zero.

! 1 & w©
14. Case (a —1. limi P dx = e Limi oty
(@, p< -1 l‘l'I_l:l(l)tJ; xPdx Py 11.1,T<lyt (1 —a"*Y) = —oo, SOL xP dx
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16.

18.

20.

22.

24.

27.

a
does not exist. Case (b), p= —1. limitj x~ ! dx = limit loga = +co hence
a-tm H a—w
a

-
J x? dx does not exist. Case {c},p > —1. limitf xPdx = limit(a?*! — 1) =
1] T a=w |, p+1asw

+ 00, and againj x? dx does not exist. Thus fornope R doch‘ xP dx exist.
0 0
{a) Let g denote f extended, then {discontinuities of gk} < bd(A) U {discontinuities
of f,}, and {discontinuities of g} = bd(4) v {discontinuities of f}. It is sufficient
to show that {discontinuities of f} = {J= , {discontinuities of Ji}, to imply
that {discontinuities of g} = {J;2 {discontinuities of g} If x4 € {disconti-
nuities of f'}, then since f; — f uniformly, for all N > 0, thereexistsa M > N
such that f;, is discontinuous at x,, hence xo € U,‘:‘; . {discontinuities of f}.
(b) Let { £} be a sequence of bounded integrable functions on 4, such that f, = f
uniformly on 4. Let N be such thatn > N implies for all x € 4, [ /,(x) — fx) <
1, then for all xe 4, n > N implies [f(x)| < 1 + L)l < 1 + M, where M,
bounds £, thus f is bounded. To show f Riemann integrable it is sufficient to
show that {discontinuities of f} = D has measure zero. Now for all k, fi
Riemann integrable implies {discontinuities of f;} = D, has measure zero, and
et Do by Theorem 2 has measure zero. Since by (@) D < U,‘f: D D has
measure zero, and hence f is Riemann integrable.
For all xe B, 14x) < 1(x) and f(x) = 0 implies f(x)1(x) < f(x}- 1 5(x) which
implies [5 f()140x) = {4 f(x) dx < [p f()p(x) dx = js fx)dx. In general if
there exists a x such that f{(x) < O this is not true, for example, let f: [01] - R,
x+» —1and A = [0,1/2]. Then [P fx)ydx = —1/2 & [§ f(x)dx = —1.
f = 0, continuous, and increasing monotonically as x — 0, and [} f(x) dx con-
vergent implies that for any x € Ja,b], fi f(x) dx exists for lizx_x‘iat e S dx =
lil;l:lgt [Zoe fx) dx + f% f(x) dx and liT(i,t {84 f(x) dx + convergent implies
li‘_‘}ét {24 J(x) dx convergent. Now for all y e Ja,x], f(y) = f(x), since [ is mo-
notonically increasing; hence [4**f(t)dt > [3**f(x)dt = f(x)x. Then for all
¢ > 0 there exists a 6 such that 0 < x < § implies 0 < f{x)x < far=feydt =
o fitydt — fb.. f()) dt < & hence x — 0 implies xf(x) — 0.
If 0<p, then —1 <p—1<aand on [0,1], x*~! > e¢™*x""!, hence since
J& xP~1 dx converges, f§ e”*x"~" dx converges. Claim that for all o there exists a
M such that x > 0 implies e™*x® < x~2, that is, e"*x**? < 1. It sufficies to show
that e=*x" —» 0 as x — oo for any neN. Now e =1+ x + x*[2| + -+ >
x*(n + 1)! implies (# + 1)/x > e~*x" = 0. Then since % x~2 dx converges, so
does [ e”*x"~! dx and so the T function [§ e~ *xP~1 dx converges for p > 0.

0, xe[01\Q,
1, xe[0,1]n Q,

Let A = [0,1], f(x) ={ then if ¢ > 0, taking any §, and
if|P| < &, then there existsa x, € S; " Q for all i,s0 Y | f(x)o(S) — 1| =0 <¢,
but f is not integrable. .

Suppose there exists a x € 4 such that f(x) # 0. Then there exists a 6 > 0 such
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that f > 0 on D(x,d), since 4 is o i i
. ,0)s pen and f is continuous. Now by Theorem 5(vi
there exvxst_s a y € D(x,8) such that f{y)u(D) = b Byfy) >0 implies [, f# E) A
contradiction. Hence f = 0 on A. ? &
29, 1For each k, the total length of the intervals in Fo=(Y_ F,is@2/3)F Sofore > 0
ett kc be such that (2/3) < ¢, then the union of the 2 int'é;\lzals of F, cover the Canto;
set C and have volume (2/3)* < &. Thus C has zero volume and hence measure zero

33, Let = x? - [
zﬁf(ig)c.) *% h0x) =[5 0 dy, then F = ho g and so Fi(x) = K(g(x)) e g(x) =

1 ..
35. - + A, is just an upper sum for f(x) = xon [1,2], as

n n n n tl+ n +2 "kZ(l‘*‘,‘l)(;),
=1

where the partition is _

Since

1 ;
36. f logx dx = —1 = limit ) log ~-Z
0 Ly =31 n

=limit£l L 2
mit gt log ;7 + log 57 + -+ + log 1

.1 n!
limit — log s implies

n-o 1

-1 Timit(1/n) log(n!/n") o1
=g = limit ~ (n})!/",
n-+m N

2
39. By definiti I - 1 j
y on, log 2 J; T Let P, = <{1,1 + o W1+ ar .2 ¢ be a partition

. 1
of [1,2]. Since f(t) = T is decreasing,

‘f t . i —._.,.c_
o Jk(.?u/k] f<1 +k) T+ )
Then
1 koK 1 1
L<—,P> _y kLt ‘
* J;k+j PR I T
and

.1 1 1 2
limit L(—,P) = limit{ —— 4+ = .., L dt
ko0 r ok ks o0 lc+1+k+2+ +§E=l_t=10€2-
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40. (a) d(fg) = [81/(x) — glx) dx = 0, by Theorem 5(iv).
(b) d(f,g) = [51/(x) — glx)l dx = 2 lglx) — fx)| dx = d(g.f)-
© d(f,g) = [51/(x) — gl dx =0  implies by Theorem 4

and since | f(x) — g(x)| = O that f(x) — gx)| = 0, that is, f(x) = g(x), except

possibly on a set of measure zero.

) d(fig) = 176 — gbl dx < [31S0x) — hxl dx + [alh(x) —
d(h,g). Thus d does not satisfy the criterion d(f,g) = 0iff f
other properties are satisfied d is called a semi-distance.

Chapter 9
Fubini’s Theorem and the Change of
Variables Formuia

9.1 Introduction

3. 5/6.

4. —gfe”t — 1)

5. 1/2.

9.2 Fubini’'s Theorem

2. ¢*/4 — 1/4.
[

9.3 Change of Variables Theorem
2. 2.

1/2 -0 . 1
S.J J (2u2+202)-2dudv=§.

o v
9.4 Polar Coordinates
1. n(e ~ 1).

2. ’2-‘[(12 loga = b*log b — 1/2(a* — b)].
2.5 'Spherical Coordinates

1. j‘ U+ 2 e dy dg =J‘
D

2n
0

2. 20t = a®" + (L + @™

IR

9.6 Cylindrical Coordinates

1. 112%/3.
2. nf4.

gx)| dx = d(f;h) +

= g. But as all the

w 1 s . 4
j J‘ e’rzmn(pdrd(pd@:l(e - 1).
o Jo 3
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Exercises for Chapter 9 (at end of chapter)

1. =n/3.
3. (b) n(l — cos 1.
(¢} 0.
(d) 2.
(e) 1.
fig—=z

r P2n fho ( o )"’
4. b) v(d) =1 1, =f f J rdrdzdf
4 o Jo Jo

o

ff2n (tho ,.2
= J =5 (hd — 2hoz + 2% dz df
2h3

vo 0

f2n

Ty l'g ( [23 2n rz,z
= B-m+2)do=| 22
Jo 2113 o 15 + 3 db J‘O 6 do

nrdhy

3

. Y/Z L1-x N
(c) v(4) =J J dy dx =J‘ (1 — 2x%) dx
0 x2 0

1 2= (2
=§JJ (1 —-2z9dzdd
o J-1
1 (%9 I
= Zd8=2
ZL 8 o 8

6. [t [YTF%
J J xy sin(x? — y?) dx dy

0 Jy

1 1
—EJ ycos1 — 1) dy

0

(1 —cosl)

ot

9 j . by
A J0e,0)(x,y) dx dy = f (f Fe)aly) dy) dx

b d
=f f(x)(f 40 dy) o
b d
= (J S dx)(f g() dy> .

(You must show f§ is integrable.)

521



522 ANSWERS TO SELECTED EXERCISES

11. For any x  [0,1], {8 1,(x,y) dy = O for if x is irrational, then 1,(x,y} = 0, and if x
is rational, 1,(x,y) # 0 only for a finite number of y € [0,1]. But 5[0.“,([0:1] 1, does
not exist. For, if P is any partition of [0,1] x [0,1], then L(1,,P) = O since there
is an irrational in every open subset of R?. o

12. A = A4, U (A\d,) U (d\4,) U . .., and the (4;,,\4)’s are pairwise' disjoint,
hence by Exercise 7b, v(d) = v(d;) + 2, , 0(A\A;-,). Now for all j, v(d)) =
v(d,) + YI_, v(A\A,-,), which is a consequence of Theorem 5, Chapter 8, hence
v(d) = 1}‘-?3} v(d)).

13. 9(C) = s L, () dy, and o(C) = [uxn le = [a (o () dy) dx = O implies
{n 1c(y) dy = 0 except possibly on a set- of measure zero, since fpleMdy =0
If C = {(1/2,y)| y € [0,1]}, then v(C} = 0, but u(C, ;) = 1 # 0.

16. [ (6 + y2 + 222 dx dy dz = g 1" dx dy dz = je &[5 P r?sin ¢ do d0 dr =
47 % rP*2 dr. Now by Exercise 14, Chapter 8, [§ r**? dr does not exist for any p,
hence g 17 dx dy dz does not exist fqr any p.

f&), Sl < M, xe[0,1]
17. Let fyglx) = { 0, 00> M . .
exists. But for all M, [} fy = 0, since fy; # O for only a finite number ofzpomts,
that is, 1, 1/2, . . ., 1/n, where n is the greatest natural number such that n* < M.

Thus limit [§ fy = 0,and [§ f{x) dx = &i}_r}it {4 fulx) dx = O.
M=o @

19. F(x,y) = f(x) + g(y) implies {1« y F(x,y) dx dy = fawn fx)dxdy + L,xug(y)dx.dy.
U(sin)g F\{l(aix)zi’s gi(tgeorem: }{M s S dxdy = J, (s f (x‘) dy).dx and f(x) being
constant with respect to y gives |5 f(x) dy = u(B) - f(x) implies {,xp f(x) dx dy =
[4 vB)f(x) dx = v(B) |4 f(x) dx. Similarly [, « 5 g(y) dx dy = v(/.i) {5 a(y) dy. Henc{e
summing we get [ x5 F(x,y) dx dy = v(B) [, [ + u(4) {5 g, which shows that FVIS
integrable.

2. fplp =} dpdx = [{dx =2.

1

. Then f is integrable iff Ergg § f

d
35. Consider— log x at x = 1.
dx

Chapter 10 ] ;
Fourier Analysis '
10.1 inner Product Spaces

1. (@) Letz, = x; + iy;, 25 = X5 + ¥y,
Then

et - ¢ = [e*(cos(y,) + i sin(yy))][e*(cos(yz) + isin(y,)]
= " *=[cos(y;)eos(y,) — sin(y,)sin(y,)]
+ i[sin(y,)cos(y,) + cos(yy)sin(yz)]
x e v cos(yy + yp) + isin(y; + yg)) = €.
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(b) e e7* = % = 1,50 ¢ = 0is impossible.
(c) 1€"? = cos®f + sin?0 = 1.
5. —i(e — 1).

9. (a) {figd> = 0 implies <g,f> = {f;g> = 0 and so ||/ + g =<S+gf+g)=
ALY + ) + Laf) + Lga)d = |11 + lg)>

®) WS +gl? =S = gl* =11 + llgl? + <fig> + {g.S>
= (1* + lgl* — <fi—g> ~ {~g./D)
=) + 49D — {fi—g) = {~agS>
= 2{f9> + Ag./>
(S +igh* — If = igl® = i[2{figd + 2ig /D]

= 2{/.9> ~ 2%gS>
--..and adding, we get (b).

© WS+ gl 0 =gl = 20007 + 2 gl + <fig) + <a.f>
+ =g +{—g./>
=201+ 2|gll®.

@ - WS+ gl =gl =12+ gl

+ ({Sg> + g SN2 + g)®)
~fg> + <g.M)]
=17+ 19122 = fg) + <g. )

< (/12 + lgh?>
10. By Schwartz’s inequality

b 2 b
ff(x) d| = KLOP < MUP 12 =0 - a)f /17 dx .

-~ 1/2
The converse is not true, Let f(x) = {x . s X # g
3 X =
[0,1] but /2 is not.

.S = g.9> = {fig> — La.g)
= <f:Z,1 <f,(l’f>‘0i> - i;(f:‘P:)‘l’njil <f»‘l’j>(/’/>

then f is integrable on

= > sy - Y Y S T onisd.

i=1 j=1

Now since {¢;,0;> = 5m‘; jz_‘jl<f,qol><f@><<o.-,<p,>

= 2":1 S <{fupp, and hence f — g,g> = 0.

Geometrically, we have resolved f = g + (f ~ g) into two components: g and
J = g:g lies in the plane P generated by ®1s....ppand w = f — g is orthogonal
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to P; g is the projection of f onto P along w. The term {f,¢;> is the component of
[ in the direction of @,.
10.2 Orthogsonal Families of Functions

1. Any n-orthonormal vectors are linearly independent for if c,0; + -+ + 0, = 0
then {c,p, + ** + @ = ¢ = Oforalli= 1,...,n,and hence @y, ..., 0,
form a basis for R".

2. Since g, gy, - - - are linearly independent hy = g # 0. Suppose we have constructed
Doy +ov5 Pu—i frorn Jo, - - -5 gn—y1 and that the {p.Ji=4 are orthonormal. Then

hy = gu — Zk 0 <9m(pk>(pk is non-zero for 0 = g, — ZZ :, {gn1> P implies g, =
Zz (‘) {gm®u) P implies g, is a linear combination of gg, . . - ; gu-1, & contradiction,
Forj < nwe have

n—1
<h,,,([7!> = <gn - Z <gm(pk>(pk)q)j>
k=0

n—4i
= <gm‘PJ> - Z <gm(pk><(plu(pj>
k=0

= (gm(pj> - <gm(Pj> =0.

Thus ¢, = h,/||h,) is orthogonal toeach @, i = 1,...,n — 1, and since jjo,| = 1,
we have by induction that {p;|i = 0,1,.. .} isan orthonormal family.

I fom (2nx\][ Pr (2mx)
3. (@) <ll/m‘//u> =J‘ {\/—"‘;E (p"(nTx)]{:\/:In. fl’n,(l;f)} dx
" o .
2 J" (an) (2nx> i
- T o(p" T [ '—l_ X
Letu = z'ff—x'then <‘/’m!//m> = %TJ‘:R(PN(M)ME%du = O
1 2, [2rnx 2 2mnx\ 1 ,(H'%Hi>
(b) j ’\/:l sm(—l—-> , \/l: cos(——l—> ; ﬁL
1
© fto = <f(x), >
=\
* % i [<f (x)’Si“('Z‘?E>>Siﬂ<~2'nlﬂ> + <f (X),cos(z—n;-f»cos(gf;}-ﬂ
n=1
L

‘ 1 e (21:1::::)
f(x)=<f(x),j> I+T..§=;n<f(X)’e ! >

x(1 =¥+ x4+ +x7)  x(1 - x")
1—x T ol-x

i
6. Yx=x(l4x+ -+ x7)=
k=1
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implies _
Z elko B e:o(l — eln(}) _ em(l — eino) (1 — e—m)
& 1 — e - (1 _ ew) (1 _ e—m)
(e:(om — cltn+ 1/2)0)(el(012) — (_,—i(0/2))
- 2 — (e‘" + e~io)
_ 2i(e"‘”’2’ — et 1205in(0/2)
- 2 —2cosf .
i(eler? — el 120sin(0/2) B i(el02) — gitn+ 120y
2 sin?(/2) B 2 sin(6/2)
! sin{n + 1/2)0 '
S cos(kd 1 ) = = — 112
o} Z os(kf) = rea (k; > > 50 @2) /

ez,

10.3 Completeness and Convergence Theorems

einx inx
L@ sy = ZN<f( ), J_>~e—\/2—_n
= (S, 1> —+ o Z (SEE™De™ + (fx).e™ e,

But

S (x),e"”‘)e"”"z {f(x),cos(nx)ycos(nx) + ¢ f(x),sin{nx)>sin(nx)
+ H{f(x),cos(nx)dsin(nx) — {f(x),sin(nx))cos(nx))

and

{fx)e " M=de % = { f(x),cos(nx)pcos(nx) + { f(x)sinfnx)>sin(nx)
4+ (¢ f(x),sin(nx)pcos(nx) — { f(x),cos(nx))sin{nx)

implies

N
sy = {Slx),1) % + —:; Y {<Sx)cos(nx)peos(nx) + < f(x),sin(mx)psin(nx)}.
n=1

mx fnx
(b) f(x) = _Z<f(x), f‘>ﬁ ,

1

(nx)\ cos(nx) sin{nx)\ sin(nx)
/) <f() > + {< 2oste > < > }
9 =(0 ) A ) )
© {S()sinGra) =J" Fsinr) do

0 T
:J J(x)sin{nx) dx +J S(x)sin(nx) dx
0

-
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- fof (= x)sin{—nx) dx + Jn Sf{x)sin(nx) dx
[+]

n

= ° S(x)sin(nx) dx +J“f (x)sin(nx) dx = 0.
Jr 4]
ro

(d) {f(x),cos(nx)) =] [lx)cos(nx) +J" Jf{x)cos(nx)
0

D 3

== Of (x)cos(nx) +rf (x)cos(nx) = 0.

o

4. (a) Casel:n = Oeven. Then the Fourier series converges uniformly to f(x), since f

is continuous and f" is sectionally continuous.
Case 2: n > 0 odd. Then the Fourier series converges uniformly to /(x) for all

x € (—=,r) and to zero for x = —= or 7.
Case 3: n < —1 odd. Then f{x) = x" is not square integrable and a Fourier

series does not exist.
(b) Fourier series converges pointwise to f(x) except at x = 7.
{c) f(x)is not square integrable so the Fourier series is not defined.

10.4 Functions of Bounded Variation and Fejér Theory

@
2 =S g
= n

10.5 Cr;mputation of Fourier Series

1. {a) fil) =x, —n < x < misan odd function, so a, = 0.

. 1 . 1 cosnx sinnx|*
b, =—1{ xsin(mx) =—| —x + —
B T n? .

- n

2 2
= cos it = ——(—1)".
nn n

20 2(__1)n+1

file) = Z — sin'nx.

n=1

' x O<x<2n
o R {fz(x) = fen + )
f%) = filx — m) + = implies
fox) == + Zil(—ln)nﬂ sin n(x — )
=r+ 25’:(—-1}3““ “(=1)sinnx =m — Zixsinnnx

n=1
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© f3(x)={M —T<X<T
S3(x) = falx + 27)

a 1 2 =
_9__f dx_if.
2 T Jo 7520

2 2 Sin nx cos nx |*®
a, = — chSnxdx:—- X 4 '

i3
2

2

TJo b3 n n

0 n even
_ g cos nn .

n[ n’ - i n odd

nn®
_ 4 Scos(n — 1)
1mp11es Jalx Z
o n Z @ =17

TC
2 -
4

] zn(_l)n-t-l (1 _ (_1),,)
z NZZI{ ! B ; n3 }

" sin(nx).

1 42 &sin{2n — 1)x
4, (@) —= k£ — )
@ 2 i 7’-'..=Zx 2n—1

®) 3 ( #as

(____ n+l

sin(nx).

cos(nx)) + ZZ

10.6 Some Further Convergence Theorems

1. The Fourier series for f converges absolutely and uniformly and may be differentiated
term by term to get the absolutely and uniformly convergent Fourier series for /.

2. The Fourier series converges in mean to f, and by Theorem 9 for x s¢ 41 the
Fourier series converges to f(x). The series may not be differentiated term b—y 2t,erm.

" 20 __ 1\
4. Z(lZ( ) %Q-)sin(nx).

n=1 n\.}’

S.(0) Y (@ + B2 =Y na? + b2z
n=1 = . n

n=1q

5o + sy (3 (3
n= n=1 \N,
<[ 3wt + w155

n=i

N
TN

Both of these series converge.

10.7 Applications

1. /is continuous but not differentiable at x = I/2. Let g(x) be the half-interval cosine
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X W T
scries expansion for x. Then f(x) = hl:g(ﬂ—l- + 5) - —2} So from Table 10-5 we have

4 & cos[(2n — D)(mx/l + 7/2)]
5 i ]

b = h[_ @n — 1)

4h sin[(2n — (x/h)]
4 a2n — 1)? '

n=1

s

L

n

4h sin[(2n — D(mx/1)] cos (nmct)

So y(x,t) = i

re=s] a(2n — 1)* I
. l 1 2, 4h sin[(2n — Dmx/D)]
= -} = cos nm
At time ¢ C,y(x,c) pA @ — 17

o (_ I)" . X
="=1 m 4h sm[(Zn - D(T)j]’ and

3l { 3l 3l
o(ez) = e 2) (-5
= /0.
2. Attimet, y(x,t)is the sum of two functions 1/2f (x + ct), 1/2f(x — ct) whichhavemax,
min or discontinuities at x = x, — ¢t + Im and x = xo + ct + In respectively
where m, n are integers chosen such that 0 < xo — ¢t + Im < land 0 < xp + ¢t +

n<l
4. For fixed 1, let Ty(x) = T(x,7). Then

’ w0
T = 50+ 5 fmer o).
n=1

2 i 2 i
Soay, = —J T(x)dx = —j T(x,t) dx.
Lo Lo .
2

B4R & (=1 g nx .. 1
5. flxz) = 3 + —1?2-,,2 e cos e and lzr_{x:)t flx,1) = 3

=1 n?

10.8 Fourier Integrals

1. Differentiate under the integral sign.
4. (a) From Exercise 1, 3f/dt = —k?a?f(a,t); so integrating, using Fle,0) = §la) we get

Ja) = glae™.
(b) Use the theorem stated in the text on convolutions to find the inverse Fourier
transform of f{a,t), together with the fact about the Fourier transform of the

Gaussian stated on p. 397.

10.9 Quantum Mechanical Formalism

1. {(ABY*x,y> = {x,ABy)> = (A*x,By) = (B*A*x,y} implies
{((ABY* — B*A")x,p) = 0 for all x, y implies (AB)* = B*4*.

ANSWERS TO SELECTED EXERCISES 529

2. It is enough to show {Av,v;> = (v, Av;> where {vy,. . .,n,} is an orthonormal basis.
But {Avvp = 3 vy = 2o el = a; = ay = o opvday =
<v;-,Z;:=1 Qo = <thUj>~

3. (Y = <A< w1<w,¢">¢,,>,ki <¢,«pk>«pk>

n=

= Zk W @ad WP = Y 0> Troed st
n, mk

= Z[E(‘/I’(pn><!//:(pk>’ln<¢m(pk> = i K'/’»‘Pn)lz Aoy -
. n=1

The above would certainly be true in a finite dimensional space. In fact this is true in
general. The e.x.pectation of 4 is just the sum of the observables {A,} of 4 weighted
by the probability with which they can be observed when 4 operates on the state 1.

Exercises for Chapter 10 (at end of chapter)

1. If fy, f, € M* then for all g e M {af; + bfy.g) = al f1,9> + b{f2,9> = 0 implies
afy + bf; e M*. So M* is a subspace. Suppose f, - f in mean, {/,} e M*. Let

geM, then [(f,gd = XS — fug) + {futDl = K — gDl < IS = £l g = 0
as n-— o0 50 {f,g> = 0 implies f & M. :

e+ e sinh(n) & (=1) ("™ =
. 3. (a) coshx = =
2 n _Z,,l —in\ 2 >
_ sinh(m) & (-1)
= Z, T cos(nx) .

cosh(n) & (—1)
Thus 7 coth(n) = =
() =mn = _Zu:o T cos{nm)

=1+ i[:ﬂ + (_1)"}(_1)u

sl —in o 1 +in

and somcoth(n) — 1 =, 2

2 T
(b) a, = Ef cos(ax)cos(nx) dx
[+
2 B4 H T 1
g =2 J’ cos(ax) dx = 2 sin(ax) _ 2ssin(an) )
T Jo T oa | ® a

1 n
a4 = J cos(a + n)x + cos(a — n)x dx

sinf@ + mn sinfa — n)n
a+n a-—n

]
=
[ —

7
a* - n* n  a*— n?

_ _1[2a(~ 1)"sin(ar J - 2sin(ar) (—1)
T
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a n=1

sin(an)] 1 2 (=1
implies cos ax = —i—[- +2 Z P cos(nx)

1 <
implies 7 cot(an), = - + Z

2

a? — n?

n=4

4 (L1 = 17D = HAIE = 2040000 + 11
< MAI* = KA = <fuf > + 1f11? (Schwartz inequality)

== F=D=14-11

implies imit [ £, — IfI] < qumit I/ = f1 = 0. The converse is false.
" 0, —1<x< —1+1/2"73
8. Let fi(x) =<{ 2"}, 1+ 12 gxg —1+ Y2,
0, —1+ 12"t <x< 1.

13, Hf — S oo
k=0

’ =/l - i K fipiol? + 0 implies
k=0

" 2 n
n 2 . l.
112 =k‘;nz<f,<pk>|2 + “f—k;q,«po«p., >k§0|<f,<pk>| implies
112 > limit Y <SP = S KFOF.
Lona ey, =
‘ 2 ) sin(nx)  sin(mx)
15‘ (pm(Pm =

. Jr J
2 /sin(nx) sin(mx)>
\NVr T Vr

sin{mx)

J

2

sin(nx)

N
sin(mx) sin(nx)> +
VAN

1—-0~-0+1 n#Em

i = !
implies d(@,,0n) = ﬁ, n s mand d(g,,@,) = 0.50ifS = {0, fn=01,..} thhen
ed i bl imi = 0. Then there
S is bounded by ﬁ, and if {@,}ize = § and ,{151_1.{.& d(q),,k,q;,,{) 0 o e
exists a K, J such that for all k > K, forallj > J, d((p,,,‘,%_,)s<' 1 ;mp;]:les Ii t—_-{ (jp =} .
; N . — . . OS . ,
soforallk = K, ¢,, = @ne Thus l:qm;t @, = Py implies S is ¢ .

N . . - s . . . . 0'
{@n}2 o subsequence. Then ifi<j, d@..0.) = ﬁ implies }1&1‘2 AP Pu) #

2

I

n=

So no subsequence can converge.

n  2n® - cos(nx)) <2n + 1) in(mx)

-t —+ 2 - sinnx) .
16. 5+ 5 + ;( " (2%

20. %J sin(nx)sin(mx) =
T Jo
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2 [ 2 2 3
Case I: n = m; _f sin?(nx) = *[x + cos(. nx)]
TJo ni2 4n

[

T

2
Case2:n # m,'—f cos(n — m)x ~ cos(n + m)x dx
T Jo

Zsin(n — m)x  sin(n 4+ m)x |*

T n-—m n-+m

0

Jx) = i b,sin(ix)  where b, = %fﬂ f(x)sin(nx) .
n=1 °

S = {/2fnsin(nx) [n =12,...} is complete for i f:[0n] - R is square
integrable then we can extend f to a square integrable odd function on [~n,r],
say f. Then f has a half-interval sine-series expansion namely f(x) = sy bn sin(nx)

*,

where

b, = 2 f ”f (x)sin(nx) dx = %j" F(x)sin(nx) dx
nJo 7T Jo

and
1 . )
—f 6o dx = 3 b2
TJen =1
implies
2 (" )
- f e dx = 3 b2
. T Jo i=1
implies

fn[f(x)lz dx = i <\/§ b,,)z = i <f, 3sin(nx)> :
0 n=1 u=1 T

Thus § is complete.

2. LetAd = f —5,B = Sy+p — Sy Then {s,,B) = 0 implies

B = 3 Foxfmd = 181

B> = 3 oo = KAodP = <B.B) = 1B

So <f - n+1nf - Sn+p> = (4 - B4 — B
= (4,4) — (4,B) — (B, A) + |B|?
= [l41* - |B|* < 142
Thus || f = 8,0, < Jf = s,]. We therefore have {0f = sl2oa monotonically

decreasing sequence bounded from below by zero and from above by | f|| < -co.
So limit ”f = u” = glb{”f - S,,” ln = 0,1)29' . } < +o.

a @ .
L 2 o, ) @y
at n=0 fz
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8

= (d’m%)e - m"‘mEnq’n
[

"

i}

= i {hosone I H ()
n=0

= H( i <|!/0,([),,>€ _‘E"‘m(p">

n=0
= H(l/l) .
Also Y(0.%,9.7) = Lo ot @ulxipid) = o T HE(Ex.y,2) = Epltx.y7) =

E
i =— , that
44 dd dt =J %dt implies In (t,x,y,2) = T t + c(x,y,2), tha

ih —, then J——— —
t,x,y,2) dt ) o _
I o t z)di ’e-%;;’",,,, - =) which implies e 'E"‘”'H(e“"f ")-—{1'('//(%96,)’;;))1)l -
g’ ‘fsﬂ’ﬁg&x »7) and so H{e*) = E, e, that is, /3 is an eigenfunc
o~ 1En % .
f; implies e“*»# = ke, (x,y,z) where k is a constant. So

= = ko, (x,9,2) .
Yitx,p,2) = ke Bl (x,p,2)  and o (0,%,9,2) = ko

24. Since H is symmetric,

d
7 CVHUY

o
g - <%%,H<w)> . <H(w),—67>

= ZECH@ W) + 5 CHOLHW) = 0.
l -
26. (a) Noi CTABIW)e) = (ABUS) = (BAMO)
= (WBA@) — WABloD

= <‘i/:[B’A](G)> N

. -0
i J = [B,A] = —[4,B] implies [4.B]
A,B] = [4,B] then [4,B] = [B,
isn?xp;ifes[AB ]z B[A. Ag an example let A = J,, B = P,. Then J.P, # P,J, so
[J.P,] = hPzliis not symmetric.
(b) Yes; <i[4,B]).0> = iK[4.B]W)o)
iKy,[B,A)(0)>

= {,i[4,Bl0)) .

i

i

2n x—2n _
30. f * g(x) =L Sglx — y)dy =J Slx = wgw)(—dw)

x
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X

X+ 2%
= flx — wig(w) dw =f gw)fx — w) dw

X2
+2

0 * Xk 2n
=f gw)f{x — w)dw +f2 gw)f(x — w)dw +f gw)f{x — w)dw
x [} 2n

0 2% X
=f gw)fix — w)dw +J‘ gw)f(x — w)dw +f gw)flx — w)dw

0 0

- f " gnfx = w)

0

einx

implies || f * gl|? = 873 Z a2b? is Parseval’s

33. Chioose M so that L/ G)l < M on Jx,,b[ and on Ja.xo[. Then
Sup D1/ e ) = Sl = S0 31 (5iv1) = (el

and [+ g(x) = i(Zna,,b,, . \/.'3.;)

relation.

xge P \Pn[a,x) Pnixo,

r . = sup Z W) = [ + Z b]’f('ﬁu) - f(ﬁ)!)

= 5“1:( [Z J|f'(fl)| (Ter — 1)+ Z ]lfl('h)’ (g — Tl))
XQE. Prfax,

Pnixg,b;

where . < & < 1,17, < m <1

Z Mty — ) + Z Mty — Tc)) = M - a).

<sup (
Prlaxo) Pr[xq,b]

xpeP
So f'is of bounded variation on [a,b]. By the Dirichlet-Jordan theorem the Fourier

series converges to f on [a,b]\{x,} and to &‘i);*f(_’fﬂ_“_) at x,.

35. (a) Pointwise to f(x) for x 5 7, —7 and to zero for x = 7, —x, and in mean.
(b) By Theorem 12, uniformly, pointwise, and in mean.

SoA4) + f(x—)
2

(c) Pointwise to and in mean.

(d) Pointwise to and in mean.

Sle+) + flx—)
2
0, x<0
(& f'x) ={ implies | /’(x)] < 2r -+ 1 and fis
2x sin(1/x) — cos(1/x), 0

sectionally continuous. By Exercise 33 the Jordan-Dirichlet theorem applies.

Thus convergence is pointwise to w .

36. Use Parseval’s relation.

37. By Theorem 7, a = I/n [§sin x dx = 4/n, b = 2/n {§sin(2x)dx = 0 and ¢ =
2/m [§ sin(3x) dx = +4/3z. On [-7x], f(x)=1 an even function implies
a=b=c¢=0. :
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r[f(y)g(y) — 0] dy|

43, |h(x) — h(x)| =

(b
<o 1A (y).q(y) — [{(¥)gay) dy

Ja

b
< | {I/e(y) —

Ja

TN + 1S Dgly) — L9} dy

b

b
< | Oy — gl dy +J ) = L) gy dy

= {fblg = gl> + < — Sillguld
<1/ g = gall + 1S = Sl gl
< I/ g = gal + 1f — Bulllg, — gll + lgl) = Oas n — co.

44, (a) x sin x is an even function. So b, = O and

T 1 "
a, = —%J x sin(x) cos(nx) dx = ;J‘ x[sin(n 4+ 1)x — sin(n — 1)x] dx
0

T Jo

i ) cos(n — 1)x  cos(n + L)x\ [ _ cos(n — ) _ cos(n + L)
i R il e n—1 n 1
= n#1
1 ( (- cos(2x) - }_ S
2 )lo 2
-1 n+).2
CSluic R
1
-5 n=1
2 cos(x) &, (— 1)"cos(nx)
implies ag = 2, implies x sinx = 5 — — ZZ 1
- —

2 R
(b) a, = —J log(sin 1/2 x)cos(nx) dx
TJo
4 {2 i
= ;J log(sin x)cos(2nx) dx
0

! 4 /2
Ifn=0,ay = ;J log(sin x) dx .
' 0

1 w/2
Nowj log(sin x) dx = Zj log(sin 2x) dx
0 0

nf2
= ZJ {log(2) + log(sin x) + log(cos x)} dx
0

/2 /2
= 7 log(2) -+ ZJ log(sin x) + ZJ log(cos x) dx .
0 4]

L

49.

52.
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/2
But f log(co = ) z ’
; gl(cos x) dx mlog cos| x — 3 =f log(sin x) dx

535

/2
0
o
= J; 2Iog(sm(n — x))(—dx) = -f log(sin x) dx
. n/2
=J. log(sin x) dx .
o
Thus
) J’xlzl . w2
| , og(sin x) dx = = log(2) + 4f log(sin x) dx
implies °

/2
log(sin x) dx = —~
L g(sin x) dx 5 log(2)

implies ag = —2 lo.g(2) .
Ifns0,
4 = 4 {Iog(sin x)sin(2nx)
s b3 2n
The first term is zero because

n/2 1 (w2
0 EL

sin(x)

cos(x)sin(an)d} '
————dx;.

log(sin x)sin(2nx i
1}:—‘0 2 ( ) mit Iog{sm x) - lim €0s x/sin x
*~+0 2nfsin(2nx) x-o [2n/smz(2nx)] 2n cos(2nx)
- Ii_.(; s;m 2(2nx)  limit 2n sm(2nx)cos(2nx)
S n?sin x ,;..o 4ncos x

a, = -—

1 J' sin(2n + 1)x + sin(2n — l)x
nw sin x dx

However we can use Exercise 6, p. 353 to deduce a, = —1/x, so
n 3

log(sin x/2) = —logz — Z -—cos nx .

_4 i cos(2nx)

Jsin x| = )
n45idn? ~ |

. 2 4@ “
o=[sm(0);=__fz.ﬁ;’f(ﬂ=?._i‘.z ! ’
S TonT4nt —1 n ngAn? —1°
1 & 1 |
2“24#—1

f(x)=f+ﬁ=(‘m (=1)+t ) (E 2 & cos(2n — 1)x
3+ 3 =L i) + 4_5,,; @n = 12 )
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57.

59.

62.

65.

We obtain the following theorem.
Theorem. Let f be continuous on [—nx], f(—7r) = fin) and let [' be continuous,
[ sectionally continuous. Then the Fourier series for f

flx) = -‘-123 + {Z(a,, cos(nx) + b, sin(nx))
n=1

may be differentiated term by term and we obtain

o0

['x) = z (—na, sin(nx) + nb, cos(nx)) .

n=1
Furthermore this is the Fourier series of f'.

Proof: Theorem 14 shows that the Fourier series for both f and f' converge
absolutely and uniformly. Hence by Corollary 3, we may differentiate the series for

_ f to get the series for f*. The advantage of Theorem 13 is that we need only to know

that f” exists at a particular point x & [—m,m]. /" need not be continuous.
Let

k
-,
n=1 n

Then by Schwarz’s inequality
k i k 1/2/ k 1 i/2
Sk=z‘an|"'<(zlau!2) (Z '—2'> < 4o,
n=1 n n=0 n=1 1
because
k
Ylaf? <.
n=0

”

by Bessel’s inequality.

I &, (12 12 8a?
913 + Z {—;—r cos(nx) + (—-5 - j—)sin(nx)} .
: e n n

We want a function T(x,t) such that
aT T )

(a) m (x,t) = T (x,t) 0<x<l t=0 (heat eqpatxon)
) T(x,0) = f(x) 0<x<l
(c) T(O,) = T(Lt) = O ‘'tz 0

As usual we try T(x,t) = g(x)h(t). Then we must have g(x)l'(t) = g"(x)h(t). These
equations are true if, for a constant A, g(x) + Ag"(x) = 0, and h(t) + AK'(t) = 0.
Solutions of these equations satisfying the boundary conditions are g,(x) =
sin(nx/l) and hy(f) = """, n = 0,1,2,...and where 4, = n*m2/1%. We use sine
and not cosine in order that T,(0,t) = T,{L,t) = g,(0)h,(t) = 0. Thus a solution with
f(x) = sin(unx/l) is given by T(x,t) = sin(nax/le~ =" Since the equations are
linear and f(x) = 3= b, sin(nmx/l) (half-interval sine series) we expect that the

=1
general solution with initial condition fis given by

o0
B
n=1

(initial condition)
(boundary condition)
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69. From Theorem 17, there exists a M such that |a,| < M. Using the identity

et X' = X/(1 — x)for |x| < 1 we see for large ¢,

@
— 22412 nnx
Z a,e”"n 11 CDS( )
n=1

20

<M Z {e~x21/12}n
n=1

[

e —n2fi2

=M1 _“““e_‘;{,/,—z'—)()ast-—)oo_
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Abel, Niels, 122
Abel summation, 125
Abel’s partial summation formula, 135
Abel’s test, 122
Absolute convergence, 271
Absolute maximum, 88
Absolute minimum, 88
Absolutely convergent series, 47
Accumulation point, 39
Addition axioms, 11
Adjoint, 406
Affine hyperplane, 21
Affine mapping, 155
Algebra, 120
Alternating series, 122, 141
Analysis, Fourier, 345
Analytic, 180
Angular momentum, 404
Antiderivative, 265
Apostol, T. M., 129, 473
Approximate identity, 415
Approximation
best affine, 155
best mean, 349
polygonal, 146
polynomial, 119
uniform, 119
Archimedian property, 13, 31
Area, 251, 258
Artin, E., 476
Arzela-Ascoli theorem, 114, 152
Associativity of composition, 8
Asymptotic, 56
Atom, hydrogen, 405
Atomic sentences, 451
Autonomous system, 220
Average, 263, 358
Axioms
addition, 11
of choice, 455
completeness, 12
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of extension, 452
of infinity, 454
multiplication, 11
order, 11

of pairing, 453

of power, 453

of specification, 453
of substitution, 455
of unions, 453

Banach space, 112
Baire category theorem, 76
Barber, 450
Bartle, R. G., 473
Basis, standard, 19
Bernstein polynomials, 119, 146
Bessel's inequality, 348, 435
Best affine approximation, 155
Best mean approximation, 349
Between, 174
Bijection, 5
Bilinear map, 177
Binomial coefficient, 119
Bolzano-Weierstrass theorem, 62
Boundary, 43

conditions, 384
Bounded, functions, 87, 111
Bounded sequence, 12
Bounded set, 62
Bounded variation, 363
Boundedness theorem, 86
Bourbaki, N., 476 ,
Buck, R. C,, 473
Burkhill, J. C, 474

C, 111

(C,1) summable, 125
CBS Inequality, 27
(C,r) summability, 125
Cantor, G., 7, 448
Cantor set, 77, 295, 296
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Cardinality, 6
Carslaw, H. S., 473
Cartesian product, 2
Cauchy-Bunyakowski-Schwarz inequality,
21 s
Cauchy condensation test, 53
Cauchy criterion, 106, 273
Cauchy-Riemann Equations, 246
Cauchy-Schwarz inequality, 20, 337
Cauchy sequence, 14, 45, 112, 339
Cavalieri’s principle, 458 '
Cesaro, E., 363
Cesaro 1-summable, 125
Chain rule, 168
Change
of coordinates, 223
of variables formula, 301, 306, 326
Changing variables, 168, 306
Characteristic function, 258
Characteristics, 387
Chernoff, P., 414
Choice, axiom of, 455
Churchill, R. V., 392, 475
Circle of convergence, 124
Class C7, 179
Classical Fourier series, 334, 346
Classical mechanics, 400
Closed interva"l, 13
Closed set, 37
Closure, 41
Cluster point, 39
Coddington, E. A., 436, 475
Coefficient ’
binomial, 119
Fourier, 346
Collection, 453
Commutator, -404
Compact metric space, 100
Compact sets, 62
Comparison test, 47, 269, 271
Complement, 2
orthogonal, 22, 434
Complete family, 446
Complete inner product space, 339
Complete metric space, 46
Complete normal space, 112
Complete order field, 12
Completeness, 112
axiom, 12
of exponential and trigonometric
systems, 355
of the trigonometric system, 444

Complex conjugate, 341
Complex numbers, 340, 341
Component, 69
Composite mapping theorem, 168
Composition, 5, 84
associative of, 8
Computation of Fourier series, 365
Condition
boundary, 384
initial, 384
Riemann's, 255, 278
Conditional convergence, 271
Conjugate, complex, 341
Connected, 68, 90
Connectedness, 200
Connectives, logical, 451
Conservation of energy, 437
Constant, Planck’s, 404
Constant function, 175
Constrained extrema, 224
Content zero, 258
Continued fraction, 202
Continuity
of a function, 79, 80
joint, 85
piecewise, 261
sectional, 340
separate, 85, 99
uniform, 91, 100
Continuous linear map, 96
Continuous multilinear map, 97
Continuous path, 66
Contraction, 132
lemma, 230
mapping principle, 116
on a metric space, 143
Contrapositive, 23
Converge, 47
Convergence, 12
absolute, 271
circle of, 124
conditional, 271
of a distribution, 277
to a limit, 44
mean, 338 -
pointwise, 102, 103, 338, 358, 464
radius of, 124
of a sequence, 338
of a series, 338
simple, 102
uniform, 104, 338, 378
Converse, 23

Convex function, 331
Convex set, 175
Convolution, 399, 415
Coordinate change, 213
Coordinates
cylindrical, 312
polar, 169, 300, 309, 341
spherical, 169, 310
Correspondence, one-to-one, 5
Countable, 6
second, 144
Courant, 392
Courant, R., 475
Courant-Hilbert, 146
Cover, 62, 259
open,. 62
Criterion, Cauchy, 106,273
Critical point, 183
non-degenerate, 223
index of, 223
Curve, 161
Cuts, Dedekind, 28
Cylindrical coordinates, 312

§-function, 275
d’Alembert’s solution, 395
Darboux’s theorem, 255, 277
Dedekind cuts, 28
Defined implicitly, 209
Definite
negative, 184
positive, 184
semi, 184
deMorgan’s laws, 8
Dense, 60, 76, 120, 332, 460
nowhere, 76
Denumerable, 6
Dependence, functional, 243
Derivative, 154
directional, 164
total, 158
Determinant, Jacobian, 204
Diagonal process, 131
Dieudonné, Jean, 231, 474, 476
Differentiability, conditions for, 163
Differentiable maps, 154
continuity of, 160
Differential, 158
equation, 116, 218
Differentiation
implicit, 211
of series, 108
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theorem, 380
under the integral sign, 324
Dini’s theorem, 140
Dirac, P. A. M,, 275
Dirac delta function, 415
Dirac §-function, 145
Directional derivative, 164
Dirichlet, P. G., 122
Dirichlet-Jordan theorem, 363
Dirichlet problem, 390, 467
Dirichlet series, 298
Dirichlet test, 122, 295
Discontinuity, jump, 357
Discrete, 75
Distance, 11, 20, 337, 456
function, 32
Distributions, 276, 277, 364
convergence of, 277
theory of, 276
Distributive law, 6, 11
Domain, 4
Dominated convergence theoren, 298
Double series, 147
Drasin, D., 356
Duff, G. F. D,, 392, 476

e, 27
e-disc, 33
Economics, 183, 224
Eigenfunction, 402
Eigenvalue, 402, 436
Electrostatics, 390
Elementary matrices, 317
Elements, 448
Empty set, 1, 453
Energy, 392
conservation of, 437
operator, 403
Equations
Cauchy-Riemann, 246
differential, 116
heat, 388, 400
integral, 116
Laplace’s, 390, 399
of motion, 384
partial differential, 276
Schrédinger, 404
wave, 333, 383, 400
Equicontinuous, 114
Euclidean n-space, 18
Euler, L., 125, 432
Even, 368
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Existence theorem, 218
Expectation, 407
value, 403
Exponential and trigonometric systems, 355
Exponential Fourier series, 366
Extension, 5, 100, 356
axiom of, 452
Extrema, constrained, 224
Extreme point, 183

Family, orthonormal, 345
Fejér, L., 364
Fejér ketnel, 419, 467
Feynman, R. P., 333, 401
Field, 11
complete ordered, 12
ordered, 11
Finite intersection property, 63
Finite set, 5
Finite subcover, 62
Fixed point, 116, 143, 230, 466
Flemming, W., 475
Formulas
change of variables, 301, 306, 326
Fourier inversion, 396
Liebnitz’, 378
Wallis” product, 432
Fourier analysis, 345
Fourier coefficibnts, 346
Fourier integrals, 334, 395
Fourier inversion formula, 396
Fourier series
classical, 334, 346
computation of, 365
cosine, 367
exponential, 366
series on [-/], 367
trigonometric, 366
Fourier transform, 397 ‘
Fubini’s theorem, 302
Function, 3
bounded; 111
characteristic, 258
convex, 331
8, 275
Dirac 8, 145, 415
distance, 32
of a function rule, 168
gamma, 294, 476
Gaussian, 322, 397
harmonic, 466, 467
Hermite, 335, 347

inverse, 4

Laguerre, 348

nowhere differentiable, 144

propositional, 449

simple, 145

space of continuous, 111

step, 358

uniformly continuous, 91
Functional dependence, 243
Fundamental solutions, 334
Fundamental theorem of calculus, 265, 286

Gamma function, 294, 476
Gaussian function, 322, 397
Gelbaum, B. R., 144, 458, 474
Gelfand, I. M,, 475
General linear group, 231
Geomeltric series, 47
Geometry of gradients, 172
Gibbs’ phenomenon, 365, 373, 440
GL(n,R), 231
Gleason, A. M., 474
Glueing lemma, 98
Gradient, 159, 171

geometry of, 172
Greatest lower bound, 14
Gram-Schmidt process, 347
Graph, 4
Graves, L. M., 473
Gulliver, R., 150, 288

Half-interval cosine series, 367

Half-interval sine series, 367

Halmos, P., 447, 474

Hamiltonian, 403

Hardy, G. H., 27, 126, 473, 475

Harmonic, 203, 334, 390
functions, 466, 467
oscillator, 405

Hartman, P., 475

Heat equation, 388, 400

Heine’s theorem, 152

Heine-Borel theorem, 62

Heisenberg uncertainty principle, 407

Hermite, C., 27

Hermite functions, 335, 347

Hermitian, 402

Hessian, 184

Hewitt, E., 461, 474

Hilbert, D., 392, 475

Hilbert space, 339, 435

Hobson, C. W, 473

e

i
i
1

Hoffman, M., 145
Hblder inequality, 148
Homeomorphic, 461
Homogeneous, 200
Hydrogen atom, 405
Hypergeometric series, 60
Hyperplane, affine, 21
Hurewicz, W., 475

Identity
approximate, 415
Lagrange’s, 30
mapping, 5
polarization, 29
Image _
of conipact sets, 82
of connected sets, 82
inverse, 4
pre, 4
Imaginary part, 341
Implicit function theorem, 209, 233
Implicitly defined, 209
Improper integrals, 267
Increasing, 12
Independent, linearly, 343
Index of a critical point, 223
Inequality
Bessel’s, 348, 435
Cauchy-Schwarz, 20, 337
CBS, 20, 27
Holder, 148
mean-value, 199
Minkowski, 148, 338
triangle, 11, 20, 21

" Inferior limit, 29

Infimum, 14

Infinite set, §

Infinitely deep well, 405

Infinity, axiom of, 454

Initial condition, 384

Initial displacement problem, 384

Injection, 4

Inner product, 20, 336, 337
space, 21

Instability, 185

Instantaneous velocity, 161

Integers, positive, 2

Integrable, 252, 268, 269, 270

Riemann, 252, 255

Integral equations, 116
Integral test, 48
Integral transform, 397
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Integrals

Fourier, 334, 395

improper, 267

Lebesgue, 313

lower, 255

mean-value theorem for, 263

properties of the, 263

upper, 255
Integration

iterated, 299

of series, 108

by substitution, 301
Interchanging the order of integration and

summation, 109 :

Interior point, 36
Intermediate value theorem, 89
Intersection, 2, 453

Interval
closed, 13
open, 8, 13

Inverse function, 4
theorem, 205, 230

Inverse image, 4

Invertibility, local, 205

Irrational, 27

Isolated, 75

Isoperimetric problem, 432

Isotopic, 467

Iterated integration, 299

Iteration, 116

Jacobian determinant, 204
Jacobian matrix, 158
Jaunch, J. M., 476
Joint continuity, 85
Jordan measurable, 258
Jordan-Dirichlet theorem, 438
Jump, 89

discontinuity, 357

Kernel, 398
Fejér, 419, 467
Poisson, 466, 467
Kline, M., 313, 476
Knopp, K., 475
Kronecker’s lemma, 465

L3 340

Lagrange, J. L., 195

Lagrange identity, 30

Lagrange interpolation formula, 121
Lagrange interpolation polynomials, 146
Lagrange multiplier, 225
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Laguerre functions, 348
‘Laplace equation, 390, 399
Laplace transform, 398
Lang, S., 473, 474
Laws
de Morgan’s, 8
distributive, 6, 11
parallelogram, 29
Least upper bound, 13
Lebesgue, H., 259, 412, 444, 461
Lebesgue covering lemma, 460
Lebesgue dominated convergence theorem,
109
Lebesgue integral, 313
Lebesgue theorem, 261
Leibnitz formula, 378
Leibnitz rule, 171
Legendre polynomials, 347, 434
Leighton, R. B., 333, 401
Lemmas
contraction, 230
glueing, 98
Kronecker's, 465
Lebesgue covering, 460
Morse, 222
) Riemann-Lebesgue, 416
Length, 19
Level contouss, 173
Levinson, N., 436, 475
PHopital’s rule, 176
Limit, 12, 78
" from the right; 80
inferior, 29, 76
one-sided, 80
point, 58
superior, 29, 76
unique; 56
Lindemann, 27 ,
Line segment, 174 -
Linear system, 222
Linearly independent, 343
Lipschitz condition, 219
Lipschitz map, 98
Lipschitz property, 161
Local invertibility, 205
Local maximum, 183
Local minimum, 183
Locally path-connected, 75
Logic, 449
Logical connectives, 451
Loomis, L. H., 473
Lower bound, 14

Lower integral, 255

Lower semicontinuous function, 143
Lower sums, 251

Luxemburg, W. A. 1, 273, 412, 443

McAloon, K., 171, 180, 195, 458
Mackey, G. W., 476
Magnitude, 11
Map, 455

contintous linear, 96

continuous multilinear, 97

multilinear, 97

Lipschitz, 98
Matrices, elementary, 317
Maximum, 156

absolute, 88

local, 183
Mean convergence, 338
Mean-value

inequality, 199

theorem, 92, 156, 174

theorem for integrals, 263
Measurable, Jordan, 258
Measure

simultaneous, 405

theory, 314

zero, 259
Mechanics, 185, 400

classical, 400

quantum, 400
Members of a set, 1
Merzbacher, E., 476
Method of successive approximations, 116
Metric space, 21

compact, 62, 100, 152

totally bounded, 152
Milnor, J., 241, 327
Minimum, 156

absolute, 88

local, 183
Minkowski inequality, 148, 338
Momentum operator, 404
Monotone convergence theorem, 273, 288
Monotone sequence, 10
Morse lemma, 222
Motion, equation of, 384
Multilinear map, 97
Multiplication axioms, 11
Multiplier, Lagrange, 225

n-space, Euclidean, 18
n-tuples, 18

Naylor, D., 392, 476
Negative

definite, 184

semidefinite, 184
Nested set property, 64
Non-decreasing, 12
Non-degenerate critical point, 223
Norm, 19, 111, 337, 341
Normalized, 345
Normed space, 21, 112
Nowhere dense, 76
Nowhere differentiable function, 144
Number, complex, 340, 341
Number system, real, 12

Observable, 402
Odd, 368
Olmstead, J. M., 144, 458, 474
O’Nan, M., 153, 159, 215, 239, 317
One-sided limits, 80
One-to-ohe, 4
One-to-one correspondence, 5
Onto, 4
"Open cover, 62
Open interval, 8, 13
Open set, 33
Operator, 402
energy, 403
momentum, 404
position, 404
unbounded, 402
Optimization, 173
Order axioms, 11
Ordered field, 11
Ordered pairs, 2, 455
Ordinary differential equations, 218
Orthogonal, 21, 337
complements, 22, 434
vectors, 345
Orthonormal family, 345
Orthonormal vectors, 343
Oscillation, 281
Oscillator, harmonic, 405
Overshoot, 375

p-series test, 47

Pair, ordered, 2, 455
Pairing, axiom of, 453
Paradox, 450

Parallelogram law, 29
Parseval's relation, 370, 398
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Parseval’s theorem, 348
Part
imaginary, 341
real, 341
Partial derivative, 158
Partial differential equations, 276
Partition, 251, 254
Path, 161
connected, 66
connected, locally, 75
connectedness, 200
continuous, 66
differentiable, 160
Peixoto, M., 183
Perfect, 77
Periodic, 356
Permutation, 141
Phenomenon, Gibbs’, 365, 373, 440
w7, 27 .
Piecewise continuous, 262
Plancherel’s theorem, 398
Planck’s constant, 404
Plane, tangent, 165, 172
Plucked string, 394
Point
accumulation, 39
cluster, 39
critical, 183, 223
extreme, 183
fixed, 116, 143, 230, 466
interior, 36
limit, 58
saddle, 183
separate, 120
Pointwise convergence, 102, 103, 338, 358,
464
Poisson kernel, 466, 467
Polar coordinates, 169, 300, 309, 341
Polarization identity, 29
Polygonal approximation, 119, 146
Polynomials !
Bernstein, 119, 146
Lagrange interpolation, 146
Legendre, 347, 434
Porter, G. J., 53
Position operator, 404
Positive
definite, 184
integers, 2
semidefinite, 184
Power, axiom of, 453
Power series, 124
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Pre-image, 4
Principle

Cavalieri’s, 458

Heisenberg uncertainty, 407

uncertainty, 405, 407
Probability, 400
Problems

Dirichlet, 390, 467

initial displacement, 384

isoperimetric, 432

Sturm-Liouville, 436
Process

diagonal, 131

Gram-Schmidt, 347
Product

Cartesian, 2

inner, 20, 336, 337

rule, 171
Projection, 215, 343, 345, 346
Propagation, wave, 383
Property

Archimedian, 13, 31

finite intersection, 63

nested set, 64

of the integral, 263
Propositional function, 449
Pythagoras theorem, 344

”

Quantifiers, 451
Quantum mechanics, 400

R, 12

Raabe’s test, 60

Radius of convergence, 124

Range, 4

Rank, 215

Ratio test, 47, 60

Real analytic, 180

Real number system, 12

Real part, 341

Rearrangement, 141, 143
theorems, 141

Rectangles, 254+

Reductio ad absurdum, 449

Reed, Simon B., 402

Refinement, 254

Reflection, 462

Reflexivity, 11

Regular, 126

Regularity, 125

Relation, Parseval’s, 370, 398

Relative, 76
Relatively closed, 75
Relatively compact, 100
Remainder, Lagrange’s form, 195
Restriction, 5
Riemann, B., 141, 313
Riemann condition, 255, 278
Riemann integrable, 252, 255
Riemann-Lebesgue lemma, 416
Riemann localization property, 463
Riemann sum, 255
Riesz-Fischer theorem, 438
Rolle’s theorem, 156, 197
Root test, 48, 60
Rosenlicht, M., 474
Roxin, E. O,, 475
Royden, H. L., 261, 313, 474
Rudin, W., 333, 474
Rules

chain, 169

Leibnitz, 171

’Hépital’s, 176

product, 171

Saddle point, 183, 224

Sands, M., 333, 401

Sard’s theorem, 327

Schrodinger equation, 404

Schwartz, J., 316

Schwartz, L., 276, 277, 475

Second countable, 144

Second derivative, 178
symmetry of, 179

Second mean value theorem, 195

Sectionally continuous, 340

Segment, 174

Self-adjoint, 402

Semicontinuous functions, 143

~ Sentences, atomiic, 451
" Separable, 144

continuity, 85
points, 120
Separately continuous, 99
Separation of variables, 384, 391
Sequence, 6, 44
Cauchy, 14, 45, 339
convergence of a, 338
monotone, 10
Series
absolutely convergent, 47
alternating, 122, 141
classical Fourier, 334, 346

computation of Fourier, 365
convergence of a, 338
differentiation of, 108
Dirichlet, 298
double, 147
exponential Fourier, 366
Fourier, 334, 346
Fourier cosine, 367
Fourier sine, 366
geometric, 47
half-interval cosine, 367
half-interval sine, 367
hypergeometric, 60
integration of, 108
power, 124
Tayler’s, 180
trigonometric, 448
trigonometric Fourier, 366
Set, 448
Cantor, 77, 295, 296
closed, 37
empty, 1, 453
finite, 5
images of compact, 82
"images of connected, 82
infinite, 5
members of, 1
open, 33
theory, 447
Shilov, G. E., 475
Side conditions, 224
Simmons, G., 146, 474
Simple convergence, 102
Simple function, 145
Simultaneously measured, 405
Smale, S., 183
Smooth, 179
Sobolev, S. L., 276, 476
Solutions
d’Alembert’s, 395
fundamental, 334
Space
Banach, 112
compact metric, 100
complete metric, 46
complete normed, 112
of continuous functions, 111
contraction on a metric, 143
Hilbert, 339, 435
inner product, 21

-+ metric, 21

normed, 21, 112
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Schwartz, 277
topological, 35
Specification, axiom of, 453
Spectral theorem, 403
Spherical coordinates, 169, 310
Spivak, M., 27, 475
Stability, 185
Standard basis, 19
Standing waves, 334
State, 402
Stein, E. M., 475
Step function, 358
Sternberg, S., 327, 473
Stone, M. H., 120
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Stone-Weierstrass theorem, 119, 146, 152,

412

Straighten out, 213

domain, 214

range, 215
String

plucked, 394

vibrating, 333, 383
Stromberg, K., 461, 474
Sturm-Liouville problem, 436
Subcover, finite, 62
Subsequence, 6
Subset, |
Substitution, axiom of, 455
Successor, 454
Sum

lower, 251

Riemann, 255

upper, 251
Superior, limit, 29, 76
Supremum, 13
Surjection, 4
Symmetric, 312, 402
System

autonomous, 220

completeness of trigonometric, 444

linear, 222

trigonometric, 355

Tangent
plane, 172
vector, 161
Target, 4
Tauber, A., 126
Tauberian theorem, 126
Taylor’s formula, 177
Taylor’s set, 180
Taylor’s theorem, 174, 177, 192
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Tensor, 178
Tests
Cauchy condensation, 53
comparison, 47, 269, 271
Dirichlet, 295
integral, 48
p-series, 47
Raabe’s, 60
ratio, 47, 60
root, 48, 60
Weierstrass, 295
Weierstrass M, 107
Theorems
Arzela-Ascoli, 112, 152
Baire category, 76
Bolzano-Weierstrass, 62
boundedness, 86
composite mapping, 168
contraction, 230
Darboux’s, 255, 277
differentiation, 380
Dini’s, 140
Dirichlet-Jordan, 363
of distribution, 276
dominated convergence, 298
existence, 218
Fubini’s, 302
fundamental theorem of calculus, 286
Heine, 152
Heine-Borel, 62
implicit function, 209
intermediate value, 89
inverse function, 2035, 230
Jordan-Dirichlet, 438
Lagrange multiplier, 224
Lebesgue, 261
Lebesgue dominated COnvergence, 109
mean-value, 92, 156, 174, 199
mean-value for integrals, 263
measure, 314 ' )
monotone convergence, 273, 288
Morse, 222
Parseval’s, 348
Plancherel’s, 398
Pythagoras, 344
rearrangement, 141
Riesz-Fischer, 438
Rolle’s, 156, 197
Sard’s, 327
second mean value, 195
set, 447
spectral, 403

Stone-Weierstrass, 119, 146, 152, 412 .

straightening out, 213, 215
Tauberian, 126
Taylor’s 174, 177, 179, 193
uniqueness, 219
Thermodynamics, 247
Titchmarsh, E. C., 473
Topological space, 35
Total derivative, 158
Totally bounded, 152
Transcendental, 27 )
Transform i
Fourier, 397 }
Fourier cosine, 397 C
Fourier sine, 397
integral, 397
Laplace, 398
Transformation, 3
Transitivity, 11
Triangle inequality, 11, 20, 21
Trichotomy, 11
Trigonometric Fourier series, 366
Trigonometric series, 448
on [-11], 367 .
Trigonometric system, 355, 444
Tromba, A., 171, 180, 185, 195, 239, 356,
388, 390, 433 .

Unbounded operators, 402
Uncertainty, 400, 407
principle, 405, 407
Uncountable, 6
Uniform continuity, 91, 99
Uniform convergence, 104, 338, 378
Union, 2, 453, 454
axiom of, 453 -
Unique limits, 56
Uniqueness theorem, 219
Upper bound, 13
Upper integral, 255
Upper semicontinuity, 143
Upper sums, 251

Value, expectation, 403
Variables, separation of, 184, 391
Variance, 407 .
Variation, bounded, 363
Vector

orthogonal, 345

orthonormal, 343
Velocity, instantaneous, 161
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Jrating string, 333, 383
olume, 258, 261
olume-preserving, 460
‘olume zero, 258

Mallis’ product formula, 432
Watson, G, N., 473

Wave equation, 333, 383, 400
Wave propagation, 383
Waves, standing, 334
Weierstrass, K., 119, 144
Weierstrass M-test, 107, 295
Weisler, F., 202
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Weiss, G., 475

Well, infinitely deep, 405
Whittaker, E. T., 473
Widder, D. V., 474
Widom, H., 356, 475
Wright, C. M., 27

Zemanian, A,, 333, 364, 475
Zero

content, 258

measure, 259

volume, 258
Zygmund, A., 444, 475
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