Homework 4:

Let $\mathcal{M}(f)$ and M(f) be the standard centered and uncentered Hardy-Littlewood maximal functions.

Problem 4.1: Define the centered Hardy-Littlewood maximal function \mathcal{M}_c and the uncentered Hardy-Littlewood maximal function M_c using cubes with sides parallel to the axes instead of balls in \mathbb{R}^n . Prove that

$$v_n(n/2)^{n/2} \le \frac{M(f)}{M_c(f)} \le 2^n/v_n, \quad v_n(n/2)^{n/2} \le \frac{\mathcal{M}(f)}{\mathcal{M}_c(f)} \le 2^n/v_n,$$

where v_n is the volume of the unit ball in \mathbb{R}^n . Conclude that \mathcal{M}_c and M_c are weak type (1,1) and they map $L^p(\mathbb{R}^n)$ to itself for 1 .

Problem 4.2: Prove that for any fixed 1 , the operator norm of <math>M on $L^p(\mathbb{R}^n)$ tends to infinity as $n \to \infty$.