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Abstract. For any ν > 0 we study the following cross-product
combination of Bessel functions

hν(z) = j′ν(Rz)y′ν(rz)− j′ν(rz)y′ν(Rz), 0 < r < R.

We give the number of zeros of hν(z) within the circle |z| = (s +
1/2)π/(R− r) for large integer s.

1. Introduction

Given 0 < r < R < ∞ and ν > 0 we study the number of zeros of
the following cross-product combination of Bessel functions

hν(z) = j′ν(Rz)y′ν(rz)− j′ν(rz)y′ν(Rz),

where

jν(z) = z1−d/2Jν(z)

and

yν(z) = z1−d/2Yν(z)

with d ≥ 3 and Jν and Yν the Bessel functions of first and second kind
of order ν. The function jν and yν are (ultra)spherical Bessel functions
of the first and second kind when ν takes certain special value. Here
j′ν and y′ν represent derivatives with respect to z.

Cross-products of Bessel functions arise regularly in a variety of phys-
ical and mathematical problems with circular or cylindrical geometry.
Sometimes it is very helpful to know properties of their zeros. For
instance, Cochran [2] investigated

fν(z) = Jν(Rz)Yν(rz)− Jν(rz)Yν(Rz)(1.1)

and

gν(z) = J ′ν(Rz)Y ′ν(rz)− J ′ν(rz)Y ′ν(Rz),(1.2)
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and showed that for any fixed ν > 0 there are 2s and 2s + 2 zeros of
fν(z) and gν(z) respectively within the circle |z| = (s+ 1/2)π/(R− r)
for large integer s. This information can be used in the study of Weyl’s
law for the Dirichlet/Neumann Laplacian associated with the planar
annulus

D =
{
x ∈ R2 : r < |x| < R

}
.

Indeed, in [5] the first author, Müller, Wang and Wang obtained an
asymptotics of the eigenvalue counting function with an improved re-
mainder estimate for the Dirichlet Laplacian associated with D . The
connection between the eigenvalue counting and zeros of cross-product
Bessel functions lies in the fact that the eigenvalues under investigation
correspond to squares of zeros of fν(z), which can be easily verified by
using the standard separation of variables. Hence in order to count
eigenvalues, one needs to study zeros. In particular, the number of
zeros is needed in the process of determining asymptotics of zeros (see
the proof of [5, Theorem 2.8]).

It is also well-known that nonzero eigenvalues of the Neumann Lapla-
cian associated with D correspond to squares of zeros of gν(z) (namely,
hν with d = 2).

We would like to consider the Neumann Laplacian and generalize
the planar annulus in [5] to spherical shells in high dimensions. Hence
we need to study zeros of hν(z) with d ≥ 3. As a first step, we prove
the following result on the number of zeros of hν(z).

Theorem 1.1. Let hν(z) be defined as above. Then there is a large
constant C > 0 such that for any ν > 0, if s ∈ N satisfies s > C(ν3+1),
then hν(z) has precisely 2s + 2δ(ν) zeros within the circle |z| = (s +
1/2)π/(R− r), where δ(ν) is 0 if ν = d/2− 1 and 1 otherwise.

Remark 1.2. We follow the convention that zeros are counted with
multiplicities.

Remark 1.3. Our result provides an explicit dependence on ν of the size
of s, which is implicitly in the work of Cochran [2]. This is achievable
due to our effort in tracking values of coefficients of expansions shown
up in the proof.

Remark 1.4. At last we would like to mention a few interesting results
on other properties of zeros. Asymptotic expansions for real zeros of
fν(z) and gν(z) were derived in McMahon [6] (and also in Truell [8] for
first zeros of gν(z) and ν = 1, 2, 3, 4). Cochran [4] showed zeros of both
fν(z) and gν(z) are analytic. Cochran [3] obtained analogous results
for nonnegative real ν-zeros of fν(z) and gν(z).
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In this paper, H
(1)
ν (z) and H

(2)
ν (z) are the Hankel functions of the

first and second kind of order ν (also known as the Bessel functions of
the third kind). It is well known that

Yν(z) =
cos(νπ)Jν(z)− J−ν(z)

sin(νπ)
,(1.3)

where the right hand side of this equation is replaced by its limiting
value if ν is an integer,

H(1)
ν (z) = Jν(z) + iYν(z),(1.4)

H(2)
ν (z) = Jν(z)− iYν(z)(1.5)

and

C ′ν(z) =
Cν−1(z)− Cν+1(z)

2
,(1.6)

where C may denote J , Y , H(1) and H(2). See 9.1.2–9.1.4 and 9.1.27 in
[1]. The Landau notation f = O(g) means |f | 6 Cg for some constant
C.

2. Analyticity of cross-product Bessel functions

In this section we study the analyticity of the following function

(2.1) hν(z) = gν(z) +

(
1− d

2

)2

Rrz2
fν(z) +

1− d
2

Rrz

(
rlν(z)−Rl̃ν(z)

)
,

where

lν(z) = Jν(Rz)Y ′ν(rz)− J ′ν(rz)Yν(Rz)(2.2)

and

l̃ν(z) = Jν(rz)Y ′ν(Rz)− J ′ν(Rz)Yν(rz).(2.3)

It is easy to verify that

(2.4) hν(z) = (Rr)1− d
2 z2−dhν(z).

The following result tells us that the origin is not a zero of hν(z).

Lemma 2.1. Let hν(z) be defined by (2.1) and 0 < r < R given. For
all ν > 0, we have that

(1) if ν = d/2− 1, hν(z) is an entire function and hν(0) 6= 0;
(2) if ν 6= d/2− 1, hν(z) is holomorphic on C \ {0} and has a pole

at 0 of the second order.
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Proof. We are going to derive ascending series of hν(z) by using as-
cending series of the Bessel functions.

We first prove the case ν = n ∈ N \ {1}. From [1, P. 360] or [7, P.
57, P. 243], we have that for general real ν, if ν 6= −1,−2, . . ., then
(2.5)

Jν(z) =
(z

2

)ν ∞∑
k=0

(−1)k
(
z
2

)2k

k!Γ(ν + k + 1)
=
(z

2

)ν( 1

Γ(ν + 1)
−

(
z
2

)2

Γ(ν + 2)
+ · · ·

)
,

and if ν = n ∈ N then

Yn(z)=
−1

π

(z
2

)−n n−1∑
k=0

(n− k − 1)!

k!

(z
2

)2k

+
2

π
ln
(z

2

)
Jn(z)

− 1

π

(z
2

)n ∞∑
k=0

(ψ(k + 1) + ψ(n+ k + 1))
(−1)k

(
z
2

)2k

k!(n+ k)!

=


(
z
2

)−1
(
−1
π
− ψ(1)+ψ(2)

π

(
z
2

)2
+ · · ·

)
+ 2
π
ln
(
z
2

)
J1(z) if n = 1,

(
z
2

)−n (−Γ(n)
π
− Γ(n−1)

π

(
z
2

)2
+· · ·

)
+ 2

π
ln
(
z
2

)
Jn(z) if n ≥ 2,

(2.6)

where

ψ(1) = −γ, ψ(k) = −γ +
k−1∑
l=1

1

l
, k ≥ 2,

and γ is the Euler’s constant. Here we choose any branch of the Bessel
functions correspond to the range 1 −π+ 2mπ < arg z < π+ 2mπ with
m ∈ Z.

By (2.5) and (2.6) we have

fn(z) =

(
r2n −R2n

nπrnRn
+

(
r2n−2 −R2n−2

n(n− 1)πrn−2Rn−2

− r2n+2 −R2n+2

(n+ 1)nπrnRn

)(z
2

)2

+ · · ·

)
+ Rfn(z),

(2.7)

where

Rfn(z) =
2

π
ln
( r
R

)
Jn(rz)Jn(Rz).

1Here arg z denotes the argument of the complex number z.
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Applying the recurrence relation (1.6), (2.5) and (2.6) to (1.2) yields

gn(z) =

(
n (R2n − r2n)

4πrn+1Rn+1

(z
2

)−2

+
(n− 2) (R2n−2 − r2n−2)

4(n− 1)πrn−1Rn−1

− (n+ 2) (R2n+2 − r2n+2)

4(n+ 1)πrn+1Rn+1
+ · · ·

)
+ Rgn(z),

(2.8)

where

Rgn(z) =
1

2π
ln
( r
R

)
(Jn−1(rz)− Jn+1(rz)) (Jn−1(Rz)− Jn+1(Rz)) .

By a similar argument we obtain

ln(z) =

(
R2n + r2n

2πrn+1Rn

(z
2

)−1

+
Cln,1

2

z

2
+ · · ·

)
+ Rln(z)(2.9)

and

l̃n(z) =

(
r2n +R2n

2πRn+1rn

(z
2

)−1

+
Cl̃n,1

2

z

2
+ · · ·

)
+ Rl̃n

(z),(2.10)

where

Cln,1 =
(n− 2)Rn

n(n− 1)πrn−1
− Rn+2

(n+ 1)πrn+1
+

rn−1

(n− 1)πRn−2
− (n+ 2)rn+1

n(n+ 1)πRn

and

Rln(z) =
1

π
ln
( r
R

)
Jn(Rz) (Jn−1(rz)− Jn+1(rz))

and the constant Cl̃n,1
and the term Rl̃n

(z) can be obtained from Cln,1

and Rln(z) by swapping r and R respectively.2

Then applying (2.7)–(2.10) to all factors in hn(z) defined by (2.1)
yields

hn(z) =

((
n2 −

(
1− d

2

)2
)

(R2n − r2n)

nπrn+1Rn+1

1

z2
+ Chn,0 + · · ·

)
+ Rhn(z),

(2.11)

where

Chn,0 =

(
(n− 2)n−

(
1− d

2

)2 − 2
(
1− d

2

))
(R2n−2 − r2n−2)

4n(n− 1)πrn−1Rn−1

−

(
n(n+ 2)−

(
1− d

2

)2 − 2
(
1− d

2

))
(R2n+2 − r2n+2)

4n(n+ 1)πrn+1Rn+1

2The only difference between ln(z) and l̃n(z) is the position of r and R.
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and

Rhn(z) = Rgn(z) +

(
1− d

2

)2

Rrz2
Rfn(z) +

1− d
2

Rrz

(
rRln(z)−RRl̃n

(z)
)
.

It is easy to verify that the series on the right hand side of (2.11)
is independent of the branch we choose and if n = d/2 − 1, it can be
continued analytically onto the negative real axis and the origin. Hence
hn(z) is an entire function and hn(0) 6= 0. If n 6= d/2 − 1, the series
can be continued analytically onto the negative real axis. Hence hn(z)
is meromorphic and only has a pole at 0 of the second order. This
completes the proof of the case ν = n ∈ N \ {1}.

The proof of other cases are similar and simpler. Here we only point
out the differences rather than giving every detail. If ν = 1, when
applying the ascending series of Yn, in addition to (2.6), we also need

Y0(z) =

(
2γ

π
J0(z) +

2

π

(z
2

)2

+ · · ·
)

+
2

π
ln
(z

2

)
J0(z).

See 9.1.13 in [1, P. 360].
If ν > 0 and ν /∈ N, we only need (2.5) to obtain the ascending series

of hν(z), although (2.6) is no longer applicable. Combining (1.3) and
(1.1) we obtain that

fν(z) = Jν(rz)
J−ν(Rz)

sin(νπ)
− Jν(Rz)

J−ν(rz)

sin(νπ)
,

which is only related to Jν with ν /∈ Z. The corresponding variants
of gν(z), lν(z) and l̃ν(z) follow from (1.3) and the linearity of differ-
entiation. Then by applying (2.5) and the recurrence relation (1.6) to

variants of fν(z), gν(z), lν(z) and l̃ν(z) yields ascending series of the
functions, and hence the series of hν(z) from which we can get the
desired results. This completes the proof of the lemma. �

3. Proof of Theorem 1.1

In this section we are going to count the number of zeros of hν(z).
In the first half of the proof, we obtain an asymptotics of hν(z) on the
circle |z| = (s+ 1/2)π/(R− r), and in the rest we apply the argument
principle to hν(z) in the circle to count its zeros.

Proof of Theorem 1.1. By (2.4) and Lemma 2.1, it suffices to count the
number of zeros of hν(z).

Let s be an integer with s > C(ν3 + 1) and C > 0 to be determined
later. By Lemma 2.1 and the argument principle, the number of zeros
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of hν(z) within the circle σ: |z| = (s+ 1/2)π/(R− r) equals

(3.1)
1

2πi

∫
σ

h′ν(z)

hν(z)
dz + 2δ(ν),

where δ(ν) is 0 if ν = d/2− 1 and 1 otherwise.
We will apply asymptotics of Hankel functions and their derivatives,

(1.4) and (1.5) to obtain asymptotics of fν(z), gν(z), lν(z) and l̃ν(z)
at |z| = (s + 1/2)π/(R − r), and hence an asymptotic expansion of
hν(z). From [7, P. 266–267] we have that if3 |z| > A|ν2− 1/4| for some
constant A > 0 and −π/2 ≤ arg z ≤ π/2, then

H(1,2)
ν (z) =

√
2

πz
e±i(z−( ν2 + 1

4)π)

(
1± iµ− 1

8z
− (µ− 1)(µ− 9)

2!(8z)2

∓ i(µ− 1)(µ− 9)(µ− 25)

3!(8z)3
+ R

H
(1,2)
ν

(z)

)
,

(3.2)

where the upper (lower) sign applies to the Hankel functions of the first
(second) kind, µ = 4ν2, and

R
H

(1,2)
ν

(z) = O
(
(µ4 + 1)|z|−4

)
.

Moreover, by the recurrence relation (1.6) we have

H(1,2)
ν

′(z) =

√
2

πz
e±i(z−( ν2 + 1

4)π)

(
± i− µ+3

8z
∓ i(µ− 1)(µ+ 15)

2!(8z)2

+
(µ− 1)(µ− 9)(µ+ 35)

3!(8z)3
+ R

H
(1,2)
ν

′(z)

)
,

(3.3)

where the upper (lower) sign applies to the Hankel functions of the first
(second) kind, and

R
H

(1,2)
ν

′(z) = O
(
(µ4 + 1)|z|−4

)
.

From the relations (1.4) and (1.5) we have

fν(z) =
1

2i

(
H(2)
ν (Rz)H(1)

ν (rz)−H(1)
ν (Rz)H(2)

ν (rz)
)
.

3This assumption is satisfied if we take C > (R− r)A/π.
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Then applying the asymptotics (3.2) to all factors in the above formula
yields

fν(z) =
−2

πz
√
Rr

(
sin(R− r)z

(
1 +

α2

(8z)2

)

− cos(R− r)z
(
α1

8z
− α3

(8z)3

)
+ Rfν (z)

)
,

(3.4)

where

α1 =(µ− 1)

(
1

r
− 1

R

)
, α2 =

(µ− 1)2

Rr
− (µ− 1)(µ− 9)

2!

(
1

r2
+

1

R2

)
,

α3 =
(µ− 1)(µ− 9)(µ− 25)

3!

(
1

r3
− 1

R3

)
− (µ− 1)2(µ− 9)

2!

(
1

r2R
− 1

R2r

)
and

Rfν (z) = O
(
(µ4 + 1)|z|−4

)
.

From the linearity of differentiation, (1.4), (1.5) and (3.3), the cross-
product gν(z) has an asymptotic expansion similar to (3.4), but with
different coefficients and remainder. Let α̃i be its coefficients (corre-
sponding to αi) with i = 1, 2, 3 and Rgν (z) the corresponding remain-
der. Then

α̃1 =(µ+ 3)

(
1

r
− 1

R

)
, α̃2 =

(µ+ 3)2

Rr
− (µ− 1)(µ+ 15)

2!

(
1

r2
+

1

R2

)
,

α̃3 =
(µ− 1)(µ− 9)(µ+35)

(
1
r3
− 1

R3

)
3!

−
(µ− 1)(µ+ 3)(µ+15)

(
1
r2R
− 1

R2r

)
2!

and

Rgν (z) = O
(
(µ4 + 1)|z|−4

)
.

The asymptotics of lν(z) and l̃ν(z) can be obtained by a similar
argument. For lν(z) we have

lν(z) =
2

πz
√
Rr

(
cos(R− r)z

(
1 +

δ2

(8z)2

)

+ sin(R− r)z
(
δ1

8z
− δ3

(8z)3

)
+ Rlν (z)

)
,

(3.5)

where

δ1 =
µ+ 3

r
− µ− 1

R
, δ2 =

(µ− 1)(µ+ 3)

Rr
−

(µ− 1)
(
µ−9
R2 + µ+15

r2

)
2!

,
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δ3 =
(µ− 1)

(
(µ−9)(µ+3)

R2r
− (µ−1)(µ+15)

Rr2

)
2!

+
(µ− 1)(µ− 9)

(
µ+35
r3
− µ−25

R3

)
3!

and

Rlν (z) = O
(
(µ4 + 1)|z|−4

)
.

For l̃ν(z), it has an asymptotics similar to (3.5) with different coeffi-
cients

δ̃1 =
µ− 1

r
− µ+ 3

R
, δ̃2 =

(µ− 1)(µ+ 3)

Rr
−

(µ− 1)
(
µ−9
r2

+ µ+15
R2

)
2!

,

δ̃3 =
(µ− 1)

(
(µ−1)(µ+15)

R2r
− (µ−9)(µ+3)

r2R

)
2!

+
(µ− 1)(µ− 9)

(
µ−25
r3
− µ+35

R3

)
3!

and

Rl̃ν
(z) = O

(
(µ4 + 1)|z|−4

)
.

Then we apply to all factors in hν(z) the asymptotics of fν(z), gν(z),

lν(z) and l̃ν(z) to obtain

hν(z) =
−2√
Rrπz

(
sin(R− r)z

(
1 +

C2

z2
+
C4

z4

)

− cos(R− r)z
(
C1

z
+
C3

z3
+
C5

z5

)
+ Rhν (z)

)
,

where the coefficients

C1 =
1− d

2

R
−

1− d
2

r
+
α̃1

8
, C2 =

(
1− d

2

)2

rR
+

(
1− d

2

)
δ̃1

8r
−
(
1− d

2

)
δ1

8R
+
α̃2

82
,

C3 =

(
1− d

2

)2
α1

8rR
+

(
1− d

2

)
δ2

82R
−
(
1− d

2

)
δ̃2

82r
− α̃3

83
,

C4 =

(
1− d

2

)2
α2

82rR
+

(
1− d

2

)
δ3

83R
−
(
1− d

2

)
δ̃3

83r
, C5 = −

(
1− d

2

)2
α3

83rR

and the remainder

Rhν (z) = Rgν (z) +

(
1− d

2

)2
Rfν (z)

rRz2
−
(
1− d

2

)
Rlν (z)

Rz
+

(
1− d

2

)
Rl̃ν

(z)

rz
= O

(
(µ4 + 1)|z|−4

)
.

Notice that the asymptotics of hν(z) above is true for all |z| = (s +
1/2)π/(R− r) with | arg z| ≤ π by the evenness of the function.
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Now we are ready to count the zeros of hν(z). We first notice that
if |z| = (s+ 1/2)π/(R− r), we have

cot(R− r)z = O(1)

and

sin−1(R− r)z = O(1).

Then a straightforward calculation combined with the above two esti-
mates shows that

1

2πi

∫
σ

h′ν(z)

hν(z)
dz =

R− r
2πi

∫
σ

m1
ν(z)+m2

ν(z)+m3
ν(z) dz−1+O

(
µ4 + 1

s3

)
,

(3.6)

where

m1
ν(z) = cot(R− r)z +

C1 cot2(R− r)z
z

+
C1

z
,

m2
ν(z) =

(
C1

R−r + C2
1

)
cot(R− r)z
z2

+
C2

1 cot3(R− r)z
z2

,

and

m3
ν(z) =

C3 − 2C2

R−r − C1C2

z3
+

(
C3 − C1C2 +

C2
1

R−r + C3
1

)
cot2(R− r)z

z3

+
C3

1 cot4(R− r)z
z3

.

For m1
ν(z), the first term cot(R − r)z has poles z = mπ/(R − r) of

order 1 with m = 0,±1,±2, . . . ,±s within the circle σ. By the residue
formula we have

1

2πi

∫
σ

cot(R− r)z dz =
s∑

m=−s

1

R− r
=

2s+ 1

R− r
.

The second term C1z
−1 cot2(R − r)z has poles z = 0 of order 3 and

z = mπ/(R − r) of order 2 with m = ±1,±2, . . . ,±s within the circle
σ. Then

1

2πi

∫
σ

C1z
−1 cot2(R− r)z dz = C1

(
−2

3
− 2

π2

s∑
m=1

1

m2

)
.

It follows from the equality

∞∑
m=1

1

m2
=
π2

6
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and the estimate C1 = O(µ+ 1) that

1

2πi

∫
σ

C1z
−1 cot2(R− r)z dz = −C1 +O

(
µ+ 1

s

)
.

Then from the discussion above we obtain

(3.7)
R− r
2πi

∫
σ

m1
ν(z) dz = 2s+ 1 +O

(
µ+ 1

s

)
.

Similarly, we have

(3.8)
R− r
2πi

∫
σ

m2
ν(z) dz = O

(
µ+ 1

s

)
+O

(
µ2 + 1

s3

)
and

(3.9)
R− r
2πi

∫
σ

m3
ν(z) dz = O

(
µ3 + 1

s3

)
.

Combining (3.6), (3.7), (3.8) and (3.9) yields

1

2πi

∫
σ

h′ν(z)

hν(z)
dz = 2s+O

(
µ+ 1

s

)
+O

(
µ4 + 1

s3

)
.(3.10)

Notice that µ = 4ν2. Hence we can take a sufficiently large constant
C > 0 such that for any s ≥ C(ν3 + 1), the right hand side of (3.10)
is equal to 2s plus a constant with absolute value less than 1. On the
other hand, the integral equals an integer by the argument principle,
which implies that

(3.11)
1

2πi

∫
σ

h′ν(z)

hν(z)
dz = 2s.

Then the desired results follow from (3.1) and (3.11). This completes
the proof of Theorem 1.1. �
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